
Software systems and issues 

•  operating systems 
–  controlling the computer 

•  file systems and databases 
–  storing information 

•  applications 
–  programs that do things 

•  cloud computing, virtual machines, platforms 
–  where boundaries become even less clear 

•  intellectual property 
–  copyrights, patents, licenses 

•  interfaces, standards, antitrust 
–  agreements on how to communicate and inter-operate 

•  open source software 
–  freely available software 



Operating system 

•  a program that controls the resources of a computer  
–  interface between hardware and all other software 
–  examples: DOS, Windows 3.0/3.1/95/98/NT/ME/2000/XP/Vista/7/8 
                     Unix/Linux, Mac OS X, iOS, ... 

•  runs other programs ("applications", your programs) 
•  manages information on disk (file system) 
•  controls peripheral devices, communicates with outside 

•  provides a level of abstraction above the raw hardware 
–  makes the hardware appear to provide higher-level services than it 

really does 
–  makes programming much easier 



History of general-purpose operating systems 
•  1950's: signup sheets 
•  1960's: batch operating systems 

–  operators running batches of jobs 
–  OS/360 (IBM) 

•  1970's: time-sharing 
–  simultaneous access for multiple users 
–  Unix (Bell Labs; Ken Thompson & Dennis Ritchie) 

•  1980's: personal computers, single user systems 
–  DOS, Windows, MacOS  
–  Unix 

•  1990's: personal computers, PDA's, … 
–  PalmOS, Windows CE, … 
–  Unix / Linux 

•  2000's: Windows vs. Unix/Linux? 
–  MacOSX is a Unix system 

•  2010's: Apple vs. Google 
–  iOS, Android, Chrome-OS, …  (Unix/Linux-based) 

•  not all computers have general-purpose operating systems 
–  "embedded systems": small, specialized, but increasingly general 



Unix operating system 

•  developed ~1971 at Bell Labs  
–  by Ken Thompson and Dennis Ritchie 

•  clean, elegant design 
–  at least in the early days 

•  efficient, robust, easy to adapt, fun 
–  widely adopted in universities, spread from there 

•  written in C, so easily ported to new machines 
–  runs on everything (not just PC's) 

•  influence 
–  languages, tools, de facto standard environment 
–  enabled workstation hardware business (e.g., Sun Microsystems) 
–  supports a lot of Internet services and infrastructure 

often Linux 



Linux 

•  a version of Unix written from scratch 
–  by Linus Torvalds, Finnish student (started 1991) 

•  source code freely available (kernel.org) 
–  large group of volunteers making contributions 
–  anyone can modify it, fix bugs, add features 
–  Torvalds approves, sets standard 
–  commercial versions make money by packaging and support,  
           not by selling the code itself 

•  used by major sites, including 
–  Google, Amazon, Facebook, Twitter, YouTube, ABC, CBS, CNN, ... 



What an operating system does 

•  manages CPUs, schedules and coordinates running programs 
–  switches CPU among programs that are actually computing 
–  suspends programs that are waiting for something (e.g., disk, network) 
–  keeps individual programs from hogging resources 

•  manages memory (RAM) 
–  loads programs in memory so they can run 
–  swaps them to disk and back if there isn’t enough RAM (virtual memory) 
–  keeps separate programs from interfering with each other 
–  and with the operating system itself (protection) 

•  manages and coordinates input/output to devices 
–  disks, display, keyboard, mouse, network, ... 
–  keeps separate uses of shared devices from interfering with each other 
–  provides uniform interface to disparate devices 

•  manages files on disk (file system) 
–  provides hierarchy of directories and files for storing information 



To run programs, the operating system must 

•  fetch program to be run (usually from disk)  
•  load it into RAM 

–  maybe only part, with more loaded as it runs (dynamic libraries) 
•  transfer control to it 
•  provide services to it while it runs 

–  reading and writing info on disk 
–  communications with other devices 

•  regain control and recover resources when program is finished 
•  protect itself from errant program behavior 
•  share memory & other resources among multiple programs  
   running "at the same time" 

–  manage memory, disks, network, ... 
–  protect programs from each other 
–  manage allocation of CPUs among multiple activities 



Memory management 

•  what's in memory?  over-simplified pictures: 

•  reality is more complicated 
–  pieces of programs are partly in RAM, partly on disk 

can only execute instructions that are in RAM 
•  memory protection:  

–  making sure that one program can't damage another or the OS 
•  virtual memory:  

–  making it look like there is more RAM than there really is 
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Operating system controls devices 

•  operating system hides physical properties of devices 
–  device has specific capabilities, parameters, etc. 
–  hardware and software in device and OS present these at higher level 
–  e.g., printer 

logical view: put characters out in 66 lines of 80 characters 
physical view: paint individual bits of characters in raster across page 

–  e.g., CD-ROM 
logical view: file system just like the one on the hard drive 
physical view: long spiral of individual bits read by a laser 

•  OS uses device drivers to control physical devices 
–  driver code has detailed knowledge of how to operate a particular device  
–  implemented as functions that provide interface between specific 

capabilities of a device and what the operating system expects 
–  loaded as part of OS as needed, e.g., when a device is plugged in 

("Windows has found new hardware") 
•  drivers insulate OS and application programs from specific 

properties of devices 



How does an operating system work? 

•  loaded into RAM & started when machine is turned on (“boot”) 
–  so it starts out being in charge / running on the bare hardware 

•  gives control in turn to each program that is ready to run 
•  responds to external events / devices / … 

–  does actions, relays events to programs, … 
•  programs (applications) request services by “making a system 

call” 
–  execute a particular instruction that transfers control to specific 

part of operating system 
–  parameters say what task to do 

•  OS does operation, returns control (and result) to application 



Virtual machines 

•  running other OS's on top of an OS 
–  e.g., VMWare, VirtualBox, Parallels, Xen, HyperV, ... 

•  system calls from applications to "guest" OS are intercepted  
   by "host" OS 

–  e.g., guest == Windows 7 or Linux, host == MacOSX 
•  passed to guest OS, which handles them by converting into  
   system calls to host OS 
•  not the same as "dual boot" 
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Bootstrapping: how does it all get started 

•  CPU begins executing at specific memory location when turned on 
–  location is defined by the hardware: part of the machine's design 
–  often in ROM (read-only memory) so not volatile but changeable 

•  "bootstrap" instructions placed there read more instructions 
–  CPU tries to read first block from disk as bootstrap to copy more of the 

operating system 
–  if that fails, tries to read bootstrap from somewhere else 

e.g., CD-ROM, USB, network, ... 


