Software systems and issues

operating systems

- controlling the computer

file systems and databases

- storing information

applications

- programs that do things

cloud computing, virtual machines, platforms
- where boundaries become even less clear

intellectual property

- copyrights, patents, licenses

interfaces, standards, antitrust

- agreements on how to communicate and inter-operate
open source software

- freely available software

Operating system

a program that controls the resources of a computer

- interface between hardware and all other software
- examples: DOS, Windows 3.0/3.1/95/98/NT/ME/2000/XP/Vista/7/8
Unix/Linux, Mac OS X, iOS, ...

runs other programs (“applications”, your programs)
manages information on disk (file system)
controls peripheral devices, communicates with outside

provides a level of abstraction above the raw hardware

- makes the hardware appear to provide higher-level services than it
really does

- makes programming much easier

History of general-purpose operating systems

1950's: signup sheets
1960's: batch operating systems
- operators running batches of jobs
- 0S5/360 (IBM)
1970's: time-sharing
- simultaneous access for multiple users
- Unix (Bell Labs; Ken Thompson & Dennis Ritchie)
1980's: personal computers, single user systems
- DOS, Windows, MacOS
- Unix
1990's: personal computers, PDA's, ..
- PalmOS, Windows CE, ...
- Unix / Linux
2000's: Windows vs. Unix/Linux?
- MacOSX is a Unix system

2010's: Apple vs. Google
- i0S, Android, Chrome-0S, ... (Unix/Linux-based)

not all computers have general-purpose operating systems
- "embedded systems": small, specialized, but increasingly general

Unix operating system

developed ~1971 at Bell Labs
- by Ken Thompson and Dennis Ritchie
clean, elegant design
- aft least in the early days
efficient, robust, easy to adapt, fun
- widely adopted in universities, spread from there
written in C, so easily ported to new machines
- runs on everything (not just PC's)

influence
- languages, tools, de facto standard environment
- enabled workstation hardware business (e.g., Sun Microsystems)

- supports a lot of Internet services and infrastructure
often Linux

Linux

a version of Unix written from scratch
- by Linus Torvalds, Finnish student (started 1991)

source code freely available (kernel.org)
- large group of volunteers making contributions
- anyone can modify it, fix bugs, add features
- Torvalds approves, sets standard
- commercial versions make money by packaging and support,
not by selling the code itself

used by major sites, including
- Google, Amazon, Facebook, Twitter, YouTube, ABC, CBS, CNN, ...

What an operating system does

manages CPUs, schedules and coordinates running programs
- switches CPU among programs that are actually computing
- suspends programs that are waiting for something (e.g., disk, network)
- keeps individual programs from hogging resources
manages memory (RAM)
- loads programs in memory so they can run
- swaps them to disk and back if there isn't enough RAM (virtual memory)
- keeps separate programs from interfering with each other
- and with the operating system itself (protection)
manages and coordinates input/output to devices
- disks, display, keyboard, mouse, network, ...
- keeps separate uses of shared devices from interfering with each other
- provides uniform interface to disparate devices
manages files on disk (file system)
- provides hierarchy of directories and files for storing information

To run programs, the operating system must

fetch program to be run (usually from disk)

load it into RAM

- maybe only part, with more loaded as it runs (dynamic libraries)
transfer control to it

provide services to it while it runs

- reading and writing info on disk

- communications with other devices
regain control and recover resources when program is finished
protect itself from errant program behavior
share memory & other resources among multiple programs
running "at the same time"

- manage memory, disks, network, ...

- protect programs from each other

- manage allocation of CPUs among multiple activities

Memory management

- what's in memory? over-simplified pictures:

Unix.

Op sys | my Word | your Word| my browser yours

Windows:

Op sys Word browser mail | your progl

- reality is more complicated
- pieces of programs are partly in RAM, partly on disk
can only execute instructions that are in RAM

* memory protection:
- making sure that one program can't damage another or the OS

- virtual memory:
- making it look like there is more RAM than there really is

Operating system controls devices

- operating system hides physical properties of devices
- device has specific capabilities, parameters, etc.
- hardware and software in device and OS present these at higher level
- e.g., printer
logical view: put characters out in 66 lines of 80 characters
physical view: paint individual bits of characters in raster across page
- e.g., CD-ROM
logical view: file system just like the one on the hard drive
physical view: long spiral of individual bits read by a laser
- OS uses device drivers to control physical devices
- driver code has detailed knowledge of how to operate a particular device

- implemented as functions that provide interface between specific
capabilities of a device and what the operating system expects

- loaded as part of OS as needed, e.g., when a device is plugged in
("Windows has found new hardware")

- drivers insulate OS and application programs from specific
properties of devices

How does an operating system work?

loaded info RAM & started when machine is turned on ("boot")
- so it starts out being in charge / running on the bare hardware

gives control in turn to each program that is ready to run

responds to external events / devices / ..

- does actions, relays events to programs, ...

programs (applications) request services by "making a system
call”

- execute a particular instruction that transfers control to specific
part of operating system

- parameters say what task to do
OS does operation, returns control (and result) to application

Virtual machines

running other OS's on top of an OS

- e.g., VMWare, VirtualBox, Parallels, Xen, HyperV, ...
system calls from applications to "guest" OS are intercepted

by "host" OS

- e.g., guest == Windows 7 or Linux, host == MacOSX
passed to guest OS, which handles them by converting into

system calls to host OS

not the same as "dual boot"

Win app Win app

Windows 7

Mac app(s)

VMWare (Mac app)

Mac OSX

Bootstrapping: how does it all get started

CPU begins executing at specific memory location when turned on
- location is defined by the hardware: part of the machine's design
- often in ROM (read-only memory) so not volatile but changeable

"bootstrap" instructions placed there read more instructions
- CPU tries to read first block from disk as bootstrap to copy more of the
operating system
- if that fails, tries to read bootstrap from somewhere else
e.g., CD-ROM, USB, network, ...

