
OFRewind: Enabling Record and Replay

Troubleshooting for Networks

Andreas Wundsam∗ Dan Levin∗ Srini Seetharaman‡ Anja Feldmann∗

∗ Deutsche Telekom Laboratories / TU Berlin, {andi,dan,anja}@net.t-labs.tu-berlin.de

‡ Deutsche Telekom Inc., R&D Lab USA, srini.seetharaman@telekom.com

Abstract

Debugging operational networks can be a daunting task,

due to their size, distributed state, and the presence

of black box components such as commercial routers

and switches, which are poorly instrumentable and only

coarsely configurable. The debugging tool set available

to administrators is limited, and provides only aggre-

gated statistics (SNMP), sampled data (NetFlow/sFlow),

or local measurements on single hosts (tcpdump). In this

paper, we leverage split forwarding architectures such as

OpenFlow to add record and replay debugging capabil-

ities to networks – a powerful, yet currently lacking ap-

proach. We present the design of OFRewind, which en-

ables scalable, multi-granularity, temporally consistent

recording and coordinated replay in a network, with fine-

grained, dynamic, centrally orchestrated control over

both record and replay. Thus, OFRewind helps op-

erators to reproduce software errors, identify data-path

limitations, or locate configuration errors.

1 Introduction

Life as a network operator can be hard. In spite of many

efforts to the contrary, problem localization and trou-

bleshooting in operational networks still remain largely

unsolved problems today. Consider the following anec-

dotal evidence:

Towards the end of October 2009, the administrators

of the Stanford production OpenFlow network began ob-

serving strange CPU usage patterns in their switches.

The CPU utilization oscillated between 25% and 100%

roughly every 30 minutes and led to prolonged flow setup

times, which where unacceptable for many users. The

network operators began debugging the problem using

standard tools and data sets, including SNMP statistics,

however the cause for the oscillation of the switch CPU

remained inexplicable. Even an analysis of the entire

control channel data could not shed light on the cause

of the problem, as no observed parameter (number of:

packets in, packets out, flow modifications, flow expira-

tions, statistics requests, and statistics replies) seemed to

correlate with the CPU utilization. This left the network

operator puzzled regarding the cause of the problem.

This anecdote (further discussion in Section 4.2) hints

at some of the challenges encountered when debugging

problems in networks. Networks typically contain black

box devices, e.g., commercial routers, switches, and mid-

dleboxes, that can be only coarsely configured and in-

strumented, via command-line or simple protocols such

as SNMP. Often, the behavior of black box components

in the network cannot be understood by analytical means

alone – controlled replay and experimentation is needed.

Furthermore, network operators remain stuck with a

fairly simplistic arsenal of tools. Many operators re-

cord statistics via NetFlow or sFlow [33]. These tools

are valuable for observing general traffic trends, but of-

ten too coarse to pinpoint the origin problems. Collect-

ing full packet traces, e.g., by tcpdump or specialized

hardware, is often unscalable due to high volume data

plane traffic. Even when there is a packet trace avail-

able, it typically only contains the traffic of a single

VLAN or switch port. It is thus difficult to infer tempo-

ral or causal relationships between messages exchanged

between multiple ports or devices.

Previous attempts have not significantly improved the

situation. Tracing frameworks such as XTrace [35] and

Netreplay [11] enhance debugging capabilities by per-

vasively instrumenting the entire network ecosystem,

but face serious deployment hurdles due to the scale

of changes involved. There are powerful tools avail-

able in the context of distributed applications that enable

fully deterministic recording and replay, oriented toward

end hosts [16, 24]. However, overhead for the fully-

deterministic recording of a large network with high

data rates can be prohibitive and the instrumentation of

’black’ middleboxes and closed source software often re-

mains out of reach.

1

In this paper, we present a new approach to enable

practical network recording and replay, based upon an

emerging class of network architectures called split for-

warding architectures, such as OpenFlow [28], Tesser-

act [41], and Forces [2]. These architectures split con-

trol plane decision-making off from data plane forward-

ing. In doing so, they enable custom programmability

and centralization of the control plane, while allowing

for commodity high-throughput, high-fanout data plane

forwarding elements.

We discuss, in Section 2, the design of OFRewind,

a tool that takes advantage of these properties to sig-

nificantly improve the state-of-the-art for recording and

replaying network domains. OFRewind enables scal-

able, temporally consistent, centrally controlled network

recording and coordinated replay of traffic in an Open-

Flow controller domain. It takes advantage of the flex-

ibility afforded by the programmable control plane, to

dynamically select data plane traffic for recording. This

improves data-path component scalability and enables

always-on recording of critical, low-volume traffic, e.g.,

routing control messages. Indeed, a recent study has

shown that the control plane traffic accounts for less than

1% of the data volume, but 95 − 99% of the observed

bugs [10]. Data plane traffic can be load-balanced across

multiple data plane recorders. This enables record-

ing even in environments with high data rates. Finally,

thanks to the centralized perspective of the controller,

OFRewind can record a temporally consistent trace of

the controller domain. This facilitates investigation of

the temporal and causal interdependencies of the mes-

sages exchanged between the devices in the controller

domain.

During replay, OFRewind enables the operator to se-

lect which parts of the traces are to be replayed and how

they should be mapped to the replay environment. By

partitioning (or bisecting) the trace and automatically re-

peating the experiment, our tool helps to narrow down

and isolate the problem causing component or traffic. A

concrete implementation of the tool based on OpenFlow

is presented in Section 3 and is released as free and open

source software [4].

Our work is primarily motivated by operational issues

in the OpenFlow-enabled production network at Stan-

ford University. Accordingly, we discuss several case

studies where our system has proven useful, including:

switch CPU inflation, broadcast storms, anomalous for-

warding, NOX packet parsing errors, and other invalid

controller actions (Section 4). We in addition present a

case study in which OFRewind successfully pinpoints

faulty behavior in the Quagga RIP software routing dae-

mon. This indicates that OFRewind is not limited to

locating OpenFlow-specific bugs alone, but can also be

used to reproduce other network anomalies.

Our evaluation (Section 5) shows (a) that the tool

scales at least as well as current OpenFlow hardware

implementations, (b) that recording does not impose an

undue performance penalty on the throughput achieved,

and (c) that the messaging overhead for synchronization

in our production network is limited to 1.13% of all data

plane traffic.

While using our tool, we have made and incorporated

the following key observations:

(1) A full recording of all events in an entire pro-

duction network is infeasible, due to the data volumes

involved and their asynchronous nature. However, one

usually needs not record all information to be able to re-

produce or pinpoint a failure. It suffices to focus on rel-

evant subparts, e.g., control messages or packet headers.

By selectively recording critical traffic subsets, we can

afford to turn recording on by default and thus reproduce

many unforeseen problems post facto.

(2) Partial recordings, while missing some data neces-

sary for fully deterministic replay, can be used to repro-

duce symptomatic network behavior, useful for gaining

insights in many debugging situations. With careful ini-

tialization, the behavior of many network devices turns

out to be deterministic with respect to the network input.

(3) By replaying subsets of traffic at a controlled pace,

we can, in many cases, rapidly repeat experiments with

different settings (parameters/code hooks) while still re-

producing the error. We can, for instance, bisect the traf-

fic and thus localize the sequence of messages leading to

an error.

In summary, OFRewind is, to the best of our knowl-

edge, the first tool which leverages the properties of split

architecture forwarding to enable practical and economi-

cally feasible recording and replay debugging of network

domains. It has proven useful in a variety of practical

case studies, and our evaluation shows OFRewind does

not significantly affect the scalability of OpenFlow con-

troller domains and does not introduce undue overhead.

2 OFRewind System Design

In this section, we discuss the expected operational en-

vironment of OFRewind, its design goals, and the com-

ponents and their interaction. We then focus on the need

to synchronize specific system components during oper-

ation.

2.1 Environment / Abstractions

We base our system design upon split forwarding archi-

tectures, for instance, OpenFlow [28], Tesseract [41], or

Forces [2], in which standardized data plane elements

(switches) perform fast and efficient packet forwarding,

and the control plane is programmable via an external

2

DataStore

OF-Controller

OFRewind

of-sw1 of-sw3

of-sw2

DataStore

(a) System components

OFRewind

Ofrecord Ofreplay

DataStore

DatareplayDatarecord

(b) Software modules

DatarecordDatarecord Datarecord

L4 to L8

Data-Plane

Ofrecord

OpenFlow

Ctrl-Plane
OpenFlow

Data-Plane

L2

Ctrl-Plane

(e.g. ARP)

L2

Data-Plane
To

Controller

To

Switch

L4

Ctrl-Plane

(e.g. RSVP)

L3

Data-Plane
L3

Ctrl-Plane

(e.g. RIP)

(c) Traffic strata

Figure 1: Overview of OFRewind

controlling entity, known as the controller. Programma-

bility is achieved through forwarding rules that match in-

coming traffic and associate them with actions. We call

this layer of the network the substrate, and the higher-

layer superstrate network running on top of it guest. We

call the traffic exchanged between the switches and the

controller the substrate control plane. The higher-layer

control plane traffic running inside of the substrate data

plane (e.g., IP routing messages) is called the guest con-

trol plane. The relationship between these layers and

traffic strata is shown in Figure 1(c).

Even though not strictly mandated almost all split-

architecture deployments group several switches to be

centrally managed by one controller, creating a con-

troller domain. We envision one instance of OFRewind

to run in one such controller domain. Imagine, e.g., a

campus building infrastructure with 5-10 switches, 200

hosts attached on Gigabit links, a few routers, and an up-

link of 10GB/s.

2.2 Design Goals and Non-Goals

As previously stated, recording and replay functionali-

ties are not usually available in networks. We aim to

build a tool that leverages the flexibility afforded by split-

architectures to realize such a system. We do not en-

vision OFRewind to do automated root-cause analysis.

We do intend it to help localize problem causes. Ad-

ditionally, we do not envision it to automatically tune

recording parameters. This is left to an informed admin-

istrator who knows what scenario is being debugged.

Recording goals: We want a scalable system that can

be used in a realistic-sized controller domain. We want

to be able to record critical traffic, e.g., routing messages,

in an always-on fashion. What is monitored should be

specified in centralized configuration, and we want to

be able to attain a temporally consistent view of the re-

corded events in the controller domain.

Replay goals: We want to be able to replay traffic

in a coordinated fashion across the controller domain.

For replaying into a different environment or topology

(e.g., in a lab environment) we want to sub-select traf-

fic and potentially map traffic to other devices. We in-

clude time dilation to help investigate timer issues, cre-

ate stress tests, and allow “fast forwarding” to skip over

irrelevant portions of the traffic. Bisection of the traffic

between replays can assist problem localization whereby

the user repeatedly partitions and sub-selects traffic to be

replayed based on user-defined criteria (e.g., by message

types), performs a test run, then continues the bisection

based on whether a problem was reproducible.

(Absence of) determinism guarantees: As opposed

to host-oriented replay debugging systems which strive

for determinism guarantees, OFRewind does not – and

cannot – provide strict determinism guarantees, as black

boxes do not lend themselves to the necessary instrumen-

tation. Instead, we leverage the insight that network de-

vice behavior is largely deterministic on control plane

events (messages, ordering, timing). In some cases,

when devices deliberately behave non-deterministically,

protocol specific approaches must be taken.

2.3 OFRewind System Components

As seen in Figure 1(a), the main component of our sys-

tem, OFRewind, runs as a proxy on the substrate control

channel, i.e., between the switches and the original con-

troller. It can thus intercept and modify substrate control

plane messages to control recording and replay. It dele-

gates recording and replay of guest traffic to DataStore

components that are locally attached at regular switch

ports. The number of DataStores attached at each switch

can be chosen freely, subject to the availability of ports.

Both components can be broken down further into two

modules each, as depicted in Figure 1(b): They consist

of a recording and a replay module with a shared local

storage, labeled Ofrecord and Ofreplay, and Datarecord

and Datareplay respectively.

Record: Ofrecord captures substrate control plane

traffic directly. When guest network traffic recording is

3

desired, Ofrecord translates control messages to instruct

the relevant switches to selectively mirror guest traffic to

the Datarecord modules. OFRewind supports dynamic

selection of the substrate or guest network traffic to re-

cord. In addition, flow-based-sampling can be used to

record only a fraction of the data plane flows.

Replay: Ofreplay re-injects the traces captured by

Ofrecord into the network, and thus enables domain-

wide replay debugging. It emulates a controller towards

switches or a set of switches towards a controller, and di-

rectly replays substrate control plane traffic. Guest traffic

is replayed by the Datareplay modules, which are orches-

trated by Ofreplay.

2.4 Ofrecord Traffic Selection

While it is, in principle, possible to collect full data

recordings for every packet in the network, this intro-

duces a substantial overhead both in terms of storage as

well as in terms of performance. Ofrecord , however, al-

lows selective traffic recording to reduce the overhead.

Selection: Flows can be classified and selected for

recording. We refer to traffic selection whenever we

make a conscious decision on what subset of traffic to

record. Possible categories include: substrate control

traffic, guest network control traffic, or guest data traf-

fic, possibly sub-selected by arbitrary match expressions.

We illustrate an example selection from these categories

in Figure 1(c).

Sampling: If selection is unable to reduce the traffic

sufficiently, one may apply either packet or flow sam-

pling on either type of traffic as a reduction strategy.

Cut-offs: Another data reduction approach is to re-

cord only the first X bytes of each packet or flow. This

often suffices to capture the critical meta-data and has

been used in the context of intrusion detection [26].

2.5 Ofreplay Operation Modes

To support testing of the different entities involved

(switches, controller, end hosts) and to enable different

playback scenarios, Ofreplay supports several different

operation modes:

ctrl: In this operation mode, replay is directed towards

the controller. Ofreplay plays the recorded substrate con-

trol messages from the local storage. This mode enables

debugging of a controller application on a single devel-

oper host, without need for switches, end-hosts, or even

a network. Recorded data plane traffic is not required.

switch: This operation mode replays the recorded sub-

strate control messages toward the switches, reconstruct-

ing each switch’s flow table in real time. No controller is

needed, nor is guest traffic replayed.

datahdr: This mode uses packet headers captured by

the Datarecord modules to re-generate the exact flows

encountered at recording time, with dummy packet pay-

loads. This enables full testing of the switch network,

independent of any end hosts.

datafull: In this mode, data traffic recorded by the

DataStores is replayed with complete payload, allowing

for selective inclusion of end host traffic into the tests.

In addition to these operation modes, Ofreplay enables

the user to further tweak the recorded traffic to match the

replay scenario. Replayed messages can be sub-selected

based on source or destination host, port, or message

type. Further, message destinations can be re-mapped on

a per-host or per-port basis. These two complementary

features allow traffic to be re-targeted toward a particular

host, or restricted such that only relevant messages are

replayed. They enable Ofreplay to play recorded traffic

either toward the original sources or to alternative de-

vices, which may run a different firmware version, have

a different hardware configuration, or even be of a dif-

ferent vendor. These features enable OFRewind to be

used for regression testing. Alternately, it can be useful

to map traffic of multiple devices to a single device, to

perform stress tests.

The pace of the replay is also adjustable within Of-

replay, enabling investigation of pace-dependent perfor-

mance problems. Adjusting replay can also be used to

“fast-forward” over portions of a trace, e.g., memory

leaks in a switch, which typically develop over long time

periods may be reproduced in an expedited manner.

2.6 Event Ordering and Synchronization

For some debugging scenarios, it is necessary to pre-

serve the exact message order or mapping between guest

and substrate flow data to be able to reproduce the prob-

lem. In concrete terms, the guest (data) traffic should

not be replayed until the substrate (control) traffic (con-

taining the corresponding substrate actions) has been re-

played. Otherwise, guest messages might be incorrectly

forwarded or simply dropped by the switch, as the nec-

essary flow table state would be invalid or missing.

We do not assume tightly synchronized clocks or low

latency communication channels between our OFRe-

wind and the DataStores components. Accordingly, we

cannot assume that synchronization between recorded

substrate and guest flow traces, or order between flows

recorded by different DataStores is guaranteed per se.

Our design does rely on the following assumptions: (1)

The substrate control plane channel is reliable and order-

preserving. (2) The control channel between OFRe-

wind and each individual DataStore is reliable and order-

preserving, and has a reasonable mean latency lc (e.g., 5

ms in a LAN setup.) (3) The data plane channel from

OFRewind to the DataStores via the switch is not neces-

sarily fully, but sufficiently reliable (e.g., 99.9% of mes-

4

sages arrive). It is not required to be order-preserving

in general, but there should be some means of explicitly

guaranteeing order between two messages. We define the

data plane channel mean latency as ld.

Record: Based on these assumptions, we define a log-

ical clock C [25] on Ofrecord , incremented for each sub-

strate control message as they arrive at Ofrecord . Ofre-

cord logs the value of C with each substrate control mes-

sage. It also broadcasts the value of C to the DataStores

in two kinds of synchronization markers: time binning

markers and flow creation markers.

Time binning markers are sent out at regular time in-

tervals it, e.g., every 100ms. They group flows into bins

and thus constrain the search space for matching flows

during replay and help reconstruct traffic characteristics

within flows. Note that they do not impose a strict order

on the flows within a time bin.

Flow creation markers are optionally sent out when-

ever a new flow is created. Based on the previous as-

sumptions, they induce a total ordering on all flows

whose creation markers have been successfully recorded.

However, their usage limits the scalability of the system,

as they must be recorded by all DataStores .

Replay: For synchronization during replay, Ofreplay

assumes the role of a synchronization master, reading the

value of C logged with the substrate messages. When a

DataStore hits a synchronization marker while replaying,

it synchronizes with Ofreplay before continuing. This

assures that in the presence of time binning markers, the

replay stays loosely synchronized between the markers

(within an interval I = it + ld + lc). In the presence

of flow creation markers, it guarantees that the order be-

tween the marked flows will be preserved.

2.7 Typical Operation

We envision that users of OFRewind run Ofrecord in

an always-on fashion, always recording selected sub-

strate control plane traffic (e.g., OpenFlow messages)

onto a ring storage. If necessary, selected guest traffic

can also be continuously recorded on Datarecord . To

preserve space, low-rate control plane traffic, e.g., rout-

ing announcements, may be selected, sampling may be

used, and/or the ring storage may be shrunk. When

the operator (or an automated analytics tool) detects an

anomaly, a replay is launched onto a separate set of hard-

ware, or onto the production network during off-peak

times. Recording settings are adapted as necessary un-

til the anomaly can be reproduced during replay.

During replay, one typically uses some kind of debug-

ging by elimination, either by performing binary search

along the time axis or by eliminating one kind of message

at a time. Hereby, it is important to choose orthogonal

subsets of messages for effective problem localization.

3 Implementation

In this section, we describe the implementation of OF-

Rewind based on OpenFlow, selected for currently be-

ing the most widely used split forwarding architecture.

OpenFlow is currently in rapid adoption by testbeds [20],

university campuses [1], and commercial vendors [3].

OpenFlow realizes split forwarding architecture as an

open protocol between packet-forwarding hardware and

a commodity PC (the controller). The protocol allows

the controller to exercise flexible and dynamic control

over the forwarding behavior of OpenFlow enabled Eth-

ernet switches at a per-flow level. The definition of a

flow can be tailored to the specific application case—

OpenFlow supports an 11-tuple of packet header parts,

against which incoming packets can be matched, and

flows classified. These range from Layer 1 (switch

ports), to Layer 2 and 3 (MAC and IP addresses), to

Layer 4 (TCP and UDP ports). The set of matching rules,

and the actions associated with and performed on each

match are held in the switch and known as the flow table.

We next discuss the implementation of OFRewind,

the synchronization among the components and dis-

cuss the benefits, limitations, and best-practices of using

OpenFlow to implement our system. The implementa-

tion, which is an OpenFlow controller in itself, and based

on the source code of FlowVisor [36] is available under

a free and open source license at [4].

3.1 Software Modules

To capture both the substrate control traffic and guest

network traffic we use a hybrid strategy for implement-

ing OFRewind. Reconsider the example shown in Fig-

ure 1(a) from an OpenFlow perspective. We deploy

a proxy server in the OpenFlow protocol path (labeled

OFRewind) and attach local DataStore nodes to the

switches. The OFRewind node runs the Ofrecord and

Ofreplay modules, and the DataStore nodes run Datare-

cord and Datareplay, respectively. We now discuss the

implementation of the four software components Ofre-

cord , Datarecord , Ofreplay and Datareplay.

Ofrecord : Ofrecord intercepts all messages passing

between the switches and controller and applies the se-

lection rules. It then stores the selected OpenFlow con-

trol (substrate) messages to locally attached data stor-

age. Optionally, the entire flow table of the switch can

be dumped on record startup. If recording of the guest

network control and/or data traffic is performed, Of-

record transforms the FLOW-MOD and PACKET-OUT

commands sent from the controller to the switch to du-

plicate the packets of selected flows to a DataStore at-

tached to a switch along flow path. Multiple DataStores

can be attached to each switch, .e.g., for load-balancing.

The order of flows on the different DataStores in the sys-

5

tem is retained with the help of synchronization markers.

Any match rule supported by OpenFlow can be used for

packet selection. Additionally, flow-based-sampling can

be used to only record a fraction of the flows.

Datarecord : The Datarecord components located

on the DataStores record the selected guest traffic, as

well as synchronization and control metadata. They are

spawned and controlled by Ofrecord . Their implemen-

tation is based on tcpdump, modified to be controlled

by Ofrecord via a TCP socket connection. Data reduc-

tion strategies that cannot be implemented with Open-

Flow rules (e.g., packet sampling, cut-offs) are executed

by Datarecord before writing the data to disk.

Ofreplay: Ofreplay re-injects OpenFlow control

plane messages as recorded by Ofrecord into the network

and orchestrates the guest traffic replay by the Datare-

play components on the DataStores . It supports replay

towards the controller and switches, and different lev-

els of data plane involvement (switch, datahdr, datafull,

see Section 2.5.) Optionally, a flow table dump created

by Ofrecord can be installed into the switches prior to

replay. It supports traffic sub-selection and mapping to-

wards different hardware and time dilation.

Datareplay: The Datareplay components are respon-

sible for re-injecting guest traffic into the network. They

interact with and are controlled by Ofreplay for tim-

ing and synchronization. The implementation is based

on tcpreplay. Depending on the record and replay

mode, they reconstruct or synthesize missing data before

replay, e.g., dummy packet payloads, when only packet

headers have been recorded.

3.2 Synchronization

As we do not assume precise time synchronization be-

tween Ofrecord and the DataStores , the implementation

uses time binning markers and flow creation markers, as

discussed in Section 2.6. These are packets with unique

ids flooded to all DataStores and logged by Ofrecord .

The ordering of these markers relative to the recorded

traffic is ensured by OpenFlow BARRIER messages1.

We now discuss by example how the markers are used.

Record synchronization: Figure 2(a) illustrates the

use of flow creation markers during recording. Consider

a simple Ofrecord setup with two hosts c1 and s1 con-

nected to switch sw. The switch is controlled by an

instance of Ofrecord , which in turn acts as a client to

the network controller ctrl. Ofrecord records to the lo-

cal storage of-store, and controls an instance of Datare-

cord running on a DataStore . Assume that a new TCP

connection is initiated at c1 toward s1, generating a tcp

1A BARRIER message ensures that all prior OpenFlow messages

are processed before subsequent messages are handled. In its absence,

messages may be reordered.

syn packet (Step 1). As no matching flow table entry

exists, sw sends msg1, an OpenFlow PACKET-IN to

Ofrecord (Step 2), which in turn relays it to ctrl (step

3). Ctrl may respond with msg2, a FLOW-MOD message

(step 4). To enable synchronized replay and reassem-

bly of the control and data records, Ofrecord now cre-

ates a flow creation marker (sync), containing a unique

id, the current time, and the matching rule of msg1 and

msg2. Both msg1 and msg2 are then annotated with the

id of sync and saved to of-store (step 5). Ofrecord then

sends out 3 messages to sw1: first, a PACKET-OUT mes-

sage containing the flow creation marker sent to all Data-

Stores in step 6. This prompts the switch to send out sync

to all its attached DataStores (step 7). The second mes-

sage sent from Ofrecord is a BARRIERmessage (step 8),

which ensures that the message from step 7 is handled

before any subsequent messages. In step 9, Ofrecord

sends a modified FLOW-MOD message directing the flow

to both the original receiver, as well as one DataStore at-

tached to the switch. This prompts the switch to output

the flow both to s1 (step 10a) and DataStore (step 10b).

Replay synchronization: For synchronizing replay,

Ofreplay matches data plane events to control plane

events with the help of the flow creation markers re-

corded by Ofrecord . Consider the example in Fig-

ure 2(b). Based on the previous example, we replay the

recording in data plane mode towards the switch sw and

host s1. To begin, Ofreplay starts Datareplay playback

on the DataStore in step 1. Datareplay hits the flow cre-

ation marker sync, then sends a sync wait message

to the controller, and goes to sleep (step 2). Ofrecord

continues replay operation, until it hits the corresponding

flow creation marker sync on the of-store (step 3). Then,

it signals Datareplay to continue with a sync ok mes-

sage (step 4). Datareplay outputs the packet to the switch

(step 5), generating a PACKET-IN event (step 6). Ofre-

play responds with the matching FLOW-MOD event from

the OpenFlow log (step 7). This installs a matching flow

rule in the switch and causes the flow to be forwarded as

recorded (step 8).

3.3 Discussion

We now discuss the limitations imposed by OpenFlow

on our implementation, and best practices for avoiding

replay inaccuracies.

OpenFlow limitations: While OpenFlow provides a

useful basis for implementing OFRewind, it does not

support all the features required to realize all opera-

tion modes. OpenFlow does not currently support sam-

pling of either flows or packets. Thus, flow sampling

is performed by Ofrecord , and packet sampling is per-

formed by Datarecord . This imposes additional load

on the channel between the switches and the DataStores

6

c1 s1 sw Datarecord Ofrecord of-store ctrl

1: tcp_syn

5: sync

2: PKT_IN(tcp_syn) 3: PKT_IN(c1:tcp_syn)

4: FLOW_MOD (c1->s1)

6: PKT_OUT(sync->dr*)

7: sync

8: BARRIER

9: FLOW_MOD(c1->s1, dr)

10b: tcp_syn10a:tcp_syn

(a) Ofrecord

c1 s1 sw Datareplay Ofreplay of-store ctrl

6: PKT_IN(tcp_syn)

7: FLOW_MOD (dr->s1)

2: sync_wait

8: tcp syn

1: start

3: find_sync

4: sync_ok

5: tcp syn

(b) Ofreplay

Figure 2: DataStore synchronization mechanism in OFRewind

for data that is not subsequently recorded. Similarly,

the OpenFlow data plane does not support forwarding

of partial packets2. Consequently, full packets are for-

warded to the DataStore and only their headers may be

recorded. OpenFlow also does not support automatic

flow cut-offs after a specified amount of traffic3. The

cut-off can be performed in the DataStore . Further op-

timizations are possible, e.g., regularly removing flows

that have surpassed the threshold.

Avoiding replay inaccuracies: To reliably reproduce

failures during replay in a controlled environment, one

must ensure that the environment is properly initialized.

We suggest therefore, to use the flow table dump feature

and, preferably, reset (whenever possible) the switches

and controller state before starting the replay operation.

This reduces any unforeseen interference from previ-

ously installed bad state.

When bisecting during replay, one must consider the

interdependencies among message types. FLOW-MOD

messages are for example, responsible for creating the

flow table entries and their arbitrary bisection may lead to

incomplete or nonsense forwarding state on the switch.

Generally speaking, replay inaccuracies can occur

when: (a) the chain of causally correlated messages

is recorded incompletely, (b) synchronization between

causally correlated messages is insufficient, (c) timers

influence system behavior, and (d) network communi-

cation is partially non-deterministic. For (a) and (b), it

is necessary to adapt the recording settings to include

more or better-synchronized data. For (c) a possible ap-

proach is to reduce the traffic being replayed via sub-

selection to reduce stress on the devices and increase ac-

curacy. We have not witnessed this problem in our prac-

tical case studies. Case (d) requires the replayed traffic

to be modified. If the non-determinism stems from the

transport layer (e.g., TCP random initial sequence num-

2It does support a cut-off for packets forwarded to the controller.
3Expiration after a specified amount of time is supported.

bers), a custom transport-layer handler in Datareplay can

shift sequence numbers accordingly for replay. For ap-

plication non-determinism (e.g., cryptographic nonces),

application-specific handlers must be used.

When the failure observed in the production network

does not appear during replay, we call this a false nega-

tive problem. When the precautions outlined above have

been taken, a repeated false negative indicates that the

failure is likely not triggered by network traffic, but other

events. In a false positive case, a failure is observed dur-

ing replay which does not stem from the same root cause.

Such inaccuracies can often be avoided by careful com-

parison of the symptoms and automated repetition of the

replay.

4 Case Studies

In this section, we demonstrate the use of OFRewind for

localizing problems in black box network devices, con-

trollers, and other software components, as summarized

in Table 1. These case studies also demonstrate the bene-

fits of bisecting the control plane traffic (4.2), of mapping

replays onto different pieces of hardware (4.3), from a

production network onto a developer machine (4.5), and

the benefit of a temporally consistent recording of multi-

ple switches (4.6).

4.1 Experimental Setup

For our case studies we use a network with switches

from three vendors: Vendor A, Vendor B, Vendor C.

Each switch has two PCs connected to it. Figure 3 il-

lustrates the connectivity. All switches in the network

have a control-channel to Ofrecord . DataStores running

Datarecord and Datareplay are attached to the switches

as necessary. We use NOX [31], unless specified oth-

erwise, as the high level controller performing the actual

routing decisions. It includes the routing module, which

7

Case study Class OF-specific

Switch CPU Inflation black box (switch) no

Anomalous Forwarding black box (switch) yes

Invalid Port Translation OF controller yes

NOX Parsing Error OF controller yes

Faulty Route Advertisements software router no

Table 1: Overview of the case studies

port 7

of-sw1
(Vendor A)

of-sw3
(Vendor B)

of-sw2
(Vendor B)

c1
c2

c3 c4

c5

c6

c7
c8

of-sw5
(Vendor C)

of-sw4
(Vendor C)

FlowVisor OFRewindNox Controller

port 41

c9
c10

port 43

port 42

port 8

port 9

Figure 3: Lab environment for case studies

performs shortest path routing by learning the destination

MAC address, and the spanning − tree module, which

prevents broadcast storms in the network by using Link

Layer Discovery Protocol (LLDP) to identify if there is

a loop in the network. All OpenFlow applications, viz.

NOX, FlowVisor, Ofreplay, and Ofrecord , are run on the

same server.

4.2 Switch CPU Inflation

Figure 4 shows our attempt at reproducing the CPU os-

cillation we reported in Section 1. As stated earlier, there

is no apparent correlation between the ingress traffic and

the CPU utilization. We record all control traffic in the

production network, as well as the traffic entering/exiting

the switch, while the CPU oscillation is happening. Fig-

ure 4(a) shows the original switch performance during

recording. We, then, iteratively replay the correspond-

ing control traffic over a similar switch in our isolated

experimental setup. We replay the recorded data traf-

fic to 1 port of the switch and connect hosts that send

ICMP datagrams to the other ports. In each iteration,

we have Ofreplay bisect the trace by OpenFlow message

type, and check whether the symptom persists. When re-

playing the port and table statistic requests, we observe

the behavior as shown in Figure 4(b). Since the data traf-

fic is synthetically generated, the amplitude of the CPU

oscillation and the flow setup time variation is different

from that in the original system. Still, the sawtooth pat-

tern is clearly visible. This successful reproduction of

the symptom helps us identify the issue to be related to

port and table statistics requests. Note that these mes-

sages have been causing the anomaly, even though their

Counts Match

duration=181s in port=8

n packets=0 dl type=arp

n bytes=3968 dl src=00:15:17:d1:fa:92

idle timeout=60 dl dst=ff:ff:ff:ff:ff:ff

hard timeout=0 actions=FLOOD

Table 2: Vendor C switch flow table entry, during replay.

arrival rate (24 messages per minute) is not in any way

temporally correlated with the perceived symptoms (30-

minute CPU sawtooth pattern). We reported this issue to

the vendor, since at this point we have no more visibility

into the switch software implementation.

OFRewind thus, has proved useful in localizing the

cause for the anomalous behavior of a black box com-

ponent that would otherwise have been difficult to de-

bug. Even though the bug in this case is related to a

prototype OpenFlow device, the scenario as such (misbe-

having black box component) and approach (debugging

by replay and bisection of control-channel traffic) are ar-

guably applicable to non-OpenFlow cases as well.

4.3 Anomalous Forwarding

To investigate the performance of devices from a new

vendor, Vendor C, we record the substrate and guest traf-

fic for a set of flows, sending 10 second delayed ping

between a pair of hosts attached to the switch from Ven-

dor B (of-sw3 in Figure 3). We then use the de-

vice/port mapping feature of Ofreplay to play back traf-

fic from c7 to c8 over port 8 and port 42 belonging to the

switch from Vendor C, in Figure 3.

Upon replay, we observe an interesting limitation of

the switch from Vendor C. The ping flow stalls at the

ARP resolution phase. The ARP packets transmitted

from host c7 are received by host c10, but not by c8 nor

c9. The flow table entry created in of-sw4 during re-

play, is shown in Table 2, similar to that created during

the original run. We conclude that the FLOOD action is

not being properly applied by the switch from Vendor C.

Careful observation reveals that traffic received on a

“low port” (one of the first 24 ports) to be flooded to any

“high ports” (last 24 ports) and vice-versa is not flooded

correctly. Effectively, the flood is restricted within a 24

port group within the switch (lower or higher). This fact

has been affirmed by the vendor, confirming the success-

ful debugging.

We additionally perform the replay after adding static

ARP entries to the host c7. In this case, we observe

that flow setup time for the subsequent unicast ping

traffic on Vendor C is consistently higher than that ob-

served for Vendor B and Vendor A switches. This in-

dicates that OFRewind has further potential in profiling

switches and controllers.

8

20:00 21:00 22:00 23:00 00:00
0

50

100
C

P
U

 u
s
a
g
e
 (

%
)

Time

20:00 21:00 22:00 23:00 00:00
0

500

1000

1500

2000

F
lo

w
 s

e
tu

p
 t

im
e
 (

m
s
)

Time

(a) Switch performance with original traffic

08:06 08:36 09:06 09:36 10:06 10:36
0

50

100
Replayed traffic characteristics

Time

C
P

U
 u

s
a
g
e
 (

%
)

08:06 08:36 09:06 09:36 10:06 10:36
0

50

100

Time

F
lo

w
 s

e
tu

p
 t
im

e
 (

m
s
)

(b) Switch performance with replayed traffic

20:00 21:00 22:00 23:00 00:00
0

20

40

60

80

100

C
P

U
 U

ti
l
%

Nov−06−2009 to Nov−07−2009
20:00 21:00 22:00 23:00 00:00

0

5

10

15

20

25

S
T

A
T

S
 R

E
Q

U
E

S
T

(c) STATS-REQUEST vs. CPU

Figure 4: Sawtooth CPU pattern reproduced during replay of port and table STATS-REQUEST messages. Figure (c)

shows no observable temporal correlation to message arrivals.

FlowVisor

Ofrecord

sw

OF-Controller

c2c1

Ofreplay

(a) recording the bug (b) replay of bug

Figure 5: Debugging of FlowVisor bug #68

4.4 Invalid Port Translation

In this case study, we operate Ofreplay in the ctrl mode

in order to debug a controller issue. The controller we

focus on is the publicly available FlowVisor [36].

FlowVisor (FV) is a special purpose OpenFlow con-

troller that acts as a proxy between multiple OpenFlow

switches and controllers (guests), and thus assumes the

role of a hypervisor for the OpenFlow control plane (see

Figure 3). To this end, the overall flow space is parti-

tioned by FV into distinct classes, e.g., based on IP ad-

dresses and ports, and each guest is given control of a

subset. Messages between switches and controllers are

then filtered and translated accordingly.

We investigate an issue in where the switch from

Vendor C works fine with the NOX controller, but not

through the FV. We record the OpenFlow control plane

traffic from the switch to FV in our production setup, as

seen on the left side of Figure 5. We then replay the

trace on a developer system, running Ofreplay, FV and

the upstream controller on a single host for debugging.

Ofreplay thus assumes the role of the switch.

Through repeated automated replay of the trace on

the development host, we track down the source of the

problem: It is triggered by a switch announcing a non-

contiguous range of port numbers (e.g., 1, 3, 5). When

FV translates a FLOOD action sent from the upstream

controller to such a switch, it incorrectly expands the port

range to a contiguous range, including ports that are not

announced by the switch (e.g., 1, 2, 3, 4, 5). The switch

then drops the invalid action.

Here, OFRewind proves useful in localizing the root

cause for the failure. Replaying the problem in the de-

velopment environment enables much faster turnaround

times, and thus reduces debugging time. Moreover, it can

be used to verify the software patch that fixes the defect.

4.5 NOX PACKET-IN Parsing Error

We now investigate a problem, reported on the NOX [31]

development mailing list, where the NOX controller con-

sistently drops the ARP reply packet from a specific host.

The controller is running the pyswitch module.

The bug reporter provides a tcpdump of the traffic

between their switch and the controller. We verify the

existence of the bug by replaying the control traffic to

our instance of the NOX. We then gradually increase the

debug output from NOX as we play back the recorded

OpenFlow messages to NOX.

Repeating this processes reveals the root cause of

the problem: NOX deems the destination MAC address

00:26:55:da:3a:40 to be invalid. This is because

the MAC address contains the byte 0x3a, which hap-

pens to be the binary equivalent of the character ‘:’ in

ASCII. This “fake” ASCII character causes the MAC ad-

dress parser to interpret the MAC address as ASCII, lead-

ing to a parsing error and the dropped packet. Here, Of-

replay provides the necessary debugging context to faith-

fully reproduce a bug encountered in a different deploy-

ment, and leads us to the erroneous line of code.

9

OF-Controller

OFRewind

DataStore

Router A of-sw1 Router B Router Cof-sw2

DataStore

Network 1 Network 2 Network 3 Network 4

Figure 6: Quagga RIPv1 bug #235

4.6 Faulty Routing Advertisements

In a departure from OpenFlow network troubleshooting,

we examine how OFRewind can be used to troubleshoot

more general, event-driven network problems. We con-

sider the common problem of a network suffering from a

mis-configured or faulty router. In this case, we demon-

strate how OFRewind can be advantageously used to

identify the faulty component.

We apply OFRewind to troubleshoot a documented

bug (Quagga Bugzilla #235) detected in a version of

the RIPv1 implementation of the Quagga [34] software

routing daemon. In the network topology given by Fig-

ure 6, a network operator notices that shortly after up-

grading Quagga on software router B, router C subse-

quently loses connectivity to Network 1. As routing con-

trol plane messages are a good example of low-volume

guest control plane traffic, they can be recorded by Ofre-

cord always-on or, alternatively, as a precautionary mea-

sure during upgrades. Enabling flow creation sync mark-

ers for the low-volume routing control plane messages

ensures the global ordering is preserved.

The observation that router C loses its route to Net-

work 1 while router B maintains its route, keys the op-

erator to record traffic arriving at and departing from B.

An analysis of the Ofrecord flow summaries reveals that

although RIPv1 advertisements arrive at B from A, no

advertisements leave B toward C. Host-based debugging

of the RIPd process can then be used on router B in con-

junction with Ofreplay to replay the trigger sequence and

inspect the RIPd execution state. This reveals the root

cause of the bug – routes toward Network 1 are not an-

nounced by router B due to this (0.99.9) version’s han-

dling of classful vs. CIDR IP network advertisements –

an issue inherent to RIPv1 on classless networks.

4.7 Discussion

Without making any claims regarding the representative-

ness of the workload or switch behavior, in this lim-

ited space, we highlight in these case studies, the prin-

ciple power and flexibility of OFRewind. We observe

that OFRewind is capable of replaying subpopulations

of control or data traffic, over a select network topology

of-simple reference controller emulating a learning switch

nox-pyswitch NOX controller running Python pyswitch module

nox-switch NOX controller running C-language switch module

flowvisor Flowvisor controller, running a simple allow-all pol-

icy for a single guest controller

ofrecord Ofrecord with substrate mode recording

ofrecord-data Ofrecord with guest mode recording, with one data

port and sync beacons and barriers enabled

Table 3: Notation of controllers used in evaluation

(switches and ports) or to select controllers, in a sandbox

or production environment.

We further note that OFRewind has potential in

switch (or controller) benchmarking. By creating a sand-

box for experimentation that can be exported to a stan-

dard replay format, a network operator can concretely

specify the desired behavior to switch (or controller) de-

sign engineers. The sandbox can then be run within the

premises of the switch (or controller software) vendor on

a completely new set of devices and ports. On receiving

the device (or software), the network operator can con-

duct further benchmarking to compare performance of

different solutions in a fair manner.

Comparison with traditional recording Based on

the case presented in the last section, we compare the ef-

fort of recording and instrumenting the network with and

without OFRewind. Note that while the specific traf-

fic responsible for the failure is small (RIP control plane

messages), the total traffic volume on the involved links

may be substantial. To attain a synchronized recording

of this setup without OFRewind, and in the absence of

host-based instrumentation, one has to (1) deploy moni-

toring servers that can handle the entire traffic on each

link of interest, e.g., [29], and redeploy as link inter-

ests change. Then, one must either (2a) reconfigure both

switches to enable span ports (often limited to 2 on mid-

range hardware) or (2b) introduce a tap into the physical

wiring of the networks. Manually changing switch con-

figurations runs a risk of operator error and introducing

a tap induces downtime and is considered even riskier.

(3) Additionally, the monitoring nodes may have to be

synced to microsecond level to keep the flows globally

ordered, requiring dedicated, expensive hardware. With

OFRewind, one requires only a few commodity PCs

acting as DataStores , and a single, central configuration

change to record a consistent traffic trace.

5 Evaluation

When deploying OFRewind in a live production envi-

ronment, we need to pay attention to its scalability, over-

head and load on the switches. This section quantifies

the general impact of deploying Ofrecord in a production

network, and analyzes the replay accuracy of Ofreplay at

higher flow rates.

10

0 10 20 30 40 50 60

0
2

0
0

0
0

6
0

0
0

0
1

0
0

0
0

0

Switches

F
lo

w
 R

a
te

/s

flowvisor

nox−pyswitch

nox−switch

ofrecord

ofrecord−data

of−simple

Figure 7: # Switches vs. median flow rate throughputs

for different controllers using cbench.

5.1 Ofrecord Controller Performance

A key requirement for practical deployment of Ofrecord

in a production environment is recording performance. It

must record fast enough to prevent a performance bottle-

neck in the controller chain.

Using cbench [14], we compare the controller per-

formance exhibited by several well known controllers,

listed in Table 3. Of-simple and NOX are stand-alone

controllers, while flowvisor and ofrecord act as a proxy

to other controllers. Ofrecord is run twice: in substrate

mode (ofrecord), recording the OpenFlow substrate traf-

fic, and in guest mode (ofrecord-data), additionally per-

forming OpenFlow message translations and outputting

sync marker messages. Note that no actual guest traffic

is involved in this experiment.

The experiment is performed on a single commod-

ity server (Intel Xeon L5420, 2.5 GHz, 8 cores, 16

GB RAM, 4xSeagate SAS HDDs in a RAID 0 setup).

We simulate, using Cbench, 1-64 switches connect-

ing to the controller under test, and send back-to-back

PACKET-IN messages to measure the maximum flow

rate the controller can handle. Cbench reports the cur-

rent flow rate once per second. We let each experiment

run for 50 seconds, and remove the first and last 4 results

for warmup and cool-down.

Figure 7 presents the results. We first compare the

flow rates of the stand-alone controllers. Nox-pyswitch

exhibits a median flow rate of 5,629 flows/s over all

switches, nox-switch reports 42,233 flows/s, and of-

simple 78,908 flows/s. Consequently, we choose of-

simple as the client controller for the proxy controllers.

We next compare flowvisor and ofrecord. Flowvisor

exhibits a median flow throughput of 35,595 flows/s.

Ofrecord reports 42,380 flows/s, and ofrecord-data re-

ports 41,743. There is a slight variation in the perfor-

mance of ofrecord, introduced by the I/O overhead. The

minimum observed flow rates are 28,737 and 22,248. We

note that all controllers exhibit worse maximum through-

put when only connected to a single switch, but show

similar performance for 2− 64 switches.

We conclude that Ofrecord , while outperformed by of-

simple in control plane performance, is unlikely to create

a bottleneck in a typical OpenFlow network, which of-

ten includes a FlowVisor instance and guest domain con-

trollers running more complex policies on top of NOX.

Note that all controllers except nox-pyswitch perform an

order of magnitude better than the maximum flow rates

supported by current prototype OpenFlow hardware im-

plementations (max. 1,000 flows/s).

5.2 Switch Performance During Record

When Ofrecord runs in guest mode, switches must han-

dle an increase in OpenFlow control plane messages

due to the sync markers. Additionally, FLOW-MOD and

PACKET-OUT messages contain additional actions for

mirroring data to the DataStores . This may influence the

flow arrival rate that can be handled by a switch.

To investigate the impact of Ofrecord deployment on

switch behavior, we use a test setup with two 8-core

servers with 8 interfaces each, wired to two prototype

OpenFlow hardware switches from Vendor A and Ven-

dor B. We measure the supported flow arrival rates by

generating minimum sized UDP packets with increas-

ing destination port numbers in regular time intervals.

Each packet thus creates a new flow entry. We record

and count the packets at the sending and the receiving

interfaces. Each run lasts for 60 seconds, then the UDP

packet generation rate is increased.

Figure 8 presents the flow rates supported by the

switches when controlled by ofrecord, ofrecord-data,

and of-simple. We observe that all combinations of con-

trollers and switches handle flow arrival rates of at least

200 flows/s. For higher flow rates, the Vendor B switch

is CPU limited and the additional messages created by

Ofrecord result in reduced flow rates (ofrecord: 247

flows/s, ofrecord-data: 187) when compared to of-simple

(393 flows/s). Vendor A switch does not drop flows up to

an ingress rate of 400 flows/s. However, it peaks at 872

flows/s for ofrecord-data, 972 flows/s for ofrecord and

996 flows/s for of-simple. This indicates that introducing

Ofrecord imposes an acceptable performance penalty on

the switches.

5.3 DataStore Scalability

Next we analyze the scalability of the DataStores . Note

that Ofrecord is not limited to using a single DataStore .

Indeed, the aggregate data plane traffic (Ts bytes in

cF flows) can be distributed onto as many DataStores

as necessary, subject to the number of available switch

ports. We denote the number of DataStores with n and

enumerate each DataStore Di subject to 0 ≤ i < n. The

traffic volume assigned to each DataStore is Ti, such that

Ts =
∑

Ti. The flow count on each DataStore is ci.

11

5 10 20 50 100 200 500 2000 5000

5
1

0
2

0
5

0
1

0
0

5
0

0
2

0
0

0

Flows sent/s

F
lo

w
s
 r

e
c
/s

of−record (Vendor A)

of−record−data (Vendor A)

of−simple (Vendor A)

of−record (Vendor B)

of−record−data (Vendor B)

of−simple (Vendor B)

Figure 8: Mean rate of flows sent vs. successfully re-

ceived with controllers ofrecord, ofrecord-data, and of-

simple and switches from Vendor A and B.

The main overhead when using Ofrecord is caused by

the sync markers that are flooded to all DataStores at

the same time. Thus, their number limits the scalability

of the system. Flow-sync markers are minimum-sized

Ethernet frames that add constant overhead (θ = 64B)

per new flow. Accordingly, the absolute overhead for

each DataStore is: Θi = θ · ci. The absolute overhead

for the entire system is Θ =
∑

Θi = θ · cF , the relative

overhead is: Θrel =
Θ

Ts

.

In the Stanford production network, of four switches

with one DataStore each, a 9 hour day period on a work-

day in July 2010 generated cF = 3, 891, 899 OpenFlow

messages that required synchronization. During that pe-

riod, we observed 87.977 GB of data plane traffic. Thus,

the overall relative overhead is Θrel = 1.13%, small

enough to not impact the capacity, and allow scaling up

the deployment to a larger number of DataStores .

5.4 End-to-End Reliability And Timing

We now investigate the end-to-end reliability and tim-

ing precision of OFRewind by combining Ofrecord and

Ofreplay. We use minimum size flows consisting of sin-

gle UDP packets sent out at a uniform rate to obtain a

worst-case bound. We vary the flow rate to investigate

scalability. For each run, we first record the traffic with

Ofrecord in guest mode with flow sync markers enabled.

Then, we play back the trace and analyze the end-to-end

drop rate and timing accuracy. We use a two-server setup

connected by a single switch of Vendor B. Table 4 sum-

marizes the results. Flow rates up to 200 Flows/s are

handled without drops. Due to the flow sync markers, no

packet reorderings occur and all flows are replayed in the

correct order. The exact inter-flow timings vary though,

upwards from 50 Flows/s.

To investigate the timing accuracy further, we analyze

the relative deviation from the expected inter-flow delay.

Rate (Flows/s) Drop % sd(timing, in ms)

5 0 % 4.5

10 0 % 15.6

20 0 % 21.1

50 0 % 23.4

100 0 % 10.9

200 0 % 13.9

400 19% 15.8

800 41 % 21.5

Table 4: OFRewind—end-to-end measurements with

uniformly spaced flows consisting of 1 UDP packet

5 10 20 50 100 200

0
.0

5
0
.2

0
1
.0

0
5
.0

0
2
0
.0

0

Rate [Flows/s]

re
l.
 d

e
v
ia

ti
o

n
 f

ro
m

 e
x
p

.
in

te
r

fl
o
w

 d
e

la
y

Figure 9: End-to-end flow time accuracy as a boxplot of

the relative deviation from expected inter-flow delay.

Figure 9 presents the deviations experienced by the flows

during the different phases of the experiment. Note that

while there are certainly outliers for which the timing is

far off, the median inter-flow delay remains close to the

optimum for up to 100 Flows/s. Higher rates show room

for improvement.

5.5 Scaling Further

We now discuss from a theoretical standpoint the limits

of scalability intrinsic to the design of OFRewind when

scaling beyond currently available production networks

or testbeds. As with other OpenFlow-based systems, the

performance of OFRewind is limited by the switch flow

table size and the switch performance when updating and

querying the flow table. We observe these to be the most

common performance bottlenecks in OpenFlow setups

today. Controller domain scalability is limited by the ca-

pacity of the link that carries the OpenFlow control chan-

nel, and the network and CPU performance of the con-

troller. Specific to OFRewind, the control plane compo-

nents require sufficient I/O performance to record the se-

lected OpenFlow messages – not a problem in typical de-

velopments. When recording data plane network traffic,

DataStore network and storage I/O capacity must be suf-

ficient to handle the aggregate throughput of the selected

flows. As load-balancing is performed over DataStores

at flow granularity, OFRewind cannot fully record indi-

vidual flows that surpass the network or storage I/O ca-

pacity of a single DataStore . When flow creation mark-

ers are used for synchronization, the overhead grows lin-

12

early with the number of DataStores and the number of

flows. Thus, when the average flow size in a network

is small, and synchronization is required, this may limit

the scalability of a controller domain. For scaling further,

OFRewind may in the future be extended to a distributed

controller domain. While a quantitative evaluation is

left for future study, we note that the lock-step approach

taken to coordinate the replay of multiple instances of

Datarecord and Datareplay (see Section 2.6) can be ex-

tended to synchronize multiple instances of OFRewind

running as proxies to instances of a distributed controller.

The same trade-offs between accuracy and performance

apply here as well.

6 Related Work

Our work builds on a wealth of related work in the areas

of recording and summarizing network traffic, replay de-

bugging based on networks and on host primitives, auto-

mated problem diagnosis, pervasive tracing, and testing

large-scale systems.

Recording/summarizing network traffic: Apart

from the classical tool tcpdump[5], different approaches

have been suggested in the literature to record high-

volume network traffic, by performance optimiza-

tion [12, 18], by recording abstractions of the network

traffic [19, 27, 15], or omitting parts of the traffic [21,

26]. Our selection strategies borrow many of their ideas,

more can be incorporated for improved performance.

Note that these systems do not target network replay, and

that all integrated control and data plane monitoring sys-

tems face scalability challenges when monitoring high-

throughput links as the monitor has to consider all data

plane traffic, even if only a subset is to be recorded. Simi-

lar to our approach of recording in a split-architecture en-

vironment, OpenSafe [13] leverages OpenFlow for flex-

ible network monitoring but does not target replay or

provide temporal consistency among multiple monitors.

Complementary to our work, OpenTM [39] uses Open-

Flow statistics to estimate the traffic matrix in a con-

troller domain. MeasuRouting [37] enables flexible and

optimized placement of traffic monitors with the help of

OpenFlow, and could facilitate non-local DataStores in

OFRewind.

Network replay debugging: Tcpdump and tcpre-

play [6] are the closest siblings to our work that tar-

get network replay debugging. In fact, OFRewind uses

these tools internally for data plane recording and replay,

but significantly adds to their scope, scalability, and co-

herence: It records from a controller domain instead of a

single network interface, can select traffic on the control

plane and load-balance multiple DataStores for scalabil-

ity, and can record a temporally consistent trace of the

controller domain.

Replay debugging based on host primitives: Com-

plementary to our network based replay, there exists a

wealth of approaches that enable replay debugging for

distributed systems on end-hosts [8, 17, 30]. DCR [9], a

recent approach, emphasizes the importance of the con-

trol plane for debugging. These provide fully determin-

istic replay capabilities important for debugging com-

plex end-host systems. They typically cannot be used

for black box network components.

Automated problem diagnosis: A deployment of

OFRewind can be complemented by a system that fo-

cuses on automated problem diagnosis. Sherlock di-

agnoses network problems based on passive monitor-

ing [32], and other systems infer causality based on col-

lected message traces [7, 38]. They target the debugging

and profiling of individual applications while our pur-

pose is to support debugging of networks.

Pervasive tracing: Some proposals integrate im-

proved in-band diagnosis and tracing support directly

into the Internet, e.g., by pervasively adding a trace ID to

correlated requests [35] or by marking and remembering

recently seen packets throughout the Internet [11]. We

focus on the more controllable environment of a single

administrative domain, providing replay support directly

in the substrate, with no changes required to the network.

Testing large-scale networks: Many approaches ex-

perience scalability issues when dealing with large net-

works. The authors of [22] suggest to scale down large

networks and map them to smaller virtualized testbeds,

combining time dilation [23] and disk I/O simulation to

enable accurate behavior. This idea may aid scaling re-

play testbeds for OFRewind.

7 Summary

This paper addresses an important void in debugging

operational networks – scalable, economically feasible

recording and replay capabilities. We present the design,

implementation, and usage of OFRewind, a system ca-

pable of recording and replaying network events, moti-

vated by our experiences troubleshooting network device

and control plane anomalies. OFRewind provides con-

trol over the topology (choice of devices and their ports),

timeline, and selection of traffic to be collected and then

replayed in a particular debugging run. Using simple

case studies, we highlight the potential of OFRewind

for not only reproducing operational problems encoun-

tered in a production deployment but also localizing the

network events that trigger the error. According to our

evaluation, the framework is lightweight enough to be

enabled per default in production networks.

Some challenges associated with network replay are

still under investigation, including improved timing accu-

racy, multi-instance synchronization, and online replay.

OFRewind can preserve flow order, and its timing is ac-

13

curate enough for many use cases. However, further im-

provements would widen its applicability. Furthermore,

synchronization among multiple Ofrecord and Ofreplay

instances is desirable, but nontrivial, and might require

hardware support for accurate time-stamping [29].

In a possible extension of this work, Ofrecord and

Ofreplay are combined to form an online replay mode.

Recorded messages are directly replayed upon arrival,

e.g., to a different set of hardware or to a different sub-

strate slice. This allows for online investigation and trou-

bleshooting of failures in the sense of a Mirror VNet [40].

Our next steps involve gaining further experience with

more complex use cases. We plan to collect and maintain

a standard set of traces that serve as input for automated

regression tests, as well as benchmarks, for testing new

network components. Thus, we expect OFRewind to

play a major role in helping ongoing OpenFlow deploy-

ment projects4 resolve production problems.

8 Acknowledgements

We wish to extend gratitude toward our shepherd, George

Candea, for his guidance and help in shaping our final

paper version, as well as to our anonymous reviewers for

their remarkably detailed and insightful feedback, and to

Deutsche Telekom Laboratories and the GLAB project

for funding our work.

9 References

[1] EU Project Ofelia. http://www.fp7-ofelia.eu/.

[2] IETF Working Group Forces. http://bit.ly/ieforces.

[3] NEC Programmable Networking Solutions.

http://www.necam.com/PFlow/.

[4] OFRewind Code. bit.ly/ofrewind.

[5] tcpdump. http://www.tcpdump.org/.

[6] tcpreplay. http://tcpreplay.synfin.net/.

[7] M. Aguilera et al. Performance debugging for distributed

systems of black boxes. In Proc. ACM SOSP, 2003.

[8] G. Altekar and I. Stoica. Odr: Output-deterministic replay for

multicore debugging. In Proc. ACM SOSP, 2009.

[9] G. Altekar and I. Stoica. Dcr: Replay debugging for the

datacenter. Technical Report UCB/EECS-2010-74, UC

Berkeley, 2010.

[10] G. Altekar and I. Stoica. Focus replay debugging effort on the

control plane. In Proc. USENIX HotDep, 2010.

[11] A. Anand and A. Akella. Netreplay: a new network primitive. In

Proc. HOTMETRICS, 2009.

[12] E. Anderson and M. Arlitt. Full Packet Capture and Offline

Analysis on 1 and 10 Gb/s Networks. Technical Report

HPL-2006-156, HP Labs, 2006.

[13] J. R. Ballard, I. Rae, and A. Akella. Extensible and scalable

network monitoring using opensafe. In Proc. INM/WREN, 2010.

[14] CBench - Controller Benchmarker.

www.openflowswitch.org/wk/index.php/Oflops.

[15] E. Cooke, A. Myrick, D. Rusek, and F. Jahanian.

Resource-aware Multi-format Network Security Data Storage. In

Proc. SIGCOMM LSAD Workshop, 2006.

4There are ongoing production deployments of OpenFlow-enabled

networks in Asia, Europe, as well as the US.

[16] D. Geels et al. Replay debugging for distributed applications. In

Proc. USENIX ATC, 2006.

[17] D. R. Hower et al. Two hardware-based approaches for

deterministic multiprocessor replay. Comm. ACM, 52(6), 2009.

[18] P. Desnoyers and P. J. Shenoy. Hyperion: High Volume Stream

Archival for Retrospective Querying. In Proc. USENIX ATC,

2007.

[19] F. Reiss et al. Enabling Real-Time Querying of Live and

Historical Stream Data. In Proc. Statistical & Scientific

Database Management, 2007.

[20] GENI: Global Environment for Network Innovations.

http://www.geni.net.

[21] J. M. Gonzalez, V. Paxson, and N. Weaver. Shunting: A

Hardware/Software Architecture for Flexible, High-performance

Network Intrusion Prevention. In Proc. 14th ACM CCS, 2007.

[22] D. Gupta, K. Vishwanath, and A. Vahdat. Diecast: Testing

distributed systems with an accurate scale model. In Proc.

USENIX NSDI, 2008.

[23] Gupta, D. et al. To infinity and beyond: Time warped network

emulation. In Proc. ACM SOSP, 2005.

[24] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating

system with time-traveling virtual machines. In Proc. USENIX

ATC, 2005.

[25] L. Lamport. Time, clocks, and the ordering of events in a

distributed system. Comm. ACM, 21(7), 1978.

[26] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson, and

F. Schneider. Enriching network security analysis with time

travel. In Proc. ACM SIGCOMM, 2008.

[27] K. P. McGrath and J. Nelson. Monitoring & Forensic Analysis

for Wireless Networks. In Proc. Conf. on Internet Surveillance

and Protection, 2006.

[28] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:

enabling innovation in campus networks. ACM CCR, 38(2),

2008.

[29] J. Micheel, S. Donnelly, and I. Graham. Precision timestamping

of network packets. In Proc. ACM IMW, 2001.

[30] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo: a

software-hardware interface for practical deterministic

multiprocessor replay. In Proc. ACM ASPLOS, 2009.

[31] NOX - An OpenFlow Controller. www.noxrepo.org.

[32] P. Bahl et al. Towards highly reliable enterprise network services

via inference of multi-level dependencies. In Proc. ACM

SIGCOMM, 2007.

[33] P. Phaal, S. Panchen, and N. McKee. Inmon corporation’s sflow:

A method for monitoring traffic in switched and routed

networks, 2001.

[34] Quagga Routing Suite. www.quagga.net.

[35] R. Fonseca et al. X-trace: A pervasive network tracing

framework. In Proc. USENIX NSDI, 2007.

[36] R. Sherwood et al. Carving Research Slices Out of Your

Production Networks with OpenFlow. In Proc. ACM SIGCOMM

Demo Session, 2009.

[37] S. Raza, G. Huang, C.-N. Chuah, S. Seetharaman, and J. Singh.

MeasuRouting: A Framework for Routing Assisted Traffic

Monitoring. In Proc. IEEE INFOCOM, 2010.

[38] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and

A. Vahdat. Wap5: black-box performance debugging for

wide-area systems. In Proc. WWW, 2006.

[39] A. Tootoonchian, M. Ghobadi, and Y. Ganjali. OpenTM: traffic

matrix estimator for OpenFlow networks. In Proc. PAM, 2010.

[40] A. Wundsam, A. Mehmood, A. Feldmann, and O. Maennel.

Network Troubleshooting with Mirror VNets. In Proc. IEEE

Globecom 2010 FutureNet-III workshop, December 2010.

[41] H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni, H. Zhang, and

Z. Cai. Tesseract: A 4D Network Control Plane. In Proc.

USENIX NSDI, 2007.

14

