
OpenFlow-Based Server Load Balancing Gone Wild

Richard Wang, Dana Butnariu, and Jennifer Rexford
Princeton University; Princeton, NJ

Abstract

Today’s data centers host online services on multiple
servers, with a front-end load balancer directing each
client request to a particular replica. Dedicated load bal-
ancers are expensive and quickly become a single point
of failure and congestion. The OpenFlow standard en-
ables an alternative approach where the commodity net-
work switches divide traffic over the server replicas, based
on packet-handling rules installed by a separate controller.
However, the simple approach of installing a separate rule
for each client connection (or “microflow”) leads to a
huge number of rules in the switches and a heavy load
on the controller. We argue that the controller should ex-
ploit switch support for wildcard rules for a more scal-
able solution that directs large aggregates of client traf-
fic to server replicas. We present algorithms that com-
pute concise wildcard rules that achieve a target distribu-
tion of the traffic, and automatically adjust to changes in
load-balancing policies without disrupting existing con-
nections. We implement these algorithms on top of the
NOX OpenFlow controller, evaluate their effectiveness,
and propose several avenues for further research.

1 Introduction

Online services—such as search engines, Web sites, and
social networks—are often replicated on multiple servers
for greater capacity and better reliability. Within a single
data center or enterprise, a front-end load balancer [2, 4]
typically directs each client request to a particular replica.
A dedicated load balancer using consistent hashing is a
popular solution today, but it suffers from being an ex-
pensive additional piece of hardware and has limited cus-
tomizability. Our load-balancing solution avoids the cost
and complexity of separate load-balancer devices, and al-
lows flexibility of network topology while working with
unmodified server replicas. Our solution scales naturally
as the number of switches and replicas grows, while di-
recting client requests at line rate.

The emerging OpenFlow [8] platform enables switches
to forward traffic in the high-speed data plane based on
rules installed by a control plane program running on a
separate controller. For example, the Plug-n-Serve [6]
system (now called Aster*x [1]) uses OpenFlow to reac-

tively assign client requests to replicas based on the cur-
rent network and server load. Plug-n-Serve intercepts the
first packet of each client request and installs an individ-
ual forwarding rule that handles the remaining packets of
the connection. Despite offering great flexibility in adapt-
ing to current load conditions, this reactive solution has
scalability limitations, due to the overhead and delay in
involving the relatively slow controller in every client con-
nection, in addition to many rules installed at each switch.

Our scalable in-network load balancer proactively in-
stalls wildcard rules in the switches to direct requests for
large groups of clients without involving the controller.
Redistributing the load is a simple as installing new rules.
The use of wildcard rules raises two main problems: (i)
generating an efficient set of rules for a target distribution
of load and (ii) ensuring that packets in the same TCP
connection reach the same server across changes in the
rules. The load balancer is a centralized controller pro-
gram [9] so we can determine the globally optimal wild-
card rules. Our solutions achieve the speed of switch for-
warding, flexibility in redistributing load, and customiz-
able reactions to load changes of an in-network load bal-
ancing solution, with no modification to clients or servers.

In the next section, we present our load-balancing ar-
chitecture, including the “partitioning” algorithm for gen-
erating wildcard rules and our “transitioning” algorithm
for changing from one set of rules to another. We also
present a preliminary evaluation of our prototype, built us-
ing OpenVswitch, NOX [5], and MiniNet [7]. Then, Sec-
tion 3 discusses our ongoing work on extensions to sup-
port a non-uniform distribution of clients and a network
of multiple switches. These extensions build on our core
ideas to form a complete in-network load balancing solu-
tion with better flexibility in redistributing load, customiz-
ing reactions to load changes, and lower cost compared to
existing solutions. The paper concludes in Section 4.

2 Into the Wild: Core Ideas

The data center consists of multiple replica servers offer-
ing the same service, and a network of switches connect-
ing to clients, as shown in Figure 1. Each server replica
R j has a unique IP address and an integer weight α j that
determines the share of requests the replica should han-
dle; for example, R2 should receive 50% (i.e., 4/8) of



Figure 1: Basic model from load balancer switch’s view

the requests. Clients access the service through a single
public IP address, reachable via a gateway switch. The
load-balancer switch rewrites the destination IP address of
each incoming client packet to the address of the assigned
replica. In this section, we first describe the OpenFlow
features used in our solution. Next, we describe how our
partitioning algorithm generates wildcard rules that bal-
ance load over the replicas. Then, we explain how our
transitioning algorithm moves from one set of wildcard
rules to another, without disrupting ongoing connections.
Finally, we present an evaluation of our prototype system.

2.1 Relevant OpenFlow Features
OpenFlow defines an API for a controller program to in-
teract with the underlying switches. The controller can in-
stall rules that match on certain packet-header fields (e.g.,
MAC addresses, IP addresses, and TCP/UDP ports) and
perform actions (e.g., forward, drop, rewrite, or “send to
the controller”) on the matching packets. A microflow
rule matches on all fields, whereas a wildcard rule can
have “don’t care” bits in some fields. A switch can typi-
cally support many more microflow than wildcard rules,
because wildcard rules often rely on expensive TCAM
memory, while microflow rules can leverage more abun-
dant SRAM. Rules can be installed with a timeout that
triggers the switch to delete the rule after a fixed time in-
terval (a hard timeout) or a specified period of inactivity (a
soft timeout). In addition, the switch counts the number of
bytes and packets matching each rule, and the controller
can poll these counter values.

In our load-balancing solution, the switch performs an
“action” of (i) rewriting the server IP address and (ii) for-
warding the packet to the output port associated with the
chosen replica. We use wildcard rules to direct incoming
client requests based on the client IP addresses, relying
on microflow rules only during transitions from one set of
wildcard rules to another; soft timeouts allow these mi-
croflow rules to “self destruct” after a client connection
completes. We use the counters to measure load for each
wildcard rule to identify imbalances in the traffic load, and
drive changes to the rules to rebalance the traffic.

OpenFlow has a few limitations that constrain our so-
lution. OpenFlow does not currently support hash-based
routing [10] as a way to spread traffic over multiple paths.
Instead, we rely on wildcard rules that match on the client
IP addresses. Ideally, we would like to divide client traf-
fic based on the low-order bits of the client IP addresses,
since these bits have greater entropy than the high-order
bits. However, today’s OpenFlow switches only support
“don’t care” bits on the lower-order bits, limiting us to
IP prefix rules. In addition, OpenFlow does not sup-
port matching on TCP flags (e.g., SYN, FIN, and RST)
that would help us differentiate between new and ongo-
ing connections—important when our system transitions
from one set of wildcard rules to another. Instead, we pro-
pose alternative ways to ensure that successive packets of
the same connection reach the same server replica.

2.2 Partitioning the Client Traffic
The partitioning algorithm must divide client traffic in
proportion to the load-balancing weights, while relying
only on features available in the OpenFlow switches. To
ensure successive packets from the same TCP connection
are forwarded to the same replica, we install rules match-
ing on client IP addresses. We initially assume that traffic
volume is uniform across client IP addresses (an assump-
tion we relax later in Section 3.1), so our goal is to gen-
erate a small set of wildcard rules that divide the entire
client IP address space1. In addition, changes in the target
distribution of load require new wildcard rules, while still
attempting to minimize the number of changes.

2.2.1 Minimizing the Number of Wildcard Rules

A binary tree is a natural way to represent IP prefixes, as
shown in Figure 2(a). Each node corresponds to an IP
prefix, where nodes closer to the leaves represent longer
prefixes. If the sum of the {α j} is a power of two, the
algorithm can generate a tree where the number of leaf
nodes is the same as the sum (e.g., the eight leaf nodes in
Figure 2(a)). Each R j is associated with α j leaf nodes; for
example, replica R2 is associated with four leaves. How-
ever, the {α j} may not sum to a power of 2 in practice.
Instead, we determine the closest power of 2, and renor-
malize the weights accordingly. The resulting weights
closely approximate the target distribution, and enable a
simple and efficient partitioning of the IP address space.

Creating a wildcard rule for each leaf node would lead
to a large number of rules. To reduce the number of rules,
the algorithm can aggregate sibling nodes associated with
the same server replica; in Figure 2(a), a single wildcard
rule 10* could represent the two leaf nodes 100* and 101*

1The IP addresses above 224.0.0.0 are not used for unicast traffic. For
ease of explanation, the rest of this section assumes that all IP addresses
are used; in practice, our implementation renormalizes the {α j} values
and assigns only the lower 7/8 of IP address space to server replicas.

2



Figure 2: α1 = 3, α2 = 4, and α3 = 1. Assuming uniform distribution of traffic: (a) wildcard rules assigning leaf nodes
to a perfect binary tree achieving target distribution. (b) fewer wildcard rules.

associated with R2. Similarly, the rule 00* could repre-
sent the two leaf nodes 000* and 001* associated with R1,
reducing the number of wildcard rules from 8 to 6. How-
ever, the assignment of leaf nodes in Figure 2(a) does not
lead to the minimum number of rules. Instead, the alter-
nate assignment in Figure 2(b) achieves the minimum of
four rules (i.e., 0*, 10*, 110*, and 111*).

The binary representation of the weights indicates how
to best assign leaf nodes to replicas. The number of bits
set to 1 in the binary representation of α j is the minimum
number of wildcard rules for replica R j, where each 1-
bit i represents a merging of 2i leaves. R1 has α1 = 3
(i.e., 011 in binary), requiring one rule with two leaves and
another with one leaf. Our algorithm assigns leaf nodes
to replicas ordered by the highest bit set to 1 among all
α values, to prevent fragmentation of the address space.
In Figure 2(b), R2 is first assigned a set of four leaves,
represented by 0*. Once all leaf nodes are assigned, we
have a complete and minimal set of wildcard rules.

2.2.2 Minimizing Churn During Re-Partitioning

The weights {α j} may change over time to take replicas
down for maintenance, save energy, or to alleviate con-
gestion. Simply regenerating wildcard rules from scratch
could change the replica selection for a large number of
client IP addresses, increasing the overhead of transition-
ing to the new rules. Instead, the controller tries to min-
imize the fraction of the IP address space that changes
from one replica to another. If the number of leaf nodes
for a particular replica remains unchanged, the rule(s) for
that replica may not need to change. In Figure 2(b), if
replica R3 is taken down and its load shifted to R1 (i.e., α3
decreases to 0, and α1 increases from 3 to 4), the rule for
R2 does not need to change. In this case, only the IP ad-
dresses in 111* would need to transition to a new replica,
resulting in just two rules (0* for R2 and 1* for R1).

To minimize the number of rules, while making a “best
effort” to reuse the previously-installed rules, the algo-
rithm creates a new binary tree for the updated {α j} and
pre-allocates leaf nodes to the potentially re-usable wild-

card rules. Re-usable rules are rules where the ith highest
bit is set to 1 for both the new and old α j. Even if the to-
tal number of bits to represent the old α j and new α j are
different, the ith highest bit corresponds to wildcard rules
with the same number of wildcards. However, smaller
pre-allocated groups of leaf nodes could prevent finding
a set of aggregatable leaf nodes for a larger group; when
this happens, our algorithm allocates leaf nodes for the
larger group to minimize the total number of rules, rather
than reusing the existing rules.

2.3 Transitioning With Connection Affinity
The controller cannot abruptly change the rules installed
on the switch without disrupting ongoing TCP connec-
tions; instead, existing connections should complete at the
original replica. Fortunately, we can distinguish between
new and existing connections because the TCP SYN flag
is set in the first packet of a new connection. While Open-
Flow switches cannot match on TCP flags, the controller
can check the SYN bit in a packet, and install new rules
accordingly. Identifying the end of a connection is trick-
ier. Even a FIN or RST flag does not clearly indicate
the end of a connection, since retransmitted packets may
arrive after the FIN; in addition, clients that fail sponta-
neously never send a FIN or RST. Instead, we infer a con-
nection has ended after (say) 60 seconds of inactivity.

We have two algorithms for transitioning from one
replica to another. The first solution directs some packets
to the controller, in exchange for a faster transition; the
second solution allows the switch to handle all packets, at
the expense of a slower transition. To reduce the number
of extra rules in the switches, we can limit the fraction of
address space in transition at the same time. For example,
transitioning 111* from R3 to R1 could proceed in stages,
where first 1110* is transitioned, and then 1111*.

2.3.1 Transitioning Quickly With Microflow Rules

To move traffic from one replica to another, the controller
temporarily intervenes to install a dedicated microflow

3



Figure 3: Transitions for wildcard rule changes: Square
boxes represent packets sent by client on left. Traffic dur-
ing transitions are assigned microflow rules.

rule for each connection in the affected region of client IP
addresses. For example, suppose the client traffic match-
ing 0* should shift from replica R1 to R2 as in Figure 3.
The controller needs to see the next packet of each con-
nection in 0*, to decide whether to direct the rest of that
connection to the new replica R2 (for a SYN) or the old
replica R1 (for a non-SYN). As such, the controller in-
stalls a rule directing all 0* traffic to the controller for
further inspection; upon receiving a packet, the controller
installs a high-priority microflow rule for the remaining
packets of that connection2. In Figure 3, the controller re-
ceives a SYN packet from client 32.0.0.1 during the tran-
sition process, and directs that traffic to R2; however, the
controller receives a non-SYN packet for the ongoing con-
nection from client 1.0.0.1 and directs that traffic to R1.

Our algorithm installs a microflow rule with a 60-
second soft timeout to direct specific connections to their
appropriate replicas during these transitions. The con-
troller does not need to intervene in the transition pro-
cess for long. In fact, any ongoing connection should have
at least one packet before sixty seconds have elapsed, at
which time the controller can modify the 0* rule to direct
all future traffic to the new replica R2; in the example in
Figure 3, the new flow from client 64.0.0.1 is directed to
R2 by the new wildcard rule.

2.3.2 Transitioning With No Packets to Controller

The algorithm in the previous subsection transitions
quickly to the new replica, at the expense of sending some
packets to the controller. In our second approach, all
packets are handled directly by the switches. In Figure 3,
the controller could instead divide the address space for
0* into several smaller pieces, each represented by a high-
priority wildcard rule (e.g., 000*, 001*, 010*, and 011*)

2This transitioning technique is vulnerable to a rare corner case,
where a retransmitted SYN packet arrives after a connection is estab-
lished to R1. If this retransmitted SYN arrives just after the transition
begins, our algorithm would (wrongly) direct the rest of the flow to R2.
This scenario is extremely unlikely, and would only happen very early
in the lifetime of a connection. The client can simply retry the request.

directing traffic to the old replica R1. If one of these rules
has no traffic for some configurable timeout of sixty sec-
onds, no ongoing flows remain and that entire group of
client addresses can safely transition to replica R2. A soft
timeout ensures the high-priority wildcard rule is deleted
from the switch after 60 seconds of inactivity. In addition,
the controller installs a single lower-priority rule directing
0* to the new replica R2, that handles client requests that
have completed their transition.

While this solution avoids sending data packets to the
controller, the transition proceeds more slowly because
some new flows are directed to the old replica R1. For
example, a new connection matching 000* that starts dur-
ing the transition period will be directed to R1, and would
extend the time the 000* rule must remain in the switch.
By installing a larger number of temporary rules, the con-
troller can make the transition proceed more quickly. As
the switch deletes some rules, the controller can install
additional rules that further subdivide the remaining ad-
dress space. For example, if the switch deletes the 000*
after the soft timeout expires, the controller can replace
the 001* rule with two finer-grain rules 0010* and 0011*.

2.4 Implementation and Evaluation
We have built a prototype using OpenVswitch (a soft-
ware OpenFlow switch) and NOX (an OpenFlow con-
troller platform), running in Mininet. Our prototype runs
the partitioning algorithm from Section 2.2 and our tran-
sitioning algorithm from Section 2.3.1. We use Mininet
to build the topology in Figure 1 with a set of 3 replica
servers, 2 switches, and a number of clients. The replica
servers run Mongoose [3] web servers. Our NOX appli-
cation installs rules in the two switches, using one as a
gateway to (de)multiplex the client traffic and the other to
split traffic over the replicas. Our performance evaluation
illustrates how our system adapts to changes in the load-
balancing policy, as well as the overhead for transitions.

Adapting to new load-balancing weights: Our three
replica servers host the same 16MB file, chosen for more
substantial throughput measurements. For this experi-
ment, we have 36 clients with randomly-chosen IP ad-
dresses in the range of valid unicast addresses. Each client
issues wget requests for the file; after downloading the
file, a client randomly waits between 0 and 10 seconds be-
fore issuing a new request. We assign α1 = 3, α2 = 4, and
α3 = 1, as in Figure 2. At time 75 seconds, we change α2
from 4 to 0, as if R2 were going down for maintenance.
Figure 4 plots the throughput of the three servers over
time. As the clients start sending traffic, the throughput
ramps up, with R2 serving the most traffic. The division
of load is relatively close to the 3:4:1 target split, though
the relatively small number of clients and natural varia-
tions in the workload lead to some understandable devia-
tions. The workload variations also lead to fluctuations in
replica throughput over time. After 75 seconds (indicated

4



Figure 4: Throughput of experiment demonstrating abil-
ity to adapt to changes in division of load. Vertical lines
indicate start and end of transitions.

by the first vertical bar), the load on server R2 starts to de-
crease, since all new connections go to replicas R1 and R3.
Sixty seconds later (indicated by the second vertical bar),
the controller installs the new wildcard rules. R2’s load
eventually drops to 0 as the last few ongoing connections
complete. Initially, there were 6 wildcard rules installed.
4 of these were aggregated into a single wildcard rule af-
ter reassigning load with only 3 requiring a transition, 2
of which were rules to R2 which is unavoidable. The re-
sulting experiment concluded with only 3 wildcard rules.

Overhead of transitions: To evaluate the overhead
and delay on the controller during transitions, we have
ten clients simultaneously download a 512MB file from
two server replicas. We start with all traffic directed to
R1, and then (in the middle of the ten downloads) start
a transition to replica R2. The controller must install a
microflow rule for each connection, to ensure they com-
plete at the old replica R1. In our experiments, we did
not see any noticeable degradation in throughput during
the transition period; any throughput variations were in-
distinguishable from background jitter. Across multiple
experimental trials, the controller handled a total of 18 to
24 packets and installed 10 microflow rules. Because of
the large file size and the small round-trip time, connec-
tions often had multiple packets in flight, sometimes al-
lowing multiple packets to reach the controller before the
microflow rule was installed. We expect fewer extra pack-
ets would reach the controller in realistic settings with a
smaller per-connection throughput.

3 Wild Ideas: Ongoing Work

Our current prototype assumes a network with just two
switches and uniform traffic across client IP addresses.
In our ongoing work, we are extending our algorithms
to handle non-uniform traffic and an arbitrary network

topology. Our existing partitioning and transitioning algo-
rithms are essential building blocks in our ongoing work.

3.1 Non-Uniform Client Traffic
Our partitioning algorithm for generating the wildcard
rules assumed uniform client traffic across source IP ad-
dresses. Under non-uniform traffic, the wildcard rules
may deviate from target division of traffic. Consider Fig-
ure 5, where the target distribution of load is 50%, 25%,
and 25% for R1, R2, and R3, respectively. Our partition-
ing algorithm would correctly generate the set of wildcard
rules on the left of Figure 5. Unfortunately, if traffic is
non-uniform as expressed below the leaf nodes, then the
actual division of load would be an overwhelming 75%
for R1, and an underwhelming 12.5% for R2 and R3 each.

Figure 5: α1 = 2, α2 = 1, and α3 = 1. At the bottom
are the non-uniform traffic measurements. Left: wildcard
rules assuming uniform distribution of traffic. Right: wild-
card rules adjusted for non-uniform traffic.

The set of wildcard rules that account for non-uniform
traffic is on the right in Figure 5. To go from the rules
on the left to the ones on the right, the algorithm must
measure the traffic matching each rule using OpenFlow
counters. Next, the algorithm should be able to identify
severely overloaded and underloaded replicas and then
identify the set of rules to shift. This may involve split-
ting a wildcard rule into several smaller ones to collect
finer-grain measurements (e.g., replacing 0* with 00* and
01* to have separate counters for the two sets of clients).
These finer-grain measurements make it easier to incre-
mentally shift smaller groups of clients to avoid a large
shift that results in an even less accurate division of load.
The algorithm can repeat this process recursively to more
closely approximate the desired distribution of traffic. Af-
ter identifying which wildcard rules to shift, the transi-
tioning algorithm can handle the necessary rule changes.

The result of these operations may not achieve the min-
imal set of wildcard rules. Ideally, the algorithm needs to
strike a balance between minimizing the number of wild-
card rules and dividing load accurately. Our initial parti-
tioning algorithm emphasizes generating a minimal num-
ber of wildcard rules, at the expense of some inaccuracy
in the load distribution. In our ongoing work, we are ex-
ploring algorithms that make incremental adjustments to
the wildcard rules based on measurements, with the goal

5



of achieving a more accurate distribution of load with a
relatively small number of rules.

3.2 Network of Multiple Switches
In addition to non-uniform traffic, our algorithms must
handle larger networks topologies. The simplest approach
is to treat server load balancing and network routing sepa-
rately. After the controller partitions client IP addresses
based on the load-balancing weights and computes the
shortest path to each replica, the controller installs rules
that direct traffic along the shortest path to the chosen
replica. The ingress switches that receive client traffic ap-
ply wildcard rules that modify the destination IP address
and forward the traffic to the next hop along the short-
est path; the subsequent switches merely forward packets
based on the modified destination IP address.

In the example in Figure 6, packets entering the net-
work at switch 1 with source IP addresses in 1* would
be forwarded out the link to switch 3 with a modified
destination address of R1. Similarly, switch 1 would for-
ward packets with sources in 00* and 01* out the link to
switch 2, with the destination IP addresses changed to R2
and R3, respectively. Switch 2 then forwards the pack-
ets to the appropriate server, using a rule that matches
on the destination IP address. If switch 2 also served as
an ingress switch, then the switch would also need wild-
card rules that match on the source IP address and modify
the destination address. In practice, a network has a rela-
tively small number of ingress switches that receive client
requests, limiting the number of switches that match on
client IP addresses and rewrite the destination address.

Figure 6: Network of multiple switches: R1, R2, and R3
receive 50%, 25%, and 25% of load, respectively using
wildcard rules 1*, 00*, and 01*. Arrows show shortest-
path tree for each replica.

The controller can use the existing transitioning algo-
rithms for the ingress switches to change from one set of
wildcard rules to another. For example, consider the tran-
sitioning algorithm in Section 2.3.1 that directs the next
packet of each connection to the controller where it is de-
termined if the connection is old or new. The correspond-
ing microflow rule will rewrite the packet’s destination ad-
dress to direct the packet to the correct replica. Only the

ingress switches need to install microflow rules, since all
other switches merely forward packets based on the desti-
nation IP address. Installing each microflow rule at every
ingress switch ensures that the connection’s traffic would
be assigned the correct replica, even if the traffic enters
the network at a new location. We are currently exploring
a complete solution for ensuring that all connections are
directed to the correct server replica, across changes in the
ingress point during the transitions of wildcard rules.

4 Conclusion
Online services depend on load balancing to fully utilize
the replicated servers. Our load-balancing architecture
proactively maps blocks of source IP addresses to replica
servers so client requests are directly forwarded through
the load balancer with minimal intervention by the con-
troller. Our “partitioning” algorithm determines a mini-
mal set of wildcard rules to install, while our “transition-
ing” algorithm changes these rules to adapt the new load-
balancing weights. Our evaluation shows that our system
can indeed adapt to changes in target traffic distribution
and that the few packets directed to the controller have
minimal impact on throughput.

References
[1] Aster*x GEC9 demo. http://www.openflowswitch.

org/foswiki/bin/view/OpenFlow/AsterixGEC9.

[2] Foundry ServerIron load balancer. http://www.
foundrynet.com/products/webswitches/
serveriron/.

[3] Mongoose - easy to use web server. http://code.google.
com/p/mongoose/.

[4] Microsoft network load balancing. ttp://technet.
microsoft.com/en-us/library/bb742455.aspx.

[5] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker. NOX: Towards an operating system for networks.
ACM SIGCOMM Computer Communications Review, 38(3), 2008.

[6] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and
R. Johari. Plug-n-Serve: Load-balancing web traffic using Open-
Flow, Aug. 2009. Demo at ACM SIGCOMM.

[7] B. Lantz, B. Heller, and N. McKeown. A network in a laptop:
Rapid prototyping for software-defined networks. In ACM SIG-
COMM HotNets Workshop, 2010.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling
innovation in campus networks. ACM SIGCOMM Computer Com-
munications Review, 38(2):69–74, 2008.

[9] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis,
and S. Banerjee. Devoflow: Cost-effective flow management for
high performance enterprise networks. In ACM SIGCOMM Hot-
Nets Workshop, Monterey, CA.

[10] M. Schlansker, Y. Turner, J. Tourrilhes, and A. Karp. Ensemble
routing for datacenter networks. In ACM ANCS, La Jolla, CA,
2010.

6

http://www.openflowswitch.org/foswiki/bin/view/OpenFlow/AsterixGEC9
http://www.openflowswitch.org/foswiki/bin/view/OpenFlow/AsterixGEC9
http://www.foundrynet.com/products/webswitches/serveriron/
http://www.foundrynet.com/products/webswitches/serveriron/
http://www.foundrynet.com/products/webswitches/serveriron/
http://code.google.com/p/mongoose/
http://code.google.com/p/mongoose/
ttp://technet.microsoft.com/en-us/library/bb742455.aspx
ttp://technet.microsoft.com/en-us/library/bb742455.aspx

	Introduction
	Into the Wild: Core Ideas
	Relevant OpenFlow Features
	Partitioning the Client Traffic
	Minimizing the Number of Wildcard Rules
	Minimizing Churn During Re-Partitioning

	Transitioning With Connection Affinity
	Transitioning Quickly With Microflow Rules
	Transitioning With No Packets to Controller

	Implementation and Evaluation

	Wild Ideas: Ongoing Work
	Non-Uniform Client Traffic
	Network of Multiple Switches

	Conclusion

