
SwitchBlade: A Platform for Rapid Deployment of Network
Protocols on Programmable Hardware

Muhammad Bilal Anwer, Murtaza Motiwala, Mukarram bin Tariq, Nick Feamster
School of Computer Science, Georgia Tech

ABSTRACT
We present SwitchBlade, a platform for rapidly deploying cus-
tom protocols on programmable hardware. SwitchBlade uses a
pipeline-based design that allows individual hardware modules to
be enabled or disabled on the fly, integrates software exception han-
dling, and provides support for forwarding based on custom header
fields. SwitchBlade’s ease of programmability and wire-speed per-
formance enables rapid prototyping of custom data-plane functions
that can be directly deployed in a production network. SwitchBlade
integrates common packet-processing functions as hardware mod-
ules, enabling different protocols to use these functions without
having to resynthesize hardware. SwitchBlade’s customizable for-
warding engine supports both longest-prefix matching in the packet
header and exact matching on a hash value. SwitchBlade’s software
exceptions can be invoked based on either packet or flow-based
rules and updated quickly at runtime, thus making it easy to inte-
grate more flexible forwarding function into the pipeline. Switch-
Blade also allows multiple custom data planes to operate in parallel
on the same physical hardware, while providing complete isolation
for protocols running in parallel. We implemented SwitchBlade us-
ing NetFPGA board, but SwitchBlade can be implemented with any
FPGA. To demonstrate SwitchBlade’s flexibility, we use Switch-
Blade to implement and evaluate a variety of custom network pro-
tocols: we present instances of IPv4, IPv6, Path Splicing, and an
OpenFlow switch, all running in parallel while forwarding packets
at line rate.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and Design
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks C.2.6 [Computer-Communication Networks]: In-
ternetworking

General Terms: Algorithms, Design, Experimentation, Perfor-
mance

Keywords: Network Virtualization, NetFPGA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM 2010, August 30-September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00.

1. INTRODUCTION
Countless next-generation networking protocols at various lay-

ers of the protocol stack require data-plane modifications. The past
few years alone have seen proposals at multiple layers of the pro-
tocol stack for improving routing in data centers, improving avail-
ability, providing greater security, and so forth [3,13,17,24]. These
protocols must ultimately operate at acceptable speeds in produc-
tion networks—perhaps even alongside one another—which raises
the need for a platform that can support fast hardware implemen-
tations of these protocols running in parallel. This platform must
provide mechanisms to deploy these new network protocols, header
formats, and functions quickly, yet still forward traffic as quickly
as possible. Unfortunately, the conventional hardware implemen-
tation and deployment path on custom ASICs incurs a long devel-
opment cycle, and custom protocols may also consume precious
space on the ASIC. Software-defined networking paradigms (e.g.,
Click [7, 16]) offer some hope for rapid prototyping and deploy-
ment, but a purely software-based approach cannot satisfy the strict
performance requirements of most modern networks. The network-
ing community needs a development and deployment platform that
offers high performance, flexibility, and the possibility of rapid pro-
totyping and deployment.

Although other platforms have recognized the need for fast, pro-
grammable routers, they stop somewhat short of providing a pro-
grammable platform for rapid prototyping on the hardware itself.
Platforms that are based on network processors can achieve fast
forwarding performance [22], but network processor-based imple-
mentations are difficult to port across different processor architec-
tures, and customization can be difficult if the function that a proto-
col requires is not native to the network processor’s instruction set.
All other functions should be implemented in software. PLUG [8]
is an excellent framework for implementing modular lookup mod-
ules, but the model focuses on manufacturing high-speed chips,
which is costly and can have a long development cycle. Route-
Bricks [12] provides a high-performance router, but it is imple-
mented entirely in software, which may introduce scalability is-
sues; additionally, prototypes developed on RouteBricks cannot be
easily ported to hardware.

This paper presents SwitchBlade, a programmable hardware
platform that strikes a balance between the programmability of
software and the performance of hardware, and enables rapid pro-
totyping and deployment of new protocols. SwitchBlade enables
rapid deployment of new protocols on hardware by providing mod-
ular building blocks to afford customizability and programmabil-
ity that is sufficient for implementing a variety of data-plane func-
tions. SwitchBlade’s ease of programmability and wire-speed per-
formance enables rapid prototyping of custom data-plane functions
that can be directly deployed in a production network. SwitchBlade

183

relies on field-programmable gate arrays (FPGAs). Designing and
implementing SwitchBlade poses several challenges:

• Design and implementation of a customizable hardware
pipeline. To minimize the need for resynthesizing hardware,
which can be prohibitive if multiple parties are sharing it,
SwitchBlade’s packet-processing pipeline includes hardware
modules that implement common data-plane functions. New
protocols can select a subset of these modules on the fly,
without resynthesizing hardware.

• Seamless support for software exceptions. If custom pro-
cessing elements cannot be implemented in hardware (e.g.,
due to limited resources on the hardware, such as area on
the chip), SwitchBlade must be able to invoke software rou-
tines for processing. SwitchBlade’s hardware pipeline can
directly invoke software exceptions on either packet or flow-
based rules. The results of software processing (e.g., for-
warding decisions), can be cached in hardware, making ex-
ception handling more efficient.

• Resource isolation for simultaneous data-plane pipelines.
Multiple protocols may run in parallel on same hardware;
we call each data plane a Virtual Data Plane (VDP). Switch-
Blade provides each VDP with separate forwarding tables
and dedicated resources. Software exceptions are the VDP
that generated the exception, which makes it easier to build
virtual control planes on top of SwitchBlade.

• Hardware processing of custom, non-IP headers. Switch-
Blade provides modules to obtain appropriate fields from
packet headers as input to forwarding decisions. Switch-
Blade can forward packets using longest-prefix match on 32-
bit header fields, an exact match on fixed length header field,
or a bitmap added by custom packet preprocessing modules.

The design of SwitchBlade presents additional challenges, such as
(1) dividing function between hardware and software given limited
hardware resources; (2) abstracting physical ports and input/output
queues; (3) achieving rate control on per-VDP basis instead of per-
port basis; and (4) providing a clean interface to software.

We have implemented SwitchBlade using the NetFPGA
board [2], but SwitchBlade can be implemented with any FPGA.
To demonstrate SwitchBlade’s flexibility, we use SwitchBlade to
implement and evaluate several custom network protocols. We
present instances of IPv4, IPv6, Path Splicing, and an OpenFlow
switch, all of which can run in parallel and forward packets at
line rate; each of these implementations required only modest ad-
ditional development effort. SwitchBlade also provides seamless
integration with software handlers implemented using Click [16],
and with router slices running in OpenVZ containers [20]. Our
evaluation shows that SwitchBlade can forward traffic for custom
data planes—including non-IP protocols—at hardware forwarding
rates. SwitchBlade can also forward traffic for multiple distinct
custom data planes in parallel, providing resource isolation for
each. An implementation of SwitchBlade on the NetFPGA plat-
form for four parallel data planes fits easily on today’s NetFPGA
platform; hardware trends will improve this capacity in the future.
SwitchBlade can support additional VDPs with less than a linear
increase in resource use, so the design will scale as FPGA capacity
continues to increase.

The rest of this paper is organized as follows. Section 2 presents
related work. Section 3 explains our design goals and the key re-
sulting design decisions. Section 4 explains the SwitchBlade de-
sign, and Section 5 describes the implementation of SwitchBlade,
as well as our implementations of three custom data planes on

SwitchBlade. Section 6 presents performance results. Section 7
briefly describes how we have implemented a virtual router on top
of SwitchBlade using OpenVZ. We discuss various extensions in
Section 8 and conclude in Section 9.

2. RELATED WORK
We survey related work on programmable data planes in both

software and hardware.
The Click [16] modular router allows easy, rapid development

of custom protocols and packet forwarding operations in software;
kernel-based packet forwarding can operate at high speeds but can-
not keep up with hardware for small packet sizes. An off-the-shelf
NetFPGA-based router can forward traffic at 4 Gbps; this forward-
ing speed can scale by increasing the number of NetFPGA cards,
and development trends suggest that much higher rates will be pos-
sible in the near future. RouteBricks [12] uses commodity pro-
cessors to achieve software-based packet processing at high speed.
The design requires significant PCIe interconnection bandwidth to
allow packet processing at CPUs instead of on the network cards
themselves. As more network interface cards are added, and as
traffic rates increase, however, some packet processing may need
to be performed on the network cards themselves to keep pace with
increasing line speeds and to avoid creating bottlenecks on the in-
terconnect.

Supercharged PlanetLab (SPP) [22] is a network processor (NP)-
based technology. SPP uses Intel IXP network processors [14]
for data-plane packet processing. NP-based implementations are
specifically bound to the respective vendor-provided platform,
which can inherently limit the flexibility of data-plane implemen-
tations.

Another solution to achieve wire-speed performance is develop-
ing custom high-speed networking chips. PLUG [8] provides a pro-
gramming model for manufacturing chips to perform high-speed
and flexible packet lookup, but it does not provide an off-the-shelf
solution. Additionally, chip manufacturing is expensive: fabrica-
tion plants are not common, and cost-effective manufacturing at
third-party facilities requires critical mass of demand. Thus, this
development path may only make sense for large enterprises and
for protocols that have already gained broad acceptance. Chip man-
ufacturing also has a high turnaround time and post-manufacturing
verification processes which can impede development of new pro-
tocols that need small development cycle and rapid deployment.

SwitchBlade is an FPGA-based platform and can be imple-
mented on any FPGA. Its design and implementation draws in-
spiration from our earlier work on designing an FPGA-based data
plane for virtual routers [4]. FPGA-based designs are not tied to
any single vendor, and it scales as new, faster and bigger FPGAs
become available. FPGAs also provide a faster development and
deployment cycle compared to chip manufacturing.

Casado et al. argue for simple but high-speed hardware with
clean interfaces with software that facilitate independent devel-
opment of protocols and network hardware [9]. They argue that
complex routing decisions can be made in software and cached in
hardware for high-speed processing; in some sense, SwitchBlade’s
caching of forwarding decisions that are handled by software ex-
ception handlers embodies this philosophy. OpenFlow [19] en-
ables the rapid development of a variety of protocols, but the di-
vision of functions between hardware and software in SwitchBlade
is quite different. Both OpenFlow and SwitchBlade provide soft-
ware exceptions and caching of software decisions in hardware,
but SwitchBlade also provides selectable hardware preprocessing
modules that effectively moves more flexible processing to hard-

184

ware. SwitchBlade also easily accommodates new hardware mod-
ules, while OpenFlow does not.

SwitchBlade provides wire-speed support for parallel cus-
tomized data planes, isolation between them, and their interfac-
ing with virtualization software, which would make SwitchBlade a
suitable data plane for a virtual router. OpenFlow does not directly
support multiple custom data planes operating in parallel. FlowVi-
sor [1] provides some level of virtualization but sits between the
OpenFlow switch and controller, essentially requiring virtualiza-
tion to occur in software.

3. GOALS AND DESIGN DECISIONS
The primary goal of SwitchBlade is to enable rapid development

and deployment of new protocols working at wire-speed. The three
subgoals, in order of priority, are: (1) Enable rapid development
and deployment of new protocols; (2) Provide customizability and
programmability while maintaining wire-speed performance; and
(3) Allow multiple data planes to operate in parallel, and facilitate
sharing of hardware resources across those multiple data planes.
In this section, we describe these design goals, their rationale, and
highlight specific design choices that we made in SwitchBlade to
achieve these goals.

Goal #1. Rapid development and deployment on fast hard-
ware. Many next-generation networking protocols require data-
plane modifications. Implementing these modifications entirely in
software results in a slow data path that offers poor forwarding per-
formance. As a result, these protocols cannot be evaluated at the
data rates of production networks, nor can they be easily transferred
to production network devices and systems.

Our goal is to provide a platform for designers to quickly de-
ploy, test, and improve their designs with wire-speed performance.
This goal influences our decision to implement SwitchBlade using
FPGAs, which are programmable, provide acceptable speeds, and
are not tied to specific vendors. An FPGA-based solution can al-
low network protocol designs to take advantage of hardware trends,
as larger and faster FPGAs become available. SwitchBlade relies
on programmable hardware, but incorporates software exception
handling for special cases; a purely software-based solution cannot
provide acceptable forwarding performance. From the hardware
perspective, custom ASICs incur a long development cycle, so they
do not satisfy the goal of rapid deployment. Network processors
offer speed, but they do not permit hardware-level customization.

Goal #2. Customizability and programmability. New proto-
cols often require specific customizations to the data plane. Thus,
SwitchBlade must provide a platform that affords enough cus-
tomization to facilitate the implementation and deployment of new
protocols.

Providing customizability along with fast turnaround time for
hardware-based implementations is challenging: a bare-bones
FPGA is customizable, but programming from scratch has a high
turnaround time. To reconcile this conflict, SwitchBlade recognizes
that even custom protocols share common data-plane extensions.
For example, many routing protocols might use longest prefix or
exact match for forwarding, and checksum verification and update,
although different protocols may use these extensions on different
fields on in the packets. SwitchBlade provides a rich set of common
extensions as modules and allows protocols to dynamically select
any subset of modules that they need. SwitchBlade’s modules are
programmable and can operate on arbitrary offsets within packet
headers.

Feature Design Goals Pipeline Stages
Virtual Data Plane (§ 4.2) Parallel custom data

planes
VDP selection

Customizable hardware
modules (§ 4.3)

Rapid programming,
customizability

Preprocessing,
Forwarding

Flexible matching in for-
warding (§ 4.4)

Customizability Forwarding

Programmable software ex-
ceptions (§ 4.5)

Rapid programming,
customizability

Forwarding

Table 1: SwitchBlade design features.

For extensions that are not included in SwitchBlade, protocols
can either add new modules in hardware or implement exception
handlers in software. SwitchBlade provides hardware caching for
forwarding decisions made by these exception handlers to reduce
performance overhead.

Goal #3. Parallel custom data planes on a common hardware
platform. The increasing need for data-plane customization for
emerging network protocols makes it necessary to design a plat-
form that can support the operation of several custom data planes
that operate simultaneously and in parallel on the same hardware
platform. SwitchBlade’s design identifies functions that are com-
mon across data-plane protocols and provides those implementa-
tions shared access to the hardware logic that provides those com-
mon functions.

SwitchBlade allows customized data planes to run in parallel.
Each data plane is called a Virtual Data Plane (VDP). Switch-
Blade provides separate forwarding tables and virtualized inter-
faces to each VDP. SwitchBlade provides isolation among VDP
using per-VDP rate control. VDPs may share modules, but to pre-
serve hardware resources, shared modules are not replicated on the
FPGA. SwitchBlade ensures that the data planes do not interface
even though they share hardware modules.

Existing platforms satisfy some or all of these goals, but they do not
address all the goals at once or with the prioritization we have out-
lined above. For example, SwitchBlade trades off higher customiz-
ability in hardware for easier and faster deployability by providing
a well-defined but modular customizable pipeline. Similarly, while
SwitchBlade provides parallel data planes, it still gives each data
plane direct access to the hardware, and allows each VDP access to
a common set of hardware modules. This level of sharing still al-
lows protocol designers enough isolation to implement a variety of
protocols and systems; for example, in Section 7, we will see that
designers can run virtual control planes and virtual environments
(e.g., OpenVZ [20], Trellis [6]) on top of SwitchBlade.

4. DESIGN
SwitchBlade has several unique design features that enable rapid

development of customized routing protocols with wire-speed per-
formance. SwitchBlade has a pipelined architecture (§4.1) with
various processing stages. SwitchBlade implements Virtual Data
Planes (VDP) (§4.2) so that multiple data plane implementations
can be supported on the same platform with performance isola-
tion between the different forwarding protocols. SwitchBlade pro-
vides customizable hardware modules (§4.3) that can be enabled or
disabled to customize packet processing at runtime. SwitchBlade
implements a flexible matching forwarding engine (§4.4) that pro-
vides a longest prefix match and an exact hash-based lookup on

185

VDP Selector
Attaches platform header
Copies VDP-id in the
platform header

Selects preprocessing
module, copies mode bits
to platform header

Preprocessor
Selector

per-VDP
mode bits,

Module selection
bitmap

per-VDP
packet field

selections

Custom
Preprocessor

Extracts custom fields from
the packet header, prepares
 input for the Hasher module

Hasher
Hashes input from
preprocessor.
Fills hash in platform header

Output
Port

Lookup

Performs LPM, exact match,
unconditional or exception-
based forwarding to CPU
based on mode bits

per-VDP
LPM, exact match,

software exception,
ARP tables

per-VDP
counters and stats

Selects custom fields for
postprocessors

Postprocessor
Wrappers

Executes a subset of
post processors based on
module selection bitmap

Custom
Postprocessors

Incoming Packet

Packet sent to
output queues

Admin interface
MAC addresses,

VDP-identfiers

VDP Selection Stage

Preprocessing Stage

Forwarding Stage

Key

User Interfaces SwitchBlade Modules Module Descriptions

Register Interface
Packet Path

Common Module

Stage Boundary

Pluggable Module

Admin interface
for per-VDP rate

Shaper
Rate controls VDP traffic
based on admin-specified
traffice rates

Shaping Stage

Figure 1: SwitchBlade Packet Processing Pipeline.

16-bits32-bits
Module selector

bitmap
Hash value

8-bits

Mode

8-bits

VDP-id

Figure 2: Platform header format. This 64 bit header is ap-
plied to every incoming packet and removed before the packet
is forwarded.

various fields in the packet header. There are also programmable
software exceptions (§4.5) that can be configured from software to
direct individual packets or flows to the CPU for additional pro-
cessing.

4.1 SwitchBlade Pipeline
Figure 1 shows the SwitchBlade pipeline. There are four main

stages in the pipeline. Each stage consists of one or more hardware
modules. We use a pipelined architecture because it is the most
straightforward choice in hardware-based architectures. Addition-
ally, SwitchBlade is based on reference router from the NetFPGA
group at Stanford [2]; this reference router has a pipelined archi-
tecture as well.

VDP Selection Stage. An incoming packet to SwitchBlade is as-
sociated with one of the VDPs. The VDP Selector module classi-
fies the packet based on its MAC address and uses a stored table
that maps MAC addresses to VDP identifiers. A register interface
populates the table with the VDP identifiers and is described later.

Field Value Description/Action

Mode
0 Default, Perform LPM on IPv4 destination address
1 Perform exact matching on hash value
2 Send packet to software for custom processing
3 Lookup hash in software exceptions table
1 Source MAC not updated

Module 2 Don’t decrement TTL
Selector 4 Don’t Calculate Checksum
Bitmap 8 Dest. MAC not updated

16 Update IPv6 Hop Limit
32 Use Custom Module 1
64 Use Custom Module 2

128 Use Custom Module 3

Table 2: Platform Header: The Mode field selects the forward-
ing mechanism employed by the Output Port Lookup module.
The Module Selector Bitmap selects the appropriate postpro-
cessing modules.

This stage also attaches a 64-bit platform header on the incom-
ing packet, as shown in Figure 2. The registers corresponding to
each VDP are used to fill the various fields in the platform header.
SwitchBlade is a pipelined architecture, so we use a specific header
format that to make the architecture extensible. The first byte of
this header is used to select the VDP for every incoming packet.
Table 2 describes the functionality of the different fields in the plat-
form header.

Shaping Stage. After a packet is designated to a particular VDP,
the packet is sent to the shaper module. The shaper module rate
limits traffic on per VDP basis. There is a register interface for the
module that specifies the traffic rate limits for each VDP.

Preprocessing Stage. This stage includes all the VDP-specific pre-
processing hardware modules. Each VDP can customize which
preprocessor module in this stage to use for preprocessing the
packet via a register interface . In addition to selecting the prepro-
cessor, a VDP can select the various bit fields from the preprocessor
using a register interface. A register interface provides information
about the mode bits and the preprocessing module configurations.
In addition to the custom preprocessing of the packet, this stage
also has the hasher module, which can compute a hash of an arbi-
trary set of bits in the packet header and insert the value of the hash
in the packet’s platform header.

Forwarding Stage. This final stage in the pipeline handles the op-
erations related to the actual packet forwarding. The Output Port
Lookup module determines the destination of the packet, which
could be one of: (1) longest-prefix match on the packet’s desti-
nation address field to determine the output port; (2) exact match-
ing on the hash value in the packet’s platform header to determine
the output port; or (3) exception-based forwarding to the CPU for
further processing. This stage uses the mode bits specified in the
preprocessing stage. The Postprocessor Wrappers and the Cus-
tom Postprocessors perform operations such as decrementing the
packet’s time-to-live field. After this stage, SwitchBlade queues
the packet in the appropriate output queue for forwarding. Switch-
Blade selects the postprocessing module or modules based on the
module selection bits in the packet’s platform header.

4.2 Custom Virtual Data Plane (VDP)
SwitchBlade enables multiple customized data planes top oper-

ate simultaneously in parallel on the same hardware. We refer to
each data plane as Virtual Data Plane (VDP). SwitchBlade provides
a separate packet processing pipeline, as well as separate lookup ta-

186

bles and register interfaces for each VDP. Each VDP may provide
custom modules or share modules with other VDPs. With Switch-
Blade, shared modules are not replicated on the hardware, saving
valuable resources. Software exceptions include VDP identifiers,
making it easy to use separate software handlers for each VDP.

Traffic Shaping. The performance of a VDP should not be affected
by the presence of other VDPs. The shaper module enables Switch-
Blade to limit bandwidth utilization of different VDPs. When sev-
eral VDPs are sharing the platform, they can send traffic through
any of the four ports of the VDP to be sent out from any of the
four router ports. Since a VDP can start sending more traffic than
what is its bandwidth limit thus affecting the performance of other
VDPs. In our implementation, the shaper module comes after the
Preprocessing stage not before it as shown in Figure 1. This imple-
mentation choice, although convenient, does not affect our results
because the FPGA data plane can process packets faster than any
of the inputs. Hence, the traffic shaping does not really matter.
We expect, however, that in the future FPGAs there might be much
more than the current four network interfaces for a single NetFPGA
which would make traffic shaping of individual VDPs necessary. In
the existing implementation, packets arriving at a rate greater than
the allocated limit for a VDP are dropped immediately. We made
this decision to save memory resources on the FPGA and to prevent
any VDP from abusing resources.

Register interface. SwitchBlade provides a register interface for
a VDP to control the selection of preprocessing modules, to cus-
tomize packet processing modules (e.g., which fields to use for cal-
culating hash), and to set rate limits in the shaper module. Some of
the values in the registers are accessible by each VDP, while others
are only available for the SwitchBlade administrator. SwitchBlade
divides the register interfaces into these two security modes: the
admin mode and the VDP mode. The admin mode allows setting of
global policies such as traffic shaping, while the VDP mode is for
per-VDP module customization.

SwitchBlade modules also provide statistics, which are recorded
in the registers and are accessible via the admin interface. The
statistics are specific to each module; for example, the VDP selector
module can provide statistics on packets accepted or dropped. The
admin mode provides access to all registers on the SwitchBlade
platform, whereas the VDPmode is only to registers related to a
single VDP.

4.3 Customizable Hardware Modules
Rapidly deploying new routing protocols may require custom

packet processing. Implementing each routing protocol from
scratch can significantly increase development time. There is a sig-
nificant implementation cycle for implementing hardware modules;
this cycle includes design, coding, regression tests, and finally syn-
thesis of the module on hardware. Fortunately, many basic oper-
ations are common among different forwarding mechanisms, such
as extracting the destination address for lookup, checksum calcu-
lation, and TTL decrement. This commonality presents an oppor-
tunity for a design that can reuse and even allow sharing the im-
plementations of basic operations which can significantly shorten
development cycles and also save precious resources on the FPGA.

SwitchBlade achieves this reuse by providing modules that sup-
port a few basic packet processing operations that are common
across many common forwarding mechanism. Because Switch-
Blade provides these modules as part of its base implementation,
data plane protocols that can be composed from only the base mod-
ules can be implemented without resynthesizing the hardware and
can be programmed purely using a register interface. As an exam-

ple, to implement a new routing protocol such as Path Splicing [17],
which requires manipulation of splicing bits (a custom field in the
packet header), a VDP can provide a new module that is included
at synthesis time. This module can append preprocessing headers
that are later used by SwitchBlade’s forwarding engine. A proto-
col such as OpenFlow [19] may depend only on modules that are
already synthesized on the SwitchBlade platform, so it can choose
the subset of modules that it needs.

SwitchBlade’s reusable modules enable new protocol develop-
ers to focus more on the protocol implementation. The developer
needs to focus only on bit extraction for custom forwarding. Each
pluggable module must still follow the overall timing constraints,
but for development and verification purposes, the protocol devel-
oper’s job is reduced to the module’s implementation. Adding new
modules or algorithms that offer new functionality of course re-
quires conventional hardware development and must still strictly
follow the platform’s overall timing constraints.

A challenge with reusing modules is that different VDPs may
need the same postprocessing module (e.g., decrementing TTL),
but the postprocessing module may need to operate on different
locations in the packet header for different protocols. In a naïve
implementation, SwitchBlade would have to implement two sepa-
rate modules, each looking up the corresponding bits in the packet
header. This approach doubles the implementation effort and also
wastes resources on the FPGA. To address this challenge, Switch-
Blade allows a developer to include wrapper modules that can cus-
tomize the behavior of existing modules, within same data word
and for same length of data to be operated upon.

As shown in Figure 1 custom modules can be used in the pre-
processing and forwarding stages. In the preprocessing stage, the
customized modules can be selected by a VDP by specifying the
appropriate selection using the register interface. Figure 3 shows
an example: the incoming packet from the previous shaping stage
which goes to a demultiplexer which selects the appropriate mod-
ule or modules for the packet based on the input from the register
interface specific to the particular VDP that the packet belongs to.
After being processed by one of the protocol modules (e.g., IPv6,
OpenFlow), the packet arrives at the hasher module. The hasher
module takes 256 bits as input and generates a 32-bit hash of the
input. The hasher module need not be restricted to 256 bits of input
data, but a larger input data bus would mean using more resources.
Therefore, we decided to implement a 256-bit wide hash data bus
to accommodate our design on the NetFPGA.

Each VDP can also use custom modules in the forwarding stage,
by selecting the appropriate postprocessor wrappers and custom
postprocessor modules as shown in Figure 1. SwitchBlade selects
these modules based on the module selection bitmap in the platform
header of the packet. Figure 4(b) shows an example of the custom
wrapper and postprocessor module selection operation.

4.4 Flexible Matching for Forwarding
New routing protocols often require customized routing tables,

or forwarding decisions on customized fields in the packet. For
example, Path Splicing requires multiple IP-based forwarding ta-
bles, and the router chooses one of them based on splicing bits
in the packet header. SEATTLE [15] and Portland [18] use MAC
address-based forwarding. Some of the forwarding mechanisms are
still simple enough to be implemented in hardware and can benefit
from fast-path forwarding; others might be more complicated and
it might be easier to just have the forwarding decision be made in
software. Ideally, all forwarding should take place in hardware, but
there is a tradeoff in terms of forwarding performance and hardware
implementation complexity.

187

Preprocessor Selection
Code Processor Description
1 Custom Extractor Allows selection of variable

64-bit fields in packet on 64-bit
boundaries in first 32 bytes

2 OpenFlow OpenFlow packet processor
that allows variable field
selection.

3 Path Splicing Extracts Destination IP Ad-
dress and uses bits in packet to
select the Path/Forwarding Ta-
ble.

4 IPv6 Extracts IPv6 destination ad-
dress.

Table 3: Processor Selection Codes.

Figure 3: Virtualized, Pluggable Module for Programmable
Processors.

SwitchBlade uses a hybrid hardware-software approach to strike
a balance between forwarding performance and implementation
complexity. Specifically, SwitchBlade’s forwarding mechanism
implementation, provided by the Output Port Lookup module as
shown in Figure 1, provides the following four different methods
for making forwarding decision on the packet: (1) conventional
longest prefix matching (LPM) on any 32-bit address field in the
packet header within the first 40-bytes; (2) exact matching on hash
value stored in the packet’s platform header; (3) unconditionally
sending the packet to the CPU for making the forwarding compu-
tation; and (4) sending only packets which match certain user de-
fined exceptions, called software exceptions 4.5, to the CPU. The
details of how the output port lookup module performs these tasks
is illustrated in Figure 4(a). Modes (1) and (2) enable fast-path
packet forwarding because the packet never leaves the FPGA. We
observe that many common routing protocols can be implemented
with these two forwarding mechanisms alone. Figure 4 is not the
actual implementation but shows the functional aspect of Switch-
Blade’s implementation.

By default, SwitchBlade performs a longest-prefix match, as-
suming an IPv4 destination address is present in the packet header.
To enable use of customized lookup, a VDP can set the appropri-
ate mode bit in the platform header of the incoming packet. One
of the four different forwarding mechanisms can be invoked for
the packet by the mode bits as described in Table 2. The output
port lookup module performs LPM and exact matching on the hash
value from the forwarding table stored in the TCAM. The same
TCAM is used for LPM and for exact matching for hashing there-
fore the mask from the user decides the nature of match being done.

Figure 4: Output Port Lookup and Postprocessing Modules.

Once the output port lookup module determines the output port for
the packet it adds the output port number to the packet’s platform
header. The packet is then sent to the postprocessing modules for
further processing. In Section 4.5, we describe the details of soft-
ware work and how the packet is handled when it is sent to the
CPU.

4.5 Flexible Software Exceptions
Although performing all processing of the packets in hardware is

the only way to achieve line rate performance, it may be expensive
to introduce complex forwarding implementations in the hardware.
Also, if certain processing will only be performed on a few packets
and the processing requirements of those packets are different from
the majority of other packets, development can be faster and less
expensive if those few packets are processed by the CPU instead
(e.g., ICMP packets in routers are typically processed in the CPU).

SwitchBlade introduces software exceptions to programmati-
cally direct certain packets to the CPU for additional processing.
This concept is similar to the OpenFlow concept of rules that can
identify packets that match a particular traffic flow that should be
passed to the controller. However, combining software exceptions
with the LPM table provides greater flexibility, since a VDP can
add exceptions to existing forwarding rules. Similarly, if a user
starts receiving more traffic than expected from a particular soft-
ware exception, that user can simply remove the software exception
entry and add the forwarding rule in forwarding tables.

There is a separate exceptions table, which can be filled via a
register interface on a per-VDP basis and is accessible to the output
port lookup module, as shown in Figure 4(a). When the mode bits
field in the platform header is set to 3 (Table 2), the output port
lookup module performs an exact match of the hash value in the
packet’s platform header with the entries in the exceptions table
for the VDP. If there is a match, then the packet is redirected to
the CPU where it can be processed using software-based handlers,
and if there is none then the packet is sent back to the output port

188

Figure 5: SwitchBlade Pipeline for NetFPGA implementation.

lookup module to perform an LPM on the destination address. We
describe the process after the packet is sent to the CPU later.

SwitchBlade’s software exceptions feature allows decision
caching [9]: software may install its decisions as LPM or exact
match rules in the forwarding tables so that future packets are for-
warded rapidly in hardware without causing software exceptions.

SwitchBlade allows custom processing of some packets in soft-
ware. There are two forwarding modes that permit this function:
unconditional forwarding of all packets or forwarding of packets
based on software exceptions to the CPU. Once a packet has been
designated to be sent to the CPU, it is placed in a CPU queue corre-
sponding to its VDP, as shown in Figure 4(a). The current Switch-
Blade implementation forwards the packet to the CPU, with the
platform header attached to the packet. We describe one possible
implementation of a software component on top of SwitchBlade’s
VDP—a virtual router—in Section 7.

5. NETFPGA IMPLEMENTATION
In this section, we describe our NetFPGA-based implementation

of SwitchBlade, as well as custom data planes that we have im-
plemented using SwitchBlade. For each of these data planes, we
present details of the custom modules, and how these modules are
integrated into the SwitchBlade pipeline.

5.1 SwitchBlade Platform
SwitchBlade implements all the modules shown in Figure 5 on

the NetFPGA [2] platform. The current implementation uses four
packet preprocessor modules, as shown in Table 3. SwitchBlade
uses SRAM for packet storage and BRAM and SRL16e storage for
forwarding information for all the VDPs and uses the PCI interface
to send or receive packets from the host machine operating system.
The NetFPGA project provides reference implementations for var-
ious capabilities, such as the ability to push the Linux routing table
to the hardware. Our framework extends this implementation to
add other features, such as the support of virtual data planes, cus-

Figure 6: Resource sharing in SwitchBlade.

tomizable hardware modules, and programmable software excep-
tions. Figure 5 shows the implementation of the NetFPGA router-
based pipeline for SwitchBlade. Because our implementation is
based on the NetFPGA reference implementation, adding multicast
packet forwarding depends on the capabilities of NetFPGA refer-
ence router [2] implementation. Because the base implementation
can support multicast forwarding, SwitchBlade can also support it.

VDP Selection Stage. The SwitchBlade implementation adds
three new stages to the NetFPGA reference router [2] pipeline as
shown in gray in Figure 5. The VDP selection stage essentially per-
forms destination MAC lookup for each incoming packet and if the
destination MAC address matches then the packet is accepted and
the VDP-id is attached to the packet’s platform header (Table 2).
VDP selection is implemented using a CAM (Content Addressable
Memory), where each MAC address is associated with a VDP-ID.
This table is called the Virtual Data Plane table. An admin register
interface allows the SwitchBlade administrator to allow or disallow
users from using a VDP by adding or removing their destination
MAC entries from the table.

Preprocessing Stage. A developer can add customizable packet
preprocessor modules to the VDP. There are two main benefits for
these customizable preprocessor modules. First, this modularity
streamlines the deployment of new forwarding schemes. Second,
the hardware cost of supporting new protocols does not increase
linearly with the addition of new protocol preprocessors. To enable
custom packet forwarding, the preprocessing stage also provides a
hashing module that takes 256-bits as input and produces a 32-bit
output (Table 2). The hashing scheme does not provide a longest-
prefix match; it only offers support for an exact match on the hash
value. In our existing implementation each preprocessor module is
fixed with one specific VDP.

Shaping Stage. We implement bandwidth isolation for each VDP
using a simple network traffic rate limiter. Each VDP has a config-
urable rate limiter that increases or decreases the VDP’s allocated
bandwidth. We used a rate limiter from the NetFPGA’s reference
implementation for this purpose. The register interface to update
the rate limits is accessible only with admin privileges.

Software Exceptions. To enable programmable software excep-
tions, SwitchBlade uses a 32-entry CAM within each VDP that can
be configured from software using the register interface. Switch-
Blade has a register interface that can be used to add a 32-bit hash
representing a flow or packet. Each VDP has a set of registers to
update the software exceptions table to redirect packets from hard-
ware to software.

189

Figure 7: Life of OpenFlow, IPv6, and Path Splicing packets.

Sharing and custom packet processing. The modules that func-
tion on the virtual router instance are shared between different vir-
tual router instances that reside on the same FPGA device. Only
those modules that the virtual router user selects can operate on the
packet; others do not touch the packet. This path-selection mech-
anism is unique. Depending on an individual virtual router user’s
requirements, the user can simply select the path of the packet and
the modules that the virtual router user requires.

5.2 Custom Data Planes using SwitchBlade
Implementing any new functionality in SwitchBlade requires

hardware programming in Verilog, but if the module is added as
a pluggable preprocessor, then the developer needs to be concerned
with the pluggable preprocessor implementation only, as long as
decoding can occur within specific clock cycles. Once a new mod-
ule is added and its interface is linked with the register interface,
a user can write a high-level program to use a combination of the
newly added and previously added modules. Although the num-
ber of modules in a pipeline may appear limited because of smaller
header size, this number can be increased by making the pipeline
wider or by adding another header for every packet.

To allow developers to write their own protocols or use exist-
ing ones, SwitchBlade offers header files in C++, Perl, and Python;
these files refer to register address space for that user’s register in-
terface only. A developer simply needs to include one of these
header files. Once the register file is included, the developer can
write a user-space program by reading and writing to the regis-
ter interface. The developer can then use the register interface to
enable or disable modules in the SwitchBlade pipeline. The de-
veloper can also use this interface to add hooks for software ex-
ceptions. Figure 7 shows SwitchBlade’s custom packet path. We
have implemented three different routing protocols and forwarding
mechanisms: OpenFlow [19], Path Splicing [17], and IPv6 [11] on
SwitchBlade.

OpenFlow. We implemented the exact match lookup mechanism
of OpenFlow in hardware using SwitchBlade without VLAN sup-
port. The OpenFlow preprocessor module, as shown in Figure 3,
parses a packet and extracts the ten tuples of a packet defined in
OpenFlow specifications. The OpenFlow preprocessor module ex-
tracts the bits from the packet header and returns a 240-bit wide
OpenFlow flow entry. These 240-bits travel on a 256-bit wire to
the hasher module. The hasher module returns a 32-bit hash value
that is added to the SwitchBlade platform header (Figure 2). Af-
ter the addition of hash value this module adds a module selector
bitmap to the packet’s platform header. The pipeline then sets mode
field in the packet’s platform header to 1, which makes the output
port lookup module perform an exact match on the hash value of
the packet. The output port lookup module looks up the hash value
in the exact match table and forwards the packet to the output port
if the lookup was a hit. If the table does not contain the correspond-

ing entry, the platform forward the packet to the CPU for processing
with software-based handlers.

Because OpenFlow offers switch functionality and does not re-
quire any extra postprocessing (e.g., TTL decrement or checksum
calculation), a user can prevent the forwarding stage from perform-
ing any extra postprocessing functions on the packet. Nothing hap-
pens in the forwarding stage apart from the lookup, and Switch-
Blade queues the packet in the appropriate output queue. A devel-
oper can update source and destination MACs as well, using the
register interface.

Path Splicing. Path Splicing enables users to select different paths
to a destination based on the splicing bits in the packet header. The
splicing bits are included as a bitmap in the packet’s header and
serve as an index for one of the possible paths to the destination. To
implement Path Splicing in hardware, we implemented a process-
ing module in the preprocessing stage. For each incoming packet,
the preprocessor module extracts the splicing bits and the destina-
tion IP address. It concatenates the IP destination address and the
splicing bits to generate a new address that represents a separate
path. Since Path Splicing allows variation in path selection, this
bit field can vary in length. The hasher module takes this bit field,
creates a 32-bit hash value, and attaches it to the packet’s platform
header.

When the packet reaches the exact match lookup table, its 32-
bit hash value is extracted from SwitchBlade header and is looked
up in the exact match table. If a match exists, the card forwards
the packet on the appropriate output port. Because the module is
concatenating the bits and then hashing them and there is an exact
match down the pipeline, two packets with the same destination ad-
dress but different paths will have different hashes, so they will be
matched against different forwarding table entries and routed along
two different paths. Since Path Splicing uses IPv4 for packet pro-
cessing, all the postprocessing modules on the default path (e.g.,
TTL decrement) operate on the packet and update the packet’s re-
quired fields. SwitchBlade can also support equal-cost multipath
(ECMP). For this protocol, the user must implement a new pre-
processor module that can select two different paths based on the
packet header fields and can store their hashes in the lookup table
sending packets to two separate paths based on the hash match in
lookup.

IPv6. The IPv6 implementation on SwitchBlade also uses the cus-
tomizable preprocessor modules to extract the 128-bit destination
address from an incoming IPv6 packet. The preprocessor module
extracts the 128-bits and sends them to the hasher module to gen-
erate a 32-bit hash from the address.

Our implementation restricts longest prefix match to 32-bit ad-
dress fields, so it is not currently possible to perform longest prefix
match for IPv6. The output port lookup stage performs an exact
match on the hash value of the IPv6 packet and sends it for postpro-
cessing. When the packet reaches the postprocessing stage, it only
needs to have its TTL decremented because there is no checksum in
IPv6. But it also requires to have its source and destination MACs
updated before forwarding. The module selector bitmap shown in
Figure 5 enables only the postprocessing module responsible for
TTL decrement and not the ones doing checksum recalculation.
Because the TTL offset for IPv6 is at a different byte offset than
the default IPv4 TTL field, SwitchBlade uses a wrapper module
that extracts only the bits of the packet’s header that are required
by the TTL decrement module; it then updates the packet’s header
with the decremented TTL.

190

Resource NetFPGA Utilization % Utilization
Slices 21 K out of 23 K 90%

4-input LUTs 37 K out of 47 K 79%
Flip Flops 20 K out of 47 K 42%

External IOBs 353 out of 692 51%
Eq. Gate Count 13 M N/A

Table 4: Resource utilization for the base SwitchBlade plat-
form.

6. EVALUATION
In this section, we evaluate our implementation of SwitchBlade

using NetFPGA [2] as a prototype development platform. Our eval-
uation focuses on three main aspects of SwitchBlade: (1) resource
utilization for the SwitchBlade platform; (2) forwarding perfor-
mance and isolation for parallel data planes; and (3) data-plane
update rates.

6.1 Resource Utilization
To provide insight about the resource usage when different data

planes are implemented on SwitchBlade, we used Xilinx ISE [23]
9.2 to synthesize SwitchBlade. We found that a single physical
IPv4 router implementation developed by the NetFPGA group at
Stanford University uses a total of 23K four-input LUTs, which
consume about 49% of the total available four-input LUTs, on
the NetFPGA. The implementation also requires 123 BRAM units,
which is 53% of the total available BRAM.

We refer to our existing implementation with one OpenFlow, one
IPv6, one variable bit extractor, and one Path Splicing preproces-
sor with an IPv4 router and capable of supporting four VDPs as the
SwitchBlade“base configuration”. This implementation uses 37K
four-input LUTs, which account for approximately 79% of four-
input LUTs. Approximately 4.5% of LUTs are used for shift reg-
isters. Table 4 shows the resource utilization for the base Switch-
Blade implementation; SwitchBlade uses more resources than the
base IPv4 router, as shown in table 5, but the increase in resource
utilization is less than linear in the number of VDPs that Switch-
Blade can support.

Sharing modules enables resource savings for different protocol
implementations. Table 5 shows the resource usage for implemen-
tations of an IPv4 router, an OpenFlow switch, and path splicing.
These implementations achieve 4 Gbps; OpenFlow and Path Splic-
ing implementations provide more resources than SwitchBlade.
But there is not much difference in resource usage for these imple-
mentations when compared with the possible configurations which
SwitchBlade can support.

Virtual Data Planes can support multiple forwarding planes in
parallel. Placing four Path Splicing implementations in parallel
on a larger FPGA to run four Path Splicing data planes will re-
quire four times the resources of existing Path Splicing implemen-
tation. Because no modules are shared between the four forwarding
planes, the number of resources will not increase linearly and will
remain constant in the best case.

From a gate count perspective, Path Splicing with larger forward-
ing tables and more memory will require approximately four times
the resources as in Table 5; SwitchBlade with smaller forwarding
tables and less memory will require almost same amount of re-
sources. This resource usage gap begins to increase as we increase
the number of Virtual Data Planes on the FPGA. Recent trends
in FPGA development such as Virtex 6 suggest higher speeds and
larger area; these trends will allow more VDPs to be placed on a
single FPGA, which will facilitate more resource sharing.

NetFPGA Slices 4-input Flip Flops BRAM Equivalent
Implementation LUTs Gate Count
Path Splicing 17 K 19 K 17 K 172 12 M
OpenFlow 21 K 35 K 22 K 169 12 M
IPv4 16 K 23 K 15 K 123 8 M

Table 5: Resource usage for different data planes.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 1000

For
war

din
g R

ate
 (’0

00
pps

)

Packet Size (bytes)

Packet Forwarding Rate, Comparison

NetFPGA, Base Router
Linux Raw Packet Forwarding

Figure 8: Comparison of forwarding rates.

6.2 Forwarding Performance and Isolation
We used the NetFPGA-based packet generator [10] for traffic

generation to generate high speed traffic to evaluate the forwarding
performance of SwitchBlade and the isolation provided between
the VDPs. Some of the results we present in this section are derived
from experiments in previous work [4].

Raw forwarding rates. Previous work has measured the max-
imum sustainable packet forwarding rate for different configura-
tions of software-based virtual routers [5]. We also measure packet
forwarding rates and show that hardware-accelerated forwarding
can increase packet forwarding rates. We compare forwarding rates
of Linux and NetFPGA-based router implementation from NetF-
PGA group [2], as shown in Figure 8. The maximum forwarding
rate shown, about 1.4 million packets per second, is the maximum
traffic rate which we were able to generate through the NetFPGA-
based packet generator.

The Linux kernel drops packets at high loads, but our configura-
tion could not send packets at a high enough rate to see packet drops
in hardware. If we impose the condition that no packets should
be dropped at the router, then the packet forwarding rates for the
Linux router drops significantly, but the forwarding rates for the
hardware-based router remain constant. Figure 8 shows packet for-
warding rates when this “no packet drop” condition is not imposed
(i.e., we measure the maximum sustainable forwarding rates). For
large packet sizes, SwitchBlade could achieve the same forward-
ing rate using in-kernel forwarding as we were using a single port
of NetFPGA router. Once the packet size drops below 200 bytes;
the software-based router cannot keep pace with the forwarding re-
quirements.

Forwarding performance for Virtual Data Planes. Figure 9
shows the data-plane forwarding performance of SwitchBlade
running four data planes in parallel versus the NetFPGA refer-
ence router [2], for various packet sizes. We have disabled the
rate limiters in SwitchBlade for these experiments. The figure
shows that running SwitchBlade incurs no additional performance
penalty when compared to the performance of running the refer-

191

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64 104 204 504 704 1004
1518

Fo
rwa

rdi
ng

 Ra
te

(’0
00

 pp
s)

Packet Size

NetFPGA Hardware Router and 4 SwitchBlade Virtualized Data Planes

SwitchBlade
NetFPGA Hardware Router

SwitchBlade with Traffic Filtering

Figure 9: Data plane performance: NetFPGA reference router
vs. SwitchBlade.

Physical Router (’000s of packets)
Packet Size(bytes) Pkts Sent Pkts Fwd @ Core Pkts recv @Sink
64 40 K 40 K 20 K
104 40 K 40 K 20 K
204 40 K 40 K 20 K
504 40 K 40 K 20 K
704 40 K 40 K 20 K
1004 39.8 K 39.8 K 19.9 K
1518 4 K 4 K 1.9 K

Table 6: Physical Router, Packet Drop Behavior.

ence router [2]. By default, traffic belonging to any VDP can arrive
on any of the physical Ethernet interfaces since all of the ports are
in promiscuous mode. To measure SwitchBlade’s to filter traffic
that is not destined for any VDP, we flooded SwitchBlade with a
mix of traffic where half of the packets had destination MAC ad-
dresses of SwitchBlade virtual interfaces and half of the packets
had destination MAC addresses that didn’t belong to any vdp. As
a result, half of the packets were dropped and rest were forwarded,
which resulted in a forwarding rate that was half of the incoming
traffic rate.

Isolation for Virtual Data Planes. To measure CPU isolation, we
used four parallel data planes to forward traffic when a user-space
process used 100% of the CPU. We then sent traffic where each
user had an assigned traffic quota in packets per second. When
no user surpassed the assigned quotas, the router forwarded traffic
according to the assigned rates, with no packet loss. To measure
traffic isolation, we set up a topology where two 1 Gbps ports of
routers were flooded at 1 Gbps and a sink node were connected to
a third 1 Gbps port. We used four VDPs to forward traffic to the
same output port. Tables 6 and 7 show that, at this packet forward-
ing rate, only half of the packets make it through, on first come
first serve basis, as shown in fourth column. These tables show that
both the reference router implementation and SwitchBlade have the
same performance in the worst-case scenario when an output port is
flooded. The second and third columns show the number of pack-
ets sent to the router and the number of packets forwarded by the
router. Our design does not prevent against contention that may
arise when many users send traffic to one output port.

Forwarding performance for non-IP packets. We also tested
whether SwitchBlade incurred any forwarding penalty for forward-
ing custom, non-IP packets; SwitchBlade was also able to forward
these packets at the same rate as regular IP packets. Figure 10

Four Data Planes (’000s of packets)
Packet Size(bytes) Pkts Sent Pkts Fwd @ Core Pkts recv @Sink
64 40 K 40 K 20 K
104 40 K 40 K 20 K
204 40 K 40 K 20 K
504 40 K 40 K 20 K
704 40 K 40 K 20 K
1004 39.8 K 39.8 K 19.9 K
1518 9.6 K 9.6 K 4.8 K

Table 7: Four Parallel Data Planes, Packet Drop Behavior.

R0

R1

src dst
R2

IP-ID (Path bits)
...... 010101 01 0011

01

00

Figure 10: Test topology for testing SwitchBlade implementa-
tion of Path Splicing.

shows the testbed we used to test the Path Splicing implementation.
We again used the NetFPGA-based hardware packet generator [10]
to send and receive traffic. Figure 11 shows the packet forward-
ing rates of this NetFPGA-based implementation, as observed at
the sink node. No packet loss occurred on any of the nodes shown
in Figure 10. We sent two flows with same destination IP address
but using different splicing bits to direct them to different routers.
Packets from one flow were sent to R2 via R1, while others went
directly to R2. In another iteration, we introduced four different
flows in the network, such that all four forwarding tables at router
R0 and R2 were looked up with equal probability; in this case,
SwitchBlade also forwarded the packets at full rate. Both these ex-
periments show that SwitchBlade can implement schemes like Path
Splicing and forward traffic at hardware speeds for non-IP packets.

In another experiment, we used the Variable Bit Extraction mod-
ule to extract first 64 bits from the header for hashing. We used a
simple source and sink topology with SwitchBlade between them
and measured the number of packets forwarded. Figure 12 shows
the comparison of forwarding rates when forwarding was being
done using SwitchBlade based on the first 64-bits of an Ethernet
frame and when it was done using NetFPGA base router.

6.3 Data-Plane Update Rates
Each VDP in a router on SwitchBlade needs to have its own

forwarding table. Because the VDPs share a single physical de-
vice, simultaneous table updates from different VDPs might cre-
ate a bottleneck. To evaluate the performance of SwitchBlade for
forwarding table update speeds, we assumed the worst-case sce-
nario, where all VDPs flush their tables and rewrite them again at
the same time. We assumed that the table size for each VDP is
400,000 entries. We updated all four tables simultaneously, but
there was no performance decrease while updating the forwarding
table from software. Four processes were writing the table entries
in the forwarding table.

Table 8 shows updating 1.6 million entries simultaneously took
89.77 seconds on average, with a standard deviation of less than
one second. As the number of VDPs increases, the average up-
date rate remains constant, but as the number of VDPs increases,
the PCI interconnect speed becomes a bottleneck between the VDP
processes updating the table and the SwitchBlade FPGA.

192

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64 128 256 512 1024
1500

For
war

din
g R

ate
 (’0

00
pps

)

Packet Size

Path Splicer vs Base Router

Splice Router(2 Tables)
Splice Router(4 Table)

Base Router

Figure 11: Path Splicing router performance with varying load
compared with base router.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64 104 204 504 704 1004
1518

For
war

din
g R

ate
 (’0

00
pps

)

Packet Size

NetFPGA Hardware Router and SwitchBlade Variable Ext. Module

SwitchBlade (Variable Bit Extractor)
NetFPGA Hardware Router

Figure 12: Variable Bit Length Extraction router performance
compared with base router.

7. A VIRTUAL ROUTER ON SWITCHBLADE
We now describe our integration of SwitchBlade with a virtual

router environment that runs in an OpenVZ container [20]. We use
OpenVZ [20] as the virtual environment for hosting virtual routers
for two reasons related to isolation. First, OpenVZ provides some
level of namespace isolation between each of the respective virtual
environments. Second, OpenVZ provides a CPU scheduler that
prevents any of the control-plane processes from using more than
its share of CPU or memory resources. We run the Quagga routing
software [21] in OpenVZ, as shown in Figure 13.

Each virtual environment has a corresponding VDP that acts as
its data plane. SwitchBlade exposes a register interface to send
commands from the virtual environment to its respective VDP.
Similarly, each VDP can pass data packets into its respective virtual
environment using the software exception handling mechanisms
described in Section 4.5.

We run four virtual environments on the same physical machine
and use the SwitchBlade’s isolation capabilities to share the hard-
ware resources. Each virtual router receives a dedicated amount
of processing and is isolated from the other routers’ virtual data
planes. Each virtual router also has the appearance of a dedicated
data path.

8. DISCUSSION
PCIe interconnect speeds and the tension between hardware
and software. Recent architectures for software-based routers such
as RouteBricks, use the PCI express (PCIe) interface between the

VDPs Total Ent. Entries/Table Time(sec) Single Ent. (µs)
1 400 K 400 K 86.582 216
2 800 K 400 K 86.932 112
3 1,200 K 400 K 88.523 74
4 1,600 K 400 K 89.770 56

Table 8: Forwarding Table Update Performance.

Figure 13: Virtual router design with OpenVZ virtual environ-
ments interfacing to SwitchBlade data plane.

CPU, which acts as the I/O hub, and the network interface cards
that forward traffic. PCIe offers more bandwidth than a standard
PCI interface; for example, PCIe version 2, with 16 lanes link, has
a total aggregate bandwidth of 8 GBps per direction. Although this
high PCIe bandwith would seem to offer great promise for building
programmable routers that rely on the CPU for packet processing,
the speeds of programmable interface cards are also increasing, and
it is unclear as yet whether the trends will play out in favor of CPU-
based packet processing. For example, one Virtex-6 HXT FPGA
from Xilinx or Stratix V FPGA from Altera can process packets
at 100 Gbps. Thus, installing NICs with only one such FPGA can
make the PCIe interconnect bandwidth a bottleneck, and also puts
an inordinate amount of strain on the CPU. SwitchBlade thus favors
making FPGAs more flexible and programmable, allowing more
customizability to take place directly on the hardware itself.

Modifying packets in hardware. SwitchBlade’s hardware imple-
mentation focuses on providing customization for protocols that
make only limited modifications to packets. The design can ac-
commodate writing packets using preprocessor modules, but we
have not yet implemented this function. Providing arbitrary writ-
ing capability in hardware will require either using preprocessor
stage for packet writing and a new pipeline stage after postprocess-
ing, or adding two new stages to the pipeline (both before and after
lookup).

Packet rewriting can be performed in two ways: (1) modifying
existing packet content without changing total data unit size, or
(2) adding or removing some data to each packet with the output
packet size different from the input packet size. Although it is easy
to add the first function to the preprocessor stage, adding or remov-
ing bytes into packet content will require significant effort.

Scaling SwitchBlade. The current SwitchBlade implementation
provides the capability for four virtualized data planes on a single
NetFPGA, but this design is general enough to scale as the capa-
bilities of hardware improve. We see two possible avenues for in-
creasing the number of virtualized data planes in hardware. One
option is to add several servers, each having one FPGA card and
have one or more servers running the control plane that controls
the hardware forwarding-table entries. Other scaling options in-
clude adding more FPGA cards to a single physical machine or

193

taking advantage of hardware trends, which promise the ability to
process data in hardware at increasingly higher rates.

9. CONCLUSION
We have presented the design, implementation, and evaluation

of SwitchBlade, a platform for deploying custom protocols on pro-
grammable hardware. SwitchBlade uses a pipeline-based hardware
design; using this pipeline, developers can swap common hardware
processing modules in and out of the packet-processing flow on the
fly, without having to resynthesize hardware. SwitchBlade also of-
fers programmable software exception handling to allow develop-
ers to integrate custom functions into the packet processing pipeline
that cannot be handled in hardware. SwitchBlade’s customizable
forwarding engine also permits the platform to make packet for-
warding decisions on various fields in the packet header, enabling
custom, non-IP based forwarding at hardware speeds. Finally,
SwitchBlade can host multiple data planes in hardware in paral-
lel, sharing common hardware processing modules while providing
performance isolation between the respective data planes. These
features make SwitchBlade a suitable platform for hosting virtual
routers or for simply deploying multiple data planes for protocols
or services that offer complementary functions in a production en-
vironment. We implemented SwitchBlade using the NetFPGA plat-
form, but SwitchBlade can be implemented with any FPGA.

Acknowledgments
This work was funded by NSF CAREER Award CNS-0643974 and
NSF Award CNS-0626950. We thank Mohammad Omer for his
help in solving various technical difficulties during project. We
also thank our shepherd, Amin Vahdat, for feedback and comments
that helped improve the final draft of this paper.

REFERENCES
[1] FlowVisor. http://www.openflowswitch.org/wk/

index.php/FlowVisor.
[2] NetFPGA. http://www.netfpga.org.
[3] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,

D. Moon, and S. Shenker. Accountable Internet Protocol
(AIP). In Proc. ACM SIGCOMM, Seattle, WA, Aug. 2008.

[4] M. B. Anwer and N. Feamster. Building a Fast, Virtualized
Data Plane with Programmable Hardware. In Proc. ACM
SIGCOMM Workshop on Virtualized Infrastructure Systems
and Architectures, Barcelona, Spain, Aug. 2009.

[5] S. Bhatia, M. Motiwala, W. Muhlbauer, V. Valancius,
A. Bavier, N. Feamster, L. Peterson, and J. Rexford. Hosting
Virtual Networks on Commodity Hardware. Technical
Report GT-CS-07-10, Georgia Institute of Technology,
Atlanta, GA, Oct. 2007.

[6] S. Bhatia, M. Motiwala, W. Mühlbauer, V. Valancius,
A. Bavier, N. Feamster, J. Rexford, and L. Peterson. Hosting
virtual networks on commodity hardware. Technical Report
GT-CS-07-10, College of Computing, Georgia Tech, Oct.
2007.

[7] G. Calarco, C. Raffaelli, G. Schembra, and G. Tusa.
Comparative analysis of smp click scheduling techniques. In
QoS-IP, pages 379–389, 2005.

[8] L. D. Carli, Y. Pan, A. Kumar, C. Estan, and
K. Sankaralingam. Flexible lookup modules for rapid
deployment of new protocols in high-speed routers. In Proc.
ACM SIGCOMM, Barcelona, Spain, Aug. 2009.

[9] M. Casado, T. Koponen, D. Moon, and S. Shenker.
Rethinking packet forwarding hardware. In Proc. Seventh
ACM SIGCOMM HotNets Workshop, Nov. 2008.

[10] G. A. Covington, G. Gibb, J. Lockwood, and N. McKeown.
A Packet Generator on the NetFPGA platform. In FCCM
’09: IEEE Symposium on Field-Programmable Custom
Computing Machines, 2009.

[11] S. Deering and R. Hinden. Internet Protocol, Version 6
(IPv6) Specification. Internet Engineering Task Force, Dec.
1998. RFC 2460.

[12] M. Dobrescu, , N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting parallelism to scale software
routers. In Proc. 22nd ACM Symposium on Operating
Systems Principles (SOSP), Big Sky, MT, Oct. 2009.

[13] B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet
routing. In Proc. ACM SIGCOMM, Barcelona, Spain, Aug.
2009.

[14] Intel IXP 2xxx Network Processors.
http://www.intel.com/design/network/
products/npfamily/ixp2xxx.htm.

[15] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE:
A scalable ethernet architecture for large enterprises. In
Proc. ACM SIGCOMM, Seattle, WA, Aug. 2008.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Transactions on
Computer Systems, 18(3):263–297, Aug. 2000.

[17] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path
Splicing. In Proc. ACM SIGCOMM, Seattle, WA, Aug. 2008.

[18] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
Portland: A scalable fault-tolerant layer2 data center network
fabric. In Proc. ACM SIGCOMM, Barcelona, Spain, Aug.
2009.

[19] OpenFlow Switch Consortium.
http://www.openflowswitch.org/, 2008.

[20] OpenVZ: Server Virtualization Open Source Project.
http://www.openvz.org.

[21] Quagga software routing suite.
http://www.quagga.net/.

[22] J. Turner, P. Crowley, J. DeHart, A. Freestone, B. Heller,
F. Kuhns, S. Kumar, J. Lockwood, J. Lu, M. Wilson, et al.
Supercharging PlanetLab: A High Performance,
Multi-application, Overlay Network Platform. In Proc. ACM
SIGCOMM, Kyoto, Japan, Aug. 2007.

[23] Xilinx. Xilinx ise design suite. http:
//www.xilinx.com/tools/designtools.htm.

[24] X. Yang, D. Wetherall, and T. Anderson. Source selectable
path diversity via routing deflections. In Proc. ACM
SIGCOMM, Pisa, Italy, Aug. 2006.

194

