
Programming

•  it's hard to do the programming to get something done
•  details are hard to get right, very complicated, finicky
•  not enough skilled people to do what is needed
•  therefore, enlist machines to do some of the work

–  leads to programming languages

•  it's hard to manage the resources of the computer
•  hard to control sequences of operations
•  in ancient times, high cost of having machine be idle
•  therefore, enlist machines to do some of the work

–  leads to operating systems

Evolution of programming languages

•  1940's: machine level
–  use binary or equivalent notations for actual numeric values

•  1950's: "assembly language"
–  names for instructions: ADD instead of 0110101, etc.
–  names for locations: assembler keeps track of where things are in memory;

translates this more humane language into machine language
–  this is the level used in the "toy" machine
–  needs total rewrite if moved to a different kind of CPU

loop get # read a number
 ifzero done # no more input if number is zero
 add sum # add in accumulated sum
 store sum # store new value back in sum
 goto loop # read another number

done load sum # print sum
 print
 stop

sum 0 # sum will be 0 when program starts

binary instrs

 assembler

assembly lang
 program

Evolution of programming languages, 1960's

•  "high level" languages: Fortran, Cobol, Basic
–  write in a more natural notation, e.g., mathematical formulas
–  a program ("compiler", "translator") converts into assembler
–  potential disadvantage: lower efficiency in use of machine
–  enormous advantages:

accessible to much wider population of users
portable: same program can be translated for different machines
more efficient in programmer time

 sum = 0
10 read(5,*) num
 if (num .eq. 0) goto 20
 sum = sum + num
 goto 10

20 write(6,*) sum
 stop
 end

 compiler

 assembler

Fortran program

binary instrs

Evolution of programming languages, 1970's

•  "system programming" languages: C
–  efficient and expressive enough to take on any programming task

writing assemblers, compilers, operating systems
–  a program ("compiler", "translator") converts into assembler
–  enormous advantages:

accessible to much wider population of programmers
portable: same program can be translated for different machines
faster, cheaper hardware helps make this happen

#include <stdio.h>
main() {
 int num, sum = 0;

 while (scanf("%d", &num) != -1 && num != 0)
 sum += num;

 printf("%d\n", sum);
}

 C compiler

 assembler

 C program

binary instrs

Evolution of programming languages, 1980's

•  "object-oriented" languages: C++
–  better control of structure of really large programs

better internal checks, organization, safety
–  a program ("compiler", "translator") converts into assembler or C
–  enormous advantages:

portable: same program can be translated for different machines
faster, cheaper hardware helps make this happen

#include <iostream>
main() {
 int num, sum = 0;

 while (cin >> num && num != 0)
 sum += num;
 cout << sum << endl;

}

Evolution of programming languages, 1990's

•  "scripting", Web, component-based, ...:
 Java, Perl, Python, Ruby, Visual Basic, Javascript, ...

–  write big programs by combining components already written
–  often based on "virtual machine": simulated, like fancier toy computer
–  enormous advantages:

portable: same program can be translated for different machines
faster, cheaper hardware helps make this happen

var sum = 0; // javascript
var num = prompt("Enter new value, or 0 to end")
while (num != 0) {
 sum = sum + parseInt(num)
 num = prompt("Enter new value, or 0 to end")

}
alert("Sum = " + sum)

Programming languages in the 21st century?

•  new general-purpose languages
–  Go, Rust, Swift, Scala, ...

•  ongoing refinements / evolution of existing languages
–  C, C++, Fortran, Cobol all have new standards in last few years

•  specialized languages for specific application areas
–  e.g., R for statistics

•  old languages rarely die
–  it costs too much to rewrite programs in a new language

Why so many programming languages?

•  every language is a tradeoff among competing pressures
–  reaction to perceived failings of others; personal taste

•  notation is important
–  "Language shapes the way we think and determines what we can

think about."
Benjamin Whorf

–  the more natural and close to the problem domain, the easier it is to
get the machine to do what you want

•  higher-level languages hide differences between machines and
between operating systems

•  we can define idealized "machines" or capabilities and have a
program simulate them -- "virtual machines"
–  programming languages are another example of Turing equivalence

