COMPUTER SCIENCE
SEDGEWICK/WAYNE

INTRODUCTION TO

Programming
in Java

3. Conditionals and loops

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

Section 1.3

http://introcs.cs.princeton.edu



COMPUTER SCIENCE
SEDGEWICK/WAYNE

3. Conditionals & Loops

 Conditionals: the i f statement
* Loops: the while statement

* An alternative: the for loop

* Nesting

 Debugging

CS.3.A.Loops.If



Context: basic building blocks for programming

any program you might want to write

objects
functions and modules

graphics, sound, and image |/0O

arrays

conditionals and loops «—

S text I/0 K- |
primitive data types assignment statements This lecture:
to infinity and beyond!

Previous lecture:
equivalent to a calculator



Conditionals and Loops

Control flow

e The sequence of statements that are actually executed in a program.
« Conditionals and loops enable us to choreograph control flow.

true boolean 1

statement 1

 Z [ false
statement 2 statement 1 l

A4 boolean 2 true —»| statement 2
statement 3

false

A\ 4 l

statement 4

statement 3

straight-line control flow control flow with conditionals and a loop
[ previous lecture ] [this lecture]



The if statement

Execute certain statements depending on the values of certain variables.

 Evaluate a boolean expression.
* If true, execute a statement.

« The else option: If false, execute a different statement.

Example: if ( x < 0 ) x = -X;

— true false —

l

Computes the absolute value of x

Example: if ( x > y ) max
else max

I
< X

__ true false —

max = X; max = y;

l

Computes the maximum of x and y



Example of if statement use: simulate a coin flip

public class Flip

{
public static void main(String[] args)
{
if (Math.random() < 0.5)
System.out.printin("Heads");
else System.out.printin("Tails");
}
}

% java
Heads

% java
Heads

% java
Tails

% java
Heads

Flip

Flip

Flip

Flip




Example of i f statement use: 2-sort

Q. What does this program do?

public class TwoSort

{
public static void main(String[] args)
{
int a = Integer.parselnt(args[0]);
int b = Integer.parselnt(args[1]);
if (b < a)
{ % java TwoSort 1234 99
int t = a; alternatives for if and else 99
a=bh: <«—— can be a sequence of 1234
b = t: statements, enclosed in braces
} % java TwoSort 99 1234
StdOut.println(a); 99
StdOut.println(b); 1234
}
}

A. Reads two integers from the command line, then prints them out in numerical order.



Pop quiz on if statements

Q. Add code to this program that puts a, b, and c in numerical order.

public class ThreeSort
{
public static void main(String[] args)
{
int a = Integer.parselnt(args[0]);
int b = Integer.parselnt(args[1]);
int ¢ = Integer.parselnt(args[2]);

StdOut.printin(a);
StdOut.printin(b);
StdOut.printin(c);

% java ThreeSort 1234 99 1
1

99

1234

% java ThreeSort 99 1 1234
1

99

1234




Example of i f statement use: error checks

public class IntOps
{
public static void main(String[] args)
{ % java IntOps 5 2
int a = Integer.parseInt(args[0]); 5+ 2 =17
int b = Integer.parseInt(args[1]); 5> * 2 =10
int sum = a + b; 5/ 2 =2
int prod = a * b; 5% 2 =1
System.out.printin(a + " + " + b + " =" + sum); )
. "o " " % java IntOps 5 O
System.out.println(a + & + b+ " ="+ prod); 510 <5
if (b == 0) System.out.println("Division by zero"); 5% 0 2 0
else System.out.println(a + " / "+ b+ " =" +a / b); Division by zero
if (b == 0) System.out.printin("Division by zero"); Division by zero
else System.out.println(a + " % " + b + " =" + a % b);
}
}

Good programming practice. Use conditionals to check for and avoid runtime errors.



COMPUTER SCIENCE
SEDGEWICK/WAYNE

3. Conditionals & Loops

e Conditionals: the i f statement
* Loops: the while statement

* An alternative: the for loop

* Nesting

 Debugging

CS.3.B.Loops.While



The while loop

Execute certain statements repeatedly until certain conditions are met.

 Evaluate a boolean expression.

* If true, execute a sequence of statements.

* Repeat.
Example:
int 1 = 0;
int v = 1;

while (i <= n)

{
System.out.println(v);
i=1+ 1;
V=2 % vy

}

Prints the powers of two from 20 to 2.
[stay tuned for a trace]

N led 1l

false —

true

y

System.out.printin(v)




Example of while loop use: print powers of two

pubTlic class PowersOfTwo

{
public static void main(String[] args)
{
int n = Integer.parselnt(args[0]);
int 1 = 0;
int v = 1;
while (i <= n)
{
System.out.println(v);
i=1+ 1;
V=2%vV;
}
}
}

Prints the powers of two from 20 to 27 .

16

32

64

128

_i

<= n

true

true

true

true

true

true

true

false

% java PowersOfTwo 6
1

2

4

8

16

32

64




Pop quiz on while loops

Q. Anything wrong with the following code?

public class PQwhile

{
public static void main(String[] args)
{
int n = Integer.parselInt(args[0]);
int i = 0;
int v = 1;
while (i <= n)
System.out.printin(v);
i=1+ 1;
V=2 * v;
ks




Example of while loop use: implement Math.sqrt()

Goal. Implement square root function. % java Sqrt 60481729
7777.0
% java Sqrt 2

1.4142136

Newton-Raphson method to compute /¢
* Initialize to = c.

if t=c/tthen 2= The square root of 9 is 3.
* Repeat until ti = ¢/ti (up to desired precision):
Set ti+1 to be the average of tiand ¢/ t. g g?:e'_
C) Who cares?

i ti 2/ti average

0 2.0 1.0 1.5 LT e

1 1.5 1.3333333 1.4166667

2 1.4166667 1.4117647 1.4142157 S

3 1.4142157 1.4142114 1.4142136 M“:ﬁ &T?Z?&Zﬁ‘;?i‘fn?&"é‘ézf”d

4 1.4142136 1.4142136

computing the square root of 2 to seven places




Example of while loop use: implement Math.sqrt()

Newton-Raphson method to compute v/c

* Initialize to = c.

* Repeat until ti = ¢/ti (up to desired precision):
Set ti+1 to be the average of tiand ¢/ t.

public class Sqrt

{

public static void main(String[] args)

{
doubTe EPS = 1E-15; <«— error tolerance (15 places)
double c = Double.parseDouble(args[0]);
double t = c;
while (Math.abs(t - c/t) > t*EPS)
{ t=(c/t+1t)/2.0; }
System.out.println(t);

}

Scientists studied
computation well before
the onset of the computer.

Isaac Newton
1642-1727

% java Sqrt 60481729
7777 .0

% java Sqrt 2.0
1.414213562373095




Newton-Raphson method

Explanation (some math omitted)
« Goal: find root of function f(x). < use f(x)=x2—cfor/c
« Start with estimate t,.

« Draw line tangent to curve at x=t;.
( » Set t;;; to be x-coordinate where line hits x-axis.

» Repeat until desired precision.

root: f(x) =0

l

E—

— ti+3 ti+2

Li+1

ti



COMPUTER SCIENCE
SEDGEWICK/WAYNE

3. Conditionals & Loops

 Conditionals: the i f statement
* Loops: the while statement

* An alternative: the for loop

* Nesting

 Debugging

CS.3.C.Loops.For



The for loop

Example:

An alternative repetition structure.
« Evaluate an initialization statement.
« Evaluate a boolean expression.

* If true, execute a sequence of statements,
then execute an increment statement.
* Repeat.

initialization statement

<«—— Why? Can provide code that is more compact and understandable.

Every for loop has an equivalent while loop:

int v=1; / int v = 1;
for ((int i = 0;)(i <= n)(i+)) int i = 0;
{ boolean expression while ((-i <= n;))
System.out.printin(C i +\" " + v ); { —
vV = 2%v; System.out.println(C i + " " + v );
} increment statement Vv = 2""V;

Prints the powers of two from 20 to 27

}



Examples of for loop use

sum i
int sum = 0; 1 1
for (int i = 1; i <= N; i++) 3 2
sum += i; <«——— trace at end of loop for N=4
System.out.println(sum); 6|3
10 4
Computesum (1 +2+3+...+N)
product i
long product = 1; 1 1
for (int i = 1; i <= N; i++) 2 2
product *= 1i; 6 3
System.out.println(product); 24 4
2nk
Compute NI (1 *2*3 *...*N) k N
0 0.0
1 1.57079632...
for (int k = 0; k <= N; k++)
System.out.printin(k + " " + 2*Math.PI*k/N); 2 3.14159265. ...
3 4.71238898. ..
Print a table of function values 4 6.28318530. . .
\%
int v = 1; 2
while (v <= N/2) 4 <«———trace at end of loop for N =23
V = 2%Vv; 8

System.out.println(v); 16

Print largest power of 2 less than or equal to N



Example of for loop use: subdivisions of a ruler

Create subdivisions of a ruler to 1/N inches.

e Initialize ruler to one space.

e For each value i from 1 to N: 121312141213121
sandwich i between two copies of ruler.
i ruler
1 "y
public class Ruler 2 "121"
{ 3 "1213121"
public static void main(String[] args) 4 "121312141213121"
{

; End-of-loop trace
int N = Integer.parselnt(args[0]);
String ruler = " "; _
for (int i = 1; i <= N; i++) java Ruler 4

ruler = ruler + i + ruler; 121312141213121
System.out.printin(ruler);

% java Ruler 100
Exception in thread "main"
java.lang.OutOfMemoryError

Note: Small progam can produce huge amount of output.

2100 — T integers in output (!)



FHnClude€ {sSfaidc.ny
nt mgin(veid)

L

int count 2

for (count = 13 count< =500 ; count++)

printf ("I will not Throw paper dirplanes n class,”);, |

refurn O;

nants
LT o

NICE TRY.

Copyright 2004, FoxTrot by Bill Amend
www . ucomics.com/foxtrot/2003/10/03




Pop quiz on for loops (easy if you read exercise 1.3.13)

Q. What does the following program print?

public class PQfor
{

public static void main(String[] args)
{
int f = 0,
for (int 1
{
System.out.printin(f);

f=7F+ g;
g="~f-g;

1

I«

0; i <= 10; i++)

22



COMPUTER SCIENCE
SEDGEWICK/WAYNE

3. Conditionals & Loops

 Conditionals: the i f statement
* Loops: the while statement

* An alternative: the for loop

* Nesting

 Debugging

CS.3.D.Loops.Nesting



Nesting conditionals and loops

Nesting

« Any “statement” within a conditional or loop
may itself be a conditional or a loop statement.

« Enables complex control flows.
« Adds to challenge of debugging.

EXample: £or Gint 4 = 05 i < trials; i++)
{
int t = stake;
while (t > 0 & t < goal)
if (Math.random() < 0.5) t++;
else t--;
if (t == goal) wins++;
3

[ Stay tuned for an explanation of this code. ]

if-else statement
«—— within awhile loop
within a for loop

24



Example of nesting conditionals: Tax rate calculation

Goal. Given income, calculate proper tax rate.

if (income <

else

{

income
0-$47,450
$47,450 - $114,649
$114,650 - $174,699
$174,700 - $311,949

rate
22%
25%
28%
33%
35%

if statement

within an if statement

if statement

within an if statement
within an if statement

if statement

$311,950 +
47450) rate = 0.22;
if (income < 114650) rate = 0.25; )
else
{ <
if (income < 174700) rate = 0.28; <
else
{
if (income < 311950) rate = 0.33;]
else rate = 0.35;|
}
3

within an if statement
within an if statement
within an if statement

25



Pop quiz on nested if statements

Q. Anything wrong with the following code?

public class PQif

{

public static void main(String[] args)

{
double income = Double.parseDouble(args[0]);
double rate = 0.35;
if (income < 47450) rate = 0.22;
if (income < 114650) rate = 0.25;
if (income < 174700) rate = 0.28;
if (income < 311950) rate = 0.33;
System.out.printin(rate);

ks




Gambler's ruin problem

goal

e —"|_|_|_|"_I‘|_|—|_|—|_|—|_r'_"'_"|_|_‘
0

loss

win

A gambler starts with $stake and places $1 fair bets. -

» Qutcome 1 (loss): Gambler goes broke with $0. stake
e Outcome 2 (win): Gambler reaches $goal.

One approach: Monte Carlo simulation.
Q. What are the chances of winning? e Use a simulated coin flip.
Q. How many bets until win or loss? e Repeat and compute statistics.




Example of nesting conditionals and loops: Simulate gamber's ruin

Gambler's ruin simulation

* Get command-line parms.

* Run all the experiments.

* Run one experiment.

* Make one bet.

* If goal met, count the win.

* Print #wins and # trials.

public class Gambler

{

public static void main(String[] args)

{

}

int stake = Integer.parselnt(args([0]);
int goal = Integer.parselInt(args[1]);
int trials = Integer.parselnt(args[2]);
int wins = 0;
for (int i = 0; i < trials; i++) « for loop
{
int t = stake; ) while loop
while (t > 0 && t < goal) b within a for loop
{
if (Math.random() < 0.5) t++; [ if statement
else t--; | within a while loop
3 within a for loop
if (t == goal) wins++;
ks

StdOut.printin(wins + " wins of " + trials);

_

7 % java Gambler 5 25 1000
203 wins of 1000

28



Digression: simulation and analysis

Facts (known via mathematical analysis for centuries)
 Probability of winning = stake + goal.
e Expected number of bets = stake x desired gain.

Early scientists were
fascinated by the study
of games of chance.

Christi‘aan Huygens
1629-1695 .
stake goal trials

Example /
« 20% chance of turning $500 into $2500. 500/2500 = 20% fgia\\,/v?n(s:ag?igoo > 2> 1000
» Expect to make 1 million $1 bets. 500*(2500 - 500) = 1,000,000

% java Gambler 5 25 1000
203 wins of 1000

% java Gambler 500 2500 1000
uses about 1 billion coin flips —— 197 wins of 1000

Remarks

« Computer simulation can help validate mathematical analysis.

* For this problem, mathematical analysis is simpler (if you know the math).

« For more complicated variants, computer simulation may be the best plan of attack.

29



COMPUTER SCIENCE
SEDGEWICK/WAYNE

3. Conditionals & Loops

 Conditionals: the i f statement
* Loops: the while statement

* An alternative: the for loop

* Nesting

e Debugging

CS.3.E.Loops.Debugging



Debugging

is 99% of program development in any programming language, even for experts.

Bug: A mistake in a program. Debugging: The process of eliminating bugs.

%i@
*9‘,{%

“As soon as we started programming, we found out to our surprise that it wasn't as easy to get
programs right as we had thought. | can remember the exact instant when I realized that a large
part of my life from then on was going to be spent in finding mistakes in my own programs. ”

You will make many mistakes as
you write programs. It's normal.

diedmrbiieds

— Maurice Wilkes

Impossible ideal: "Please compile, execute, and debug my progam.” «——why is this impossible? Stay tuned.

Bottom line: Programming is primarily a process of finding and fixing mistakes.

31



Debugging

is challenging because conditionals and loops dramatically increase the number of possible outcomes.

program structure no loops N conditionals 1 loop

number of possible execution
sequences

1 2N no limit

Most programs contain numerous conditionals and loops, with nesting.

Good news. Conditionals and loops provide structure that helps us understand our programs.

Old and low-level languages have a goto

statement that provides arbitrary structure. “The quality of programmers is a decreasing
Eliminating gotos was controversial until —— function of the number of goto statements
Edsgar Dijkstra published the famous note in the programs they produce. ”

"Goto considered harmful" in 1968.

— Edsgar Dijkstra
32



Debugging a program: a running example

Problem: Factor a large integer N.
Application: Cryptography.

T

Suprising fact: Security of internet commerce
depends on difficulty of factoring large integers.

Method
e Consider each integer i less than N

» While i divides N evenly
Print i (it is a factor of N).
Replace N with N/i .

Rationale: T
1. Any factor of N/iis a factor of N.
2. i may be a factor of N/i.

3,757,208 =2 x2x2x7x13x13x 397
98=2x7x7

17=17
T, 1,011,171 1,111 =2,071,723 x 5,363,222,357

public class Factors */
{ 4

public static void main(String[] args)
{
Tong N Long.parselLong(args[0])
for (i = 0; i < N; i++)

{
while (N % i == 0) %

S

A System.out.print(i + " ")
=<~ NN /i
}

.

This program has bugs!

33



Debugging a program: syntax errors

Is your program a legal Java program?
« Java compiler can help you find out. @
» Use javac to find the first error.

[ J
Re peat- % Trying to tell a computer what to do

» Result: An executable Factors.class file

% javac Factors.java
Factors.java:5: ';' expected public class Factors need to declare
Tong N = Long.parseLong(args[0]) { y type of i
A public static void maif(String[] args)
{
¥ Javac Factors. java long N = LongparseLong(args[0]) }
° : =5 for i=0; 1 <N; i++
Factors.java:6: cannot find symbol y%g { CInt ’ ’ )
symbol : variable i - hi o =
location: class FactorsX w 1Se (N % i == O) (i .y
f i = 0; i N; ystem.out.print(i1 + ’ ) )
or ¢ 1 TN N=N/1°"« -\ need terminating
} y semicolons
} _
% javac Factors.java } This legal program still has bugs!
%

34



Debugging a program: runtime and semantic errors

Does your legal Java program do what you want it to do? @

 You need to run it to find out.
 Use java runtime to find the first error.
e Fix and repeat.

% javac Factors.java

% java Factors <«— oops, need argument
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 0

at Factors.main(Factors.java:5)
A

% java Factors 98

Exception in thread "main"

java.lang.ArithmeticException: / by zero
at Factors.main(Factors.java:8)

java Facto
222222
22222

N N
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

public class Factor

need to start at 2
since 0 and 1
{ 4 are not factors
public static void main¢String[] args)

{

Tong N = Long.papSelLong(args([0]);
for C(int i = 2 i < N; i++)

{
while (N % i == 0)
stem.out.print(i + " ");
N = i}
}

need braces

} .
} ‘ ( ? This working program still has bugs!

% java Factors 98

> 7 7% 98 =2 x 7X 7 ‘/

35



Debugging a program: testing

Does your legal Java program always do what you want it to do?
» You need to test on many types of inputs it to find out.

« Add trace code to find the first error.

* Fix the error.
* Repeat.

% java Factors 98
27 7% <«<— need newline

% java Factors 5
«——— 77?7 no output

% java Factors 6
2 <«—— 77? where’s the 3?

% javac Factors.java
% java Factors 5
TRACE 2 5

TRACE 3 5

TRACE 4 5

% java Faktors 6

2

TRACE 2 3

AHA! Need to print out N
(if it is not 1).

public class Factors

{
public static void main(String[] args)
{
Tong N = Long.parseLong(args[0]);
for (int i = 2; 1 < N; i++)
{
while (N % i == 0)
{ System.out.print(i + " ");
N=N/1; }
System.out.printIn("TRACE " + 1 + " " + N);
}
3
}

36



Debugging a program: testing

Does your legal Java program always do what you want it to do?
* You need to test on many types of inputs it to find out.
« Add trace code to find the first error.

* Fix the error.

* Repeat.
m”
%$%@ $#1! % java Factors 5
forgot to recompile TRACE 2 5
TRACE 3 5
TRACE 4 5

% javac Factors.java
% java Factors 5

% java Factors 6

2 3

% java Factors 98

277

% java Factors 3757208
2 227 13 13 397

public class Factors

{

public static void main(String[] args)

{

Tong N = Long.parseLong(args[0]);
for (int i = 2; 1 < N; i++)
{

while (N % i == 0)

{ System.out.print(i + " ");

N=N/1; }
}
if (N > 1) System.out.println(N);
else System.out.printin();
Note: This working program
. still has a bug (stay tuned).

37



Debugging a program: performance

Is your working Java program fast enough to solve your problem?
* You need to test it on increasing problem sizes to find out.

« May need to change the algorithm to fix it.
* Repeat.

change the algorithm: no need to check when
Method i-i>N since all smaller factors already checked

« Consider each integer

« While i divides N evenly
print j (it is a factor of N)
replace N with N/i.

% java Factors 11111111
11 73 101 137
% java Factors 11111111111
21649 513239
% java Factors 11111111111111
11 239 4649 909091
might work % java Factors 11111111111111111
but way too slow > 2071723 5363222357 «—— immediate

public class Factors

{

public static void main(String[] args)

{

long N = Long.parse rgsft0)5 <

for (int i =2; if<= N/1; i+

{ ~implement
while (N % i ==\0) the change

{ System.out.print(i + " T);
N=N/1; }

}
if (N > 1) System.out.println(N);
else System.out.printin();

38



Debugging a program: performance analysis

Q. How large an integer can | factor?

% java Factors 9201111169755555703 |

9201111169755555703

Iargleg.slg?c;’gtor i<N i <= N/i
3 instant instant
6 instant instant
9 77 seconds instant
12 21 hoursT instant
15 2.4 yearsT 2.7 seconds
18 2.4 milleniat 92 seconds

1 estimated, using analytic number theory

Lesson. Performance matters!

Note. Internet commerce is still secure: it depends on the difficulty of factoring 200-digit integers.

public class Factors
{
public static void main(String[] args)
{
long N = Long.parselLong(args[0]);
for ( int i = 2; i <= N/1i; i++)
{
while (N % i == 0)
{ System.out.print(i + " ");
N=N/1; 1}
3
if (N > 1) System.out.printTn(N);
else System.out.println();

experts are still trying to develop
better algorithms for this problem

|




Debugging your program: summary

Program development is a four-step process, with feedback.

—
EDIT your program. .

. runtime error
COMPILE your program to create an executable file. Hi |

l semantic error

syntax error

—ﬁ-‘z—

Telling a computer what to do
when you know what you're doing

RUN your program to test that it works as you imagined.

l performance error

TEST your program on realistic and real input data.

K > SUBMIT your program for independent testing and approval.

40



INTRODUCTION TO

Programming
in Java

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

Section 1.3

http://introcs.cs.princeton.edu

COMPUTER SCIENCE
SEDGEWICK/WAYNE

3. Conditionals & Loops



