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ABSTRACT
Mininet is a system for rapidly prototyping large networks
on the constrained resources of a single laptop. The
lightweight approach of using OS-level virtualization fea-
tures, including processes and network namespaces, allows
it to scale to hundreds of nodes. Experiences with our ini-
tial implementation suggest that the ability to run, poke, and
debug in real time represents a qualitative change in work-
flow. We share supporting case studies culled from over
100 users, at 18 institutions, who have developed Software-
Defined Networks (SDN). Ultimately, we think the great-
est value of Mininet will be supporting collaborative net-
work research, by enabling self-contained SDN prototypes
which anyone with a PC can download, run, evaluate, ex-
plore, tweak, and build upon.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]:
Computer-Communication Networks—Network com-
munications; B.4.4 [Performance Analysis and
Design Aids]: Simulation

General Terms
Design, Experimentation, Verification

Keywords
Rapid prototyping, software defined networking, Open-
Flow, emulation, virtualization
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1. INTRODUCTION
Inspiration hits late one night and you arrive at a

world-changing idea: a new network architecture, ad-
dress scheme, mobility protocol, or a feature to add to
a router. With a paper deadline approaching, you have
a laptop and three months. What prototyping environ-
ment should you use to evaluate your idea? With this
question in mind, we set out to create a prototyping
workflow with the following attributes:

Flexible: new topologies and new functionality
should be defined in software, using familiar lan-
guages and operating systems.

Deployable: deploying a functionally correct pro-
totype on hardware-based networks and testbeds
should require no changes to code or configuration.

Interactive: managing and running the network
should occur in real time, as if interacting with
a real network.

Scalable: the prototyping environment should scale
to networks with hundreds or thousands of
switches on only a laptop.

Realistic: prototype behavior should represent real
behavior with a high degree of confidence; for ex-
ample, applications and protocol stacks should be
usable without modification.

Share-able: self-contained prototypes should be eas-
ily shared with collaborators, who can then run
and modify our experiments.

The currently available prototyping environments
have their pros and cons. Special-purpose testbeds are
expensive and beyond the reach of most researchers.
Simulators, such as ns-2 [14] or Opnet [19], are appeal-
ing because they can run on a laptop, but they lack
realism: the code created in the simulator is not the
same code that would be deployed in the real network,
and they are not interactive. At first glance, a network
of virtual machines (VMs) is appealing. With a VM
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per switch/router, and a VM per host, realistic topolo-
gies can easily be stitched together using virtual inter-
faces [13, 17, 15]. Our experience is that VMs are too
heavyweight: the memory overhead for each VM limits
the scale to just a handful of switches and hosts. We
want something more scalable.

There are efforts underway to build programmable
testbeds (e.g. Emulab [9], VINI [1], GENI [6], FIRE
[5]) supporting realistic user traffic, at scale, and with
interactive behavior. Our approach is complementary
to these systems. We seek a local environment that
allows us to quickly implement a functionally correct,
well-understood prototype, then directly move it onto
shared global infrastructure.

Mininet – the new prototyping environment de-
scribed in this paper – supports this workflow by us-
ing lightweight virtualization. Users can implement a
new network feature or entirely new architecture, test
it on large topologies with application traffic, and then
deploy the exact same code and test scripts into a real
production network. Mininet runs surprisingly well on
a single laptop by leveraging Linux features (processes
and virtual Ethernet pairs in network namespaces) to
launch networks with gigabits of bandwidth and hun-
dreds of nodes (switches, hosts, and controllers). The
entire network can be packaged as a VM, so that others
can download, run, examine and modify it.

Mininet is far from perfect – performance fidelity and
multi-machine support could be improved – but these
are limitations of the implementation, not the approach.
Other tools also use lightweight virtualization [9, 23]
(see Section 7 for a comparison), but Mininet differs
in its support for rapidly prototyping Software-Defined
Networks, a use case we focus on throughout this paper.

2. SOFTWARE-DEFINED NETWORKS
In an SDN, the control plane (or “network OS”) is

separated from the forwarding plane. Typically, the
network OS (e.g NOX [8], ONIX [10], or Beacon [2])
observes and controls the entire network state from a
central vantage point, hosting features such as routing
protocols, access control, network virtualization, energy
management, and new prototype features. The network
OS controls the forwarding plane via a narrow, vendor-
agnostic interface, such as OpenFlow [18], which defines
the low-level forwarding behavior of each forwarding el-
ement (switch, router, access point, or base station).
For example, OpenFlow defines a rule for each flow; if
a packet matches a rule, the corresponding actions are
performed (e.g. drop, forward, modify, or enqueue).

The main consequence of SDN is that the function-
ality of the network is defined after it has been de-
ployed, under the control of the network owner and
operator. New features can be added in software, with-
out modifying the switches, allowing the behavior to
evolve at software speeds, rather than at standards-
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Figure 1: Mininet creates a virtual network by placing host pro-
cesses in network namespaces and connecting them with virtual
Ethernet (veth) pairs. In this example, they connect to a user-
space OpenFlow switch.

body speed. SDN enables new approaches to state man-
agement (anywhere on the spectrum from centralized to
distributed) and new uses of packet headers (fields with
layer-specific processing become a layer-less sea of bits).
Examples of software-defined networks include 4D [7],
Ethane [4], PortLand [12], and FlowVisor [22]).

These examples hint at the potential of SDN, but we
feel that a rapid prototyping workflow is a key to un-
locking the full potential of software-defined network-
ing. The variety of systems prototyped on Mininet sup-
ports this assertion, and we describe several such case
studies in Section 6.

3. MININET WORKFLOW
By combining lightweight virtualization with an ex-

tensible CLI and API, Mininet provides a rapid proto-
typing workflow to create, interact with, customize and
share a software-defined network, as well as a smooth
path to running on real hardware.

3.1 Creating a Network
The first step is to launch a network using the mn

command-line tool. For example, the command

mn --switch ovsk --controller nox --topo \
tree,depth=2,fanout=8 --test pingAll

starts a network of OpenFlow switches. In this exam-
ple, Open vSwitch [20] kernel switches are connected in
a tree topology of depth 2 and fanout 8 (i.e. 9 switches
and 64 hosts), under the control of NOX, followed by
the pingAll test to check connectivity between every
pair of nodes. To create this network, Mininet emulates
links, hosts, switches, and controllers. Mininet uses
the lightweight virtualization mechanisms built into the
Linux OS: processes running in network namespaces,
and virtual Ethernet pairs.
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Figure 2: The console.py application uses Mininet’s API to in-
teract with and monitor multiple hosts, switches and controllers.
The text shows iperf running on each of 16 hosts.

Links: A virtual Ethernet pair, or veth pair, acts like
a wire connecting two virtual interfaces; packets sent
through one interface are delivered to the other, and
each interface appears as a fully functional Ethernet
port to all system and application software. Veth pairs
may be attached to virtual switches such as the Linux
bridge or a software OpenFlow switch.

Hosts: Network namespaces [11] are containers for
network state. They provide processes (and groups of
processes) with exclusive ownership of interfaces, ports,
and routing tables (such as ARP and IP). For example,
two web servers in two network namespaces can coexist
on one system, both listening to private eth0 interfaces
on port 80.

A host in Mininet is simply a shell process (e.g.
bash) moved into its own network namespace with the
unshare(CLONE NEWNET) system call. Each host has its
own virtual Ethernet interface(s) (created and installed
with ip link add/set) and a pipe to a parent Mininet
process, mn, which sends commands and monitors out-
put.

Switches: Software OpenFlow switches provide the
same packet delivery semantics that would be provided
by a hardware switch. Both user-space and kernel-space
switches are available.

Controllers: Controllers can be anywhere on the
real or simulated network, as long as the machine on
which the switches are running has IP-level connectivity
to the controller. For Mininet running in a VM, the
controller could run inside the VM, natively on the host
machine, or in the cloud.

Figure 1 illustrates the components and connections
in a two-host network created with Mininet.

3.2 Interacting with a Network
After launching the network, we want to interact with

it: to run commands on hosts, verify switch operation,
and maybe induce failures or adjust link connectivity.
Mininet includes a network-aware command line inter-

Figure 3: MiniEdit is a simple graphical network editor that uses
Mininet to turn a graph into a live network when the Run button
is pressed; clicking a node opens up a terminal window for that
node.

face (CLI) to allow developers to control and manage
an entire network from a single console. Since the CLI
is aware of node names and network configuration, it
can automatically substitute host IP addresses for host
names. For example, the CLI command

mininet> h2 ping h3

tells host h2 to ping host h3’s IP address. This com-
mand is piped to the bash process emulating host 2,
causing an ICMP echo request to leave h2’s private eth0
network interface and enter the kernel through a veth
pair. The request is processed by a switch in the root
namespace, then exits back out a different veth pair to
the other host. If the packet needed to traverse multiple
switches, it would stay in the kernel without additional
copies; in the case of a user-space switch, the packet
would incur user-space transitions on each hop. In ad-
dition to acting as a terminal multiplexer for hosts, the
CLI provides a variety of built-in commands and can
also evaluate Python expressions.

3.3 Customizing a Network
Mininet exports a Python API to create custom ex-

periments, topologies, and node types: switch, con-
troller, host, or other. A few lines of Python are suf-
ficient to define a custom regression test that creates
a network, executes commands on multiple nodes, and
displays the results. An example script:

from mininet.net import Mininet
from mininet.topolib import TreeTopo
tree4 = TreeTopo(depth=2,fanout=2)
net = Mininet(topo=tree4)
net.start()
h1, h4 = net.hosts[0], net.hosts[3]
print h1.cmd(’ping -c1 %s’ % h4.IP())
net.stop()

creates a small network (4 hosts, 3 switches) and pings
one host from another, in about 4 seconds.

The current Mininet distribution includes several ex-
ample applications, including text-based scripts and
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S (Switches) User(Mbps) Kernel(Mbps)

1 445 2120
10 49.9 940
20 25.7 573
40 12.6 315
60 6.2 267
80 4.15 217
100 2.96 167

Table 1: Mininet end-to-end bandwidth, measured with iperf
through linear chains of user-space (OpenFlow reference) and ker-
nel (Open vSwitch) switches.

graphical applications, two of which are shown in fig-
ures 2 and 3. The hope is that the Mininet API will
prove useful for system-level testing and experimenta-
tion, test network management, instructional materials,
and applications that will surprise the authors.

3.4 Sharing a Network
Mininet is distributed as a VM with all dependen-

cies pre-installed, runnable on common virtual machine
monitors such as VMware, Xen and VirtualBox. The
virtual machine provides a convenient container for dis-
tribution; once a prototype has been developed, the VM
image may be distributed to others to run, examine
and modify. A complete, compressed Mininet VM is
about 800 MB. Mininet can also be installed natively
on Linux distributions that ship with CONFIG NET NS

enabled, such as Ubuntu 10.04, without replacing the
kernel.

3.5 Running on Hardware
To successfully port to hardware on the first try, every

Mininet-emulated component must act in the same way
as its corresponding physical one. The virtual topol-
ogy should match the physical one; virtual Ethernet
pairs must be replaced by link-level Ethernet connec-
tivity. Hosts emulated as processes should be replaced
by hosts with their own OS image. In addition, each em-
ulated OpenFlow switch should be replaced by a phys-
ical one configured to point to the controller. How-
ever, the controller does not need to change. When
Mininet is running, the controller “sees” a physical net-
work of switches, made possible by an interface with
well-defined state semantics. With proxy objects repre-
senting OpenFlow datapaths on physical switches and
SSH servers on physical hosts, the CLI enables interac-
tion with the network in the same way as before, with
unmodified test scripts.

4. SCALABILITY
Lightweight virtualization is the key to scaling to

hundreds of nodes while preserving interactive perfor-
mance. In this section, we measure overall topology
creation times, available bandwidth, and microbench-
marks for individual operations.

Table 2 shows the time required to create a variety

Topology H S Setup(s) Stop(s) Mem(MB)
Minimal 2 1 1.0 0.5 6
Linear(100) 100 100 70.7 70.0 112
VL2(4, 4) 80 10 31.7 14.9 73
FatTree(4) 16 20 17.2 22.3 66
FatTree(6) 54 45 54.3 56.3 102
Mesh(10, 10) 40 100 82.3 92.9 152
Tree(4ˆ4) 256 85 168.4 83.9 233
Tree(16ˆ2) 256 17 139.8 39.3 212
Tree(32ˆ2) 1024 33 817.8 163.6 492

Table 2: Mininet topology benchmarks: setup time, stop time and
memory usage for networks of H hosts and S Open vSwitch kernel
switches, tested in a Debian 5/Linux 2.6.33.1 VM on VMware
Fusion 3.0 on a MacBook Pro (2.4 GHz intel Core 2 Duo/6 GB).
Even in the largest configurations, hosts and switches start up in
less than one second each.

Operation Time (ms)

Create a node (host/switch/controller) 10
Run command on a host (’echo hello’) 0.3
Add link between two nodes 260
Delete link between two nodes 416
Start user space switch (OpenFlow reference) 29
Stop user space switch (OpenFlow reference) 290
Start kernel switch (Open vSwitch) 332
Stop kernel switch (Open vSwitch) 540

Table 3: Time for basic Mininet operations. Mininet’s startup
and shutdown performance is dominated by management of vir-
tual Ethernet interfaces in the Linux (2.6.33.1) kernel and ip
link utility and Open vSwitch startup/shutdown time.

of topologies with Mininet. Larger topologies which
cannot fit in memory with system virtualization can
start up on Mininet. In practice, waiting 10 seconds for
a full fat tree to start is quite reasonable (and faster
than the boot time for hardware switches).

Mininet scales to the large topologies shown (over
1000 hosts) because it virtualizes less and shares more.
The file system, user ID space, process ID space, kernel,
device drivers, shared libraries and other common code
are shared between processes and managed by the op-
erating system. The roughly 1 MB overhead for a host
is the memory cost of a shell process and small net-
work namespace state; this total is almost two orders
of magnitude less than the 70 MB required per host
for the memory image and translation state of a lean
VM. In fact, of the topologies shown in Table 2, only
the smallest one would fit in the memory of a typical
laptop if system virtualization were used. Mininet also
provides a usable amount of bandwidth, as shown in
Table 1: 2-3 Gbps through one switch, or more than 10
Gbps aggregate internal bandwidth through a chain of
100 switches.

Table 3 shows the time consumed by individual op-
erations when building a topology. Surprisingly, link
addition and deletion are expensive operations, taking
roughly 250 ms and 400 ms, respectively. As we gain
a better understanding of Mininet’s resource usage and
interaction with the Linux kernel, we hope to further
improve its performance and contribute optimizations
back to the kernel as well as Open vSwitch.
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5. LIMITATIONS
The most significant limitation of Mininet today is

a lack of performance fidelity, especially at high loads.
CPU resources are multiplexed in time by the default
Linux scheduler, which provides no guarantee that a
host that is ready to send a packet will be scheduled
promptly, or that all switches will forward at the same
rate. In addition, software forwarding may not match
hardware. O(n) linear lookup for software tables can-
not approach the O(1) lookup of a hardware-accelerated
TCAM in a vendor switch, causing the packet forward-
ing rate to drop for large wildcard table sizes.

To enforce bandwidth limits and quality of service on
a link, the linux traffic control program (tc) may be
used. Linux CPU containers and scheduler priorities
offer additional options for improving fairness. Mininet
currently runs on a single machine and emulates only
wired links; as with performance fidelity, these limita-
tions do not seem fundamental, and we expect to ad-
dress them later.

Mininet’s partial virtualization approach also limits
what it can do. It cannot handle different OS kernels
simultaneously. All hosts share the same filesystem,
although this can be changed by using chroot. Hosts
cannot be migrated live like VMs. We feel that these
losses are a reasonable tradeoff for the ability to try
ideas at greater scale.

6. CASE STUDIES
Mininet has been used by over 100 researchers in

more than 18 institutions, including Princeton, Berke-
ley, Purdue, ICSI, UMass, University of Alabama
Huntsville, NEC, NASA, Deutsche Telekom Labs, Stan-
ford, and a startup company, as well as seven univer-
sities in Brazil. The use cases roughly divide into pro-
totyping, optimization, demos, tutorials, and regression
suites. For each use, we describe a project, a challenge
it faced, and how Mininet helped.

Prototyping: Ripcord is a modular and extensible
platform for creating scale-out data center networks [3].
The main challenge was developing a common codebase
— without hardware — across multiple geographic loca-
tions. A second challenge was regression testing: every
change needed to be tested against many topologies.
Mininet enabled concurrent development, plus easy re-
gression testing for new topologies. Better still, the code
was directly portable to hardware: when a hardware
testbed became available a week before a deadline, the
code and test scripts transferred without modification,
allowing the paper to include hardware results.

Optimization: The OpenFlow controller NOX
builds a topology database by sending periodic LLDP
packet broadcasts out each switch port [8]. A pro-
duction network was brought down by an excessive
amount of these topology discovery messages, experi-

encing 100% switch CPU utilization. Reproducing the
bug proved hard in the production network because of
topology and traffic changes. With Mininet, we could
try many topologies to reproduce the error, experiment
with new topology discovery algorithms, and validate a
fix.

Tutorials: In OpenFlow hands-on tutorials, atten-
dees turn a simple hub controller into a flow-accelerated
Ethernet switch, giving them experience with Open-
Flow debugging tools and writing controller code. Ini-
tially, the tutorial used optimized QEMU VM instances
for switches and hosts, with VDE connecting them, dis-
tributed as a VM. It was too slow to be usable. After re-
implementing the tutorial on Mininet [16], it started up
minutes faster. An unexpected bonus was that atten-
dees could run the tutorial on small netbook computers
with little memory.

Demos: Several users have created live interactive
demonstrations of their research to show at overseas
conferences. While connecting to real hardware is pre-
ferred, high latency, flaky network access, or in-flux
demo hardware can derail a live demo. Maintaining
a version of the demo inside Mininet provides insurance
against such issues, in the form of a local, no-network-
needed backup.

Regression Suites: Mininet is being used to cre-
ate push-button regression suites to test prototype net-
work architectures. One example is SCAFFOLD [21],
a service-centric network architecture that binds com-
munication to logical object names (vs. addresses), pro-
vides anycast between object group instances, and com-
bines routing and resolution in the network layer. An-
other is a higher-level API and runtime environment for
OpenFlow-enabled networks that allows programmers
to describe network behavior in a declarative manner
on top of Python.

7. RELATED WORK
Mininet builds upon recent work which uses OS-

level virtualization for network emulation. For brevity,
we leave out related work on OpenFlow, hard-
ware testbeds, and simulators, and instead focus on
lightweight virtualization techniques.

IMUNES [23] added virtual Ethernet interfaces and a
feature similar to network namespaces into the BSD ker-
nel. The IMUNES work asked the right question: “How
much virtualization do you really need?” Lightweight
virtualization enables rapid prototyping, but in itself
does not provide a path to hardware deployment or a
means for distribution and sharing.

EMULAB [9] took another OS-level virtualization
technology, FreeBSD jails, and modified it to allow mul-
tiple virtual interfaces per process group, similar to net-
work namespaces. Jails provide coarser-grained control
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than Linux containers over which aspects of virtualiza-
tion to use.

Unlike Mininet, EMULAB’s virtual nodes attempt to
carefully reproduce the full environment of EMULAB
hardware nodes, allowing for identical system images
to be used both in both. EMULAB virtual nodes rep-
resent a different design point, emulating 10 or more
nodes on a single PC with close fidelity; Mininet gives
up fidelity to emulate 100 or more nodes on a laptop.
Although EMULAB doesn’t currently support Open-
Flow, the ProtoGENI evolution of EMULAB will in-
clude hardware OpenFlow switches.

8. DISCUSSION
As the case studies in Section 6 show, Mininet can

yield a more efficient use of time and resources com-
pared to other workflows. It provides a local environ-
ment for network innovation that complements shared
global infrastructure [6], with interactive prototyping,
scalability, a seamless path to hardware deployment and
straightforward sharing and collaboration. Combined
with software-defined networking, we think it yields an
easier and faster path to real systems, in three phases:

Prototyping: Anyone (student, researcher, network
administrator, etc.) with a laptop may use Mininet to
rapidly prototype an SDN idea. Quick startup time and
low overhead facilitates exploring a design space and
building a system of interesting scale that can be run in
emulation on modest hardware. Multiple researchers
can share scripts, configurations and topologies, and
work concurrently without interference.

Deployment: Once an idea works on Mininet, it
can be deployed on research or production networks for
validation, measurement, and general use. Mininet fa-
cilitates this transfer by leveraging software-defined net-
working (notably OpenFlow) and preserving switch, ap-
plication, and script semantics between emulation and
hardware. Hardware deployment can be on a locally
available cluster of PCs and switches, or a shared re-
search infrastructure such as GENI.

Sharing: A design that runs on Mininet can eas-
ily be shrink-wrapped in a VM image and redis-
tributed. Mininet leverages lightweight process virtu-
alization internally, but using system virtualization, an
entire Mininet-based system can be packaged and dis-
tributed. We ship a VM image that includes Mininet
pre-installed, along with all the pieces required to create
and run a new SDN design without additional configu-
ration or installation.

Wrapping a Mininet-based design in a VM creates a
“network appliance” that can be distributed over the
internet. Instead of relying solely on a conference pa-
per, a written specification, or even a recorded video,
one can download and run a living, breathing exam-
ple of a new networked system. We look forward to

creating, and working with others1 to create, a library
of Mininet-based software-defined networks that anyone
can download, examine, run, modify and build upon in
exciting and unexpected ways.
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