
Hey, You Darned Counters! Get Off My ASIC!

Jeffrey C. Mogul
HP Labs

Palo Alto, CA
Jeff.Mogul@hp.com

Paul Congdon
HP Labs/UC Davis

Palo Alto, CA
Paul.Congdon@hp.com

ABSTRACT
Software-Defined Networking (SDN) gains much of its value
through the use of central controllers with global views of dynamic
network state. To support a global view, SDN protocols, such as
OpenFlow, expose several counters for each flow-table rule. These
counters must be maintained by the data plane, which is typically
implemented in hardware as an ASIC. ASIC-based counters are in-
flexible, and cannot easily be modified to compute novel metrics.

These counters do not need to be on the ASIC. If the ASIC data
plane has a fast connection to a general-purpose CPU with cost-
effective memory, we can replace traditional counters with a stream
of rule-match records, transmit this stream to the CPU, and then
process the stream in the CPU. These software-defined counters
allow far more flexible processing of counter-related information,
and can reduce the ASIC area and complexity needed to support
counters.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet-switching net-
works

Keywords
Software-defined counters, OpenFlow

1. INTRODUCTION & MOTIVATION
Software Defined Networking (SDN) not only provides a plat-

form for rapid innovation; it also changes the way that we man-
age networks. Instead of managing a network piece-by-piece, we
can manage an SDN network from the vantage of a central con-
troller, applying global policies and assuring network-wide validity
of these policies.

Beyond that, an SDN controller can have a dynamic view of the
current state of the network. Before SDN, network management
was a slow process, focussed mostly on passively measuring net-
work behavior, occasionally updating configurations, and respond-
ing rapidly only to bugs and mis-use. SDN allows us to view net-
work management as a dynamic process, which can respond ac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

tively to events on the timescales of individual flows. For exam-
ple, Hedera [1] identifies and re-routes long-lived “elephant” flows,
which are too rare to be load-balanced by ECMP.

For an SDN controller to obtain its dynamic view of network
state, switches must maintain per-flow counters (flows can be TCP
connections, or coarser-grained aggregates). Switches make these
counters visible to the controller. For example, OpenFlow1 pro-
vides three counters per flow-table entry (Received Packets, Re-
ceived Bytes, and Duration) and provides several mechanisms, both
push-based and pull-based, to report counters to the controller.

Our work applies to hardware-based SDN data planes, which
typically are implemented as ASICs – either using “merchant sil-
icon,” from vendors such as Broadcom, Fulcrum, etc., or using a
custom ASIC.

In this paper, we argue that SDN counters should not need be
stored on the ASIC itself. If the ASIC data plane has a fast
connection to a general-purpose CPU with cost-effective memory
(DRAM), we can replace traditional counters with a small buffer to
hold a set of records recording information about recent flow-entry
matches. The ASIC can stream these buffered records to the CPU,
which processes the stream.

These software-defined counters, or SDCs, offer several advan-
tages:

• Increased flexibility: We can evolve the SDN protocols to
support a richer, and possibly more efficient, set of counters,
without waiting many years for ASIC designers to implement
new counter functions.

• More efficient access to counters: By keeping the counters
in the switch CPU+DRAM, rather than on the ASIC, SDCs
can reduce the overhead required to transfer counter values
to the SDN controller.

• Reduction in ASIC space and complexity: Traditional
counters consume space on the ASIC. While this is a rel-
atively small fraction of the silicon area, removing counter
functions from the ASIC can also reduce the amount of logic
required to support counter-related functions, which in turn
can reduce the time-to-market for the ASIC.

We elaborate briefly on the motivation for these advantages, in Sec-
tions 1.1, 1.2, and 1.3. Then we describe our proposed design for
SDCs (§2), and we provide some quantified analysis of the ap-
proach (§4).

1.1 Increased flexibility
Software-defined counters (SDCs) allow far more flexible pro-

cessing of counter-related information. If counters are imple-
mented in the ASIC hardware, it may be very difficult to change

1For concreteness, in this paper we focus on OpenFlow.

25



their function as the SDN protocol evolves. Implementing the
counters in software, however, would make it much easier to in-
novate, without re-designing the ASIC or deploying new switch
hardware.

As an example of such counter-related innovation, consider our
previous work on DevoFlow [6], which aimed to reduce bandwidth
required for communicating statistics between switches and the
controller. We proposed modifying OpenFlow to associate trig-
gers with counters, so that only flows which became “significant”
would be reported to the controller. DevoFlow triggers could use
thresholds on the number of packets for a flow, or the number of
bytes, which we asserted (perhaps wishfully) “should be easy to
implement within the data-plane.” (§2.5 gives other examples.)

We also suggested that triggers could be based on per-flow
packet rates or byte rates, but conceded that this feature would
require additional state and calculation, and “might be harder to
implement.” Overall, DevoFlow increases the pressure on ASIC
complexity and area, and the potential flexibility offered by exotic
trigger conditions would be hard to justify if implemented in hard-
ware.

1.2 Counter access overheads
Our work on DevoFlow showed that, at least in some existing

ASICs, the bandwidth available for moving counter values from
an ASIC to an OpenFlow controller can significantly limit overall
SDN performance. We assume that future ASICs, designed for
use in SDN switches, will provide more bandwidth for this path.
Nevertheless, we expect this bandwidth will remain limited, and
SDN designs that rely on frequent or low-latency counter access
could be hobbled by this limit.

Storing the counters in the CPU+DRAM world, rather than on
the ASIC, makes it much easier for the switch CPU to return
counter values – either individual counters, or large tables – to the
SDN controller. This should reduce the overheads for the controller
to access the counters, and might enable certain SDN functions that
are otherwise infeasible.

1.3 ASIC space and complexity
The cost of switch ASICs depends in large part on their area,

and there is probably a practical upper limit for the area of a cost-
effective ASIC. (Farrington et al., several years ago, reported ex-
ample areas of 35x35mm and 40x40mm [7].)

Since ASIC area is precious, this places limits on the sizes of on-
chip memory structures, such as TCAMs to support wildcard flow-
table entries, hash tables for exact-match lookups, and per-entry
counters. Generally, one would like to support as many TCAM
(and/or hash-table) entries as possible, since capacity misses in
these tables could cause significant performance overheads. But
any silicon area devoted to counters is area not available for lookup
tables.

Also, designing and testing an ASIC costs a lot of time and
money. For economic reasons, current ASICs probably must sup-
port traditional (non-SDN) networking as their primary target;
ASIC support for SDN functions should therefore be kept as sim-
ple as possible.2 Adding SDN support to create a hybrid (tradi-
tional+SDN) ASIC means finding space for the structures not typ-
ically found on an ASIC; the per-flow byte counters as used by
OpenFlow could be the largest such structure. Adding support
for extensions such as DevoFlow would require finding even more
space on the ASIC.

2Several ASIC vendors have announced OpenFlow support, but we
do not know if this involves OpenFlow-specific features on their
ASICs.

2. SOFTWARE-DEFINED COUNTERS
In this section, we present our proposed design for software-

defined counters (SDCs). We defer discussion of quantitative issues
to §4.

2.1 The trouble with on-ASIC counters
OpenFlow (Version 1.1.0) specifies three counters for each flow-

table entry: the number of matches, the number of packet bytes in
these matches, and the flow duration. Each is specified as 64 bits,
so this seems to add 192 bits (24 bytes) of extra storage per table
entry.

Possibly, the storage overhead can be reduced, since 64 bits is
overkill for any system where the counters are read fairly often.
Also, it is not clear if the duration value for standard OpenFlow
needs to be stored on-ASIC.

Even so, OpenFlow counters and the logic to support them adds
significant ASIC complexity and area. Extending the basic Open-
Flow counters, with features such as DevoFlow (and other exam-
ples, as in §2.5), adds more bits per table entry, and adds ASIC
logic for comparing counters against trigger thresholds. DevoFlow
may also require new mechanisms to deliver trigger events to the
switch-local CPU.

If counters create problems for ASIC designers, why are they
on the ASIC? Although switches generally have a CPU, to man-
age the ASICs and to engage in routing protocols, etc., in the past,
these CPUs have been rather wimpy, and the bandwidth between
the ASICs and the CPU has also been limited. (We documented
some specific limits in the DevoFlow paper [6].) Prior to SDNs,
counters were used primarily for functions with relatively long time
scales, which did not stress these CPU and bandwidth limits.

But what if switch CPUs were more powerful, and had high-
bandwidth connections to the ASIC? Then we can exploit these two
improvements to move counters off of the ASIC, using software-
defined counters.

Is it plausible that switch CPUs will become more power-
ful? We think so; first, because the need to support SDNs al-
ready places more burden on these CPUs, and second, because
embedded-processor performance has been improving even while
desktop/server CPU speeds have levelled off.

We also believe it is possible to engineer significantly more band-
width between the ASIC data plane and the switch CPU. One op-
tion is to use a modern bus, such as PCI Express (PCIe), especially
if we are willing to gain bandwidth at the expense of latency. Or,
one could dedicate a 10GbE port for the ASIC-to-CPU connection.
Another option is to place a CPU core on the ASIC itself.

2.2 Event records
In our SDC design, the switch ASIC has no counters. Instead,

on each packet arrival, the ASIC generates an event record, and
adds this record to a sequential on-ASIC buffer, of modest size.
The buffer is split into several blocks; when a block is full, the
ASIC streams the block to the switch-local CPU. The CPU, upon
receiving a buffer block, unpacks the event records and updates
its representation of the counters, stored in DRAM attached to the
CPU.

Each event record represents one packet, and has these two
fields:

• ruleNumber: the index of the flow-table rule that the packet
matched, or a special value if no rules matched.

• byteCount: for this packet.
• timestamp: for this packet.

26



DRAMCPU

ASIC

Packets
in

Packets
outPacket−processing logic

CountersTCAM
Flow−table entry

...
.

...
.

(a) Traditional SDN switch
ASIC

Packets
in

Packets
outPacket−processing logic

TCAM
Flow−table entry

...
.

DRAMCPU

Buffer
for match
records

Room for
more

TCAM

(b) SDC switch with off-ASIC CPU

TCAM
Flow−table entry

...
.

DRAM

CPU

for match
Buffer

records
Packets

in
Packets

outPacket−processing logic

ASIC

(c) SDC switch with on-ASIC CPU

Figure 1: Sketches of switch design alternatives

There is no need for a packetCount field, since each event record
implies an increment of one packet. The timestamp field might be
omitted, to save buffer bandwidth and to avoid the need for an on-
ASIC timebase, if the CPU’s own timebase is considered sufficient.

The size of an event record depends on some assumptions about
other switch parameters, but one could get by with 32 bits, assum-
ing no timestamp:

• ruleNumber: 19 bits supports over 500K flow-table entries.
• byteCount: 14 bits supports 9000-byte “jumbo” packets.

We could reduce this to 13 bits by rounding up odd packet
lengths (e.g., a 63-byte packet would be reported as carrying
64 bytes).

Of course, switches that support larger flow tables or larger packets
would need more than 32 bits.

If the timestamp is included, that lengthens the event record.
OpenFlow specifies 1-nanosecond precision for the flow-duration
counter, but we can represent the timestamps as deltas. With just
10 bits per record, this allows deltas of up to 65 µsec; the ASIC can
insert a special record if the gap between packets is larger than that,
or a dummy record indicating a match against a special reserved ru-
leNumber.

Note that the format of an event record is not exposed outside the
implementation of the switch. It does not have to be standardized,
and conceivably it could be a “soft” format, reconfigurable when
a switch is booted (although we know of no current ASICs that
expose this kind of reconfiguration.)

In §3, we discuss techniques to compress event records, to reduce
the required ASIC-to-CPU bandwidth.

2.3 System-level design
We assume a switch that includes one or more ASICs and one or

more local CPUs.
Figure 1(a) shows a sketch of a traditional SDN switch; this

sketch omits a lot of detail, including the possibility of multiple
CPU cores. The ASIC includes packet-processing logic, a TCAM
for matching against flow-table rules, and storage for counters.
(The ASIC might have additional flow-table memory – for exam-
ple, a hash table for exact-match rules – which we omit for simplic-
ity.) A CPU is attached both to the ASIC and to some DRAM.

Figure 1(b) shows an SDC switch. The counters have been re-
moved from the ASIC. Some of that area has been replaced by a
buffer for event records. The remaining area could be used for ad-
ditional TCAM rows (for example).

We assume that future SDN switches will use a higher-
bandwidth connection between ASIC and CPU than used in older
switches. For example, this could be a PCI-Express (PCIe) channel,
or perhaps a 10GbE connection (§4.2 discusses how much band-
width is available).

Figure 1(c) shows an SDC switch where the CPU has been
moved onto the ASIC. This consumes more ASIC space, but this
design simplifies the problem of providing high bandwidth between
the data plane and the CPU; it also ensures that each additional
ASIC, within a single switch, comes with a proportionate amount
of CPU power.

2.4 Design details
OpenFlow version 1.1 introduces the option of replacing a single

lookup table with multiple, cascaded tables. This allows factoring
of concerns; for example, one could use one table for access-control
and another for routing. Multi-table lookups means that an event
record would have to carry several ruleNumbers. Fortunately, one
rationale for the multi-table model is to avoid the need for a very
large single table, so support for multiple ruleNumbers might not
seriously increase the event-record size.

The draft OpenFlow 1.3 specification adds two per-rule flags,
to disable the use of packet and byte counters for that rule, since
the controller might not care about those values. This would be
useful for SDC, since it avoid the need to consume ASIC-to-CPU
bandwidth and CPU cycles for events that match the flagged rules.

Also, if there are multiple CPU cores available for processing
counters, the ASIC can spread the event-stream bandwidth among
them. Generally, events for a given ruleNumber should always be
sent to the same CPU; a simple hashing scheme obeys this invari-
ant, and might provide reasonable load balance.

2.5 Software opportunities
Our main goal for SDC is to give switch-local software flexibility

in how it handles the counters. Therefore, we do not try to cover all
the possible opportunities for software-based counter processing,
but we discuss a few cases.

In the simplest case, the switch CPU would maintain OpenFlow-
style counter tables (for packet counts, byte counts, and flow dura-
tions) in DRAM. As it receives each buffer of event records, the
event-processing software unpacks each record, and updates the
corresponding counters.

To implement DevoFlow-style extensions, the software would
keep trigger values in other DRAM tables. On arrival of an event

27



record, the software would first update the corresponding counters,
then compare them against the trigger thresholds, and would gener-
ate notifications to the central controller as necessary. The software
would also record that a notification has been sent, so as not to re-
peatedly flood the controller with redundant reports. For rate-based
triggers, the software would maintain additional tables (perhaps im-
plemented using sparse data structures) to support rate computa-
tions. This allows support for DevoFlow without any impact on the
ASIC.

Other possible software features include:

• Immediately discard “uninteresting” records, based on filter
conditions specified by a possible extension to OpenFlow.
(This might help to support the Limit clause in the Frenetic
language [8].)

• Support multi-flow triggers, such as a trigger that generates a
report when any subset of a set of flows reaches a threshold
(e.g., “some subset of connections to my Web server together
account for 1Gbit/s of download traffic”), or one that looks
at the relative rates for a set of flows (e.g., to detect unfair
bandwidth usage).
Multi-flow triggers would be nearly impossible to do on an
ASIC. However, this feature would require a more sophisti-
cated load-balancing scheme with a multi-core CPU; for ex-
ample, adding a few bits per rule to indicate the target CPU.

• Support flow-rate triggers, generating a report when the ar-
rival rate of new flows in a certain category exceeds a thresh-
old. For example, a virus detector or throttle, such as de-
scribed by Twycross and Williamson [12], can look for ab-
normal connection-establishment rates. OpenFlow could im-
plement this feature by reporting all new TCP connection at-
tempts to the controller, but that is not a robust way to handle
anomalously high connection rates.

• Emulate NetFlow [5] or RMON [13]. While OpenFlow pro-
vides a rich set of counter mechanisms (not just per-flow),
SDN switches are likely to be used in hybrid environments
that are managed by traditional tools. Using SDCs, much of
the implementation for these functions could be moved out
of the ASIC.

The goal of SDCs is not necessarily to support arbitrarily complex
counter processing in the switch; this could be seen as violating
the spirit of software-defined networking, which aims to move in-
telligence out of the switches and into the controller. Rather, we
view SDCs as supporting evolution of the counter support in SDN
protocols.

2.6 Adding more event-record fields
The event-record format described in §2.2 is quite simple: it car-

ries a rule number and a packet byte-count. We believe that this
data, when coupled with ASIC- or CPU-generated timestamps, is
sufficient for the switch CPU to support a wide range of software-
defined counter functions.

Of course, packets have features other than their lengths and ar-
rival times. However, we observe that many of these features are
implied by the OpenFlow rule that a packet has matched. For ex-
ample, an exact-match rule fully specifies the values of the packet
fields covered by OpenFlow’s flow key.

In cases where the OpenFlow application is forced to use wild-
card rules (e.g., if using exact-match rules would cause excessive
ASIC-table misses), it might be worth adding, to the event-record
format, a hash of certain packet-header fields. This would allow,
for example, hash-based sampling.3 Or the switch CPU could then
3Suggested by an anonymous reviewer.

keep separate counters for distinct hash values, providing more de-
tailed, albeit “anonymized,” breakdowns of flow statistics.

2.7 Support for multi-ASIC switches
Switches with large numbers of ports may require multiple

ASICs. Implementing OpenFlow in a multi-ASIC switch can intro-
duce complexity not found in a single-ASIC version, since Open-
Flow conceptually treats the entire switch as a single entity. In a
multi-ASIC switch, some flow table entries will be replicated on
several ASICS: for example, a rule that matches all TCP packets to
port 80.

With ASIC-resident counters, it is hard to implement counter
functions, such as DevoFlow’s threshold-based triggers, for a rule
that spans multiple ASICs. For example, if we want to know when
the rate of connection attempts to port 80 exceeds 100 connec-
tions/sec., on a two-ASIC switch, some CPU would have to check
the counters on each ASIC every second. However, with SDCs, a
single CPU could maintain a unified counter for this trigger, based
on event-record streams from both ASICs.

This mechanism has some implications for the system hardware
configuration – for example, requiring more complex connections
between CPUs and ASICs.

3. COMPRESSING EVENT RECORDS
The ASIC could apply a simple compression algorithm to reduce

the bandwidth required between the ASIC and the CPU. We assume
that there is some locality in the packet-arrival reference stream
that could be exploited to make a compression scheme work. (§4.3
discusses locality.)

For example, if the working set of ruleNumbers is likely to be
much smaller than the full range, a simple algorithm such as Huff-
man coding could be implemented in the ASIC, to avoid the need
for sending full-sized ruleNumber values.

Similarly, studies have shown that certain packet sizes are far
more common than others; typical distributions are bimodal (e.g.,
Benson et al. [4]). These frequent values could be represented with
shorter codes. Note that the worst case for event-arrival rates is the
best case for this kind of compression, since all byteCounts would
be equal to the minimum packet length.

Another approach to compression might be to keep a small cache
representing a few “busy” rules. For each event that hits in this
cache, the ASIC would coalesce the counter values locally. When
a cache-entry is evicted, the coalesced values (including an explicit
packetCount field) would be streamed to the CPU (this is similar
to how NetFlow works). Some flow-table entries could be flagged
“do-not-coalesce,” if needed to support certain fine-grained behav-
iors.

What if even compression is not enough to prevent the event-
record stream from over-running the on-ASIC buffer – that is, the
CPU cannot keep up with these events? (§4.3 discusses the CPU re-
quirements.) The obvious solution is to discard some event records,
either using drop-tail, or randomly (to reduce bias in the counter
values.) Or, the ASIC could have a small “important-rules” fil-
ter to prioritize certain event records, and/or a “boring-rules” fil-
ter to de-prioritize others; these filters would be applied once the
buffer depth reaches a threshold. (We doubt it is necessary to over-
engineer this part of the design, if the only reason is to support an
unrealistic benchmark at the maximum possible packet rate.)

28



4. EVALUATION
We have not actually implemented SDCs, either in a simulation

or in an emulation such as NetFPGA. Therefore, we “evaluate” the
feasibility of SDCs using some back-of-the-envelope analyses.

4.1 Event-record rates
The primary limits on the feasibility of SDCs are (1) the band-

width between the ASIC and CPU(s), and (2) the processing ability
of each CPU. What kinds of event-record rates would the system
have to handle?

We assume, for concreteness, that a single ASIC can support 48
10GbE ports (although the densest switch ASICs currently on the
market seem to be 24x10GbE rather than 48x10GbE, we should
assume future ASICs will provide higher aggregate throughput).

The worst-case frame rate for a single 10 GbE port is 14,880,960
frames/sec, or about 714M frames/sec for our 48x10GbE ASIC.
Assuming 32 bits per event record (that is, without any com-
pression, and assuming a single flow table), this amounts to 2.86
GByte/sec.

Conversely, the best-case 10GbE frame rate (that is, all pack-
ets are 1500 bytes – admittedly, nearly impossible in practice) is
812,740 frames/sec/port, or 39M frames/sec for our 48x10GbE
ASIC. This amounts to 156 MByte/sec

Obviously, this is a wide range of possible frame rates. In order
to provide some simple real-world calibration, we obtained mean
packet sizes from several different settings:

• OC192 traces provided by CAIDA: CAIDA collects one-
hour traces [10] each month on several Internet backbone
links. (OC192 is about 9.9 Gbit/sec.) They provide data on
the mean packet size, averaged over each trace. Between
Jan. 2011 and Mar. 2012, the lowest one-hour average was
3.2 Kbits/packet, or about 400 bytes/packet.4 The maximum
packet rate, averaged over a one-hour trace, was 902K pack-
ets/sec. Our analysis of an older CAIDA OC192 packet trace
(Jan. 15 2009) [9] found a peak packet rate, measured over
intervals of 1 msec, of 562 pkts/msec, or 562K pkts/sec.

• Data centers (WREN 2009): Benson et al. report a mean
of 850 bytes [4] for a data center that “hosts several line-of-
business applications (e.g., web services).”

• Data centers (IMC 2010): Benson et al. [3] reported data
obtained from ten data centers, including three university
data centers and two private-enterprise data centers. Mean
packet sizes were 738 bytes (EDU1), 751 bytes (EDU2),
and between 881–888 bytes (different traces from PRV2);
peak rates were 215 pkts/msec (EDU1) and 141 pkts/msec
(EDU2) [2].

Overall, this data (while sketchy) suggests that real switches en-
counter a mean packet size between about 400 and 800 bytes. Us-
ing 400 bytes as a conservative value, this leads to a rate of about
3,125,000 packets per second per fully-utilized 10GbE port.

With on-ASIC coalescing: We analyzed the potential perfor-
mance of a small, on-ASIC busy-rule cache (see §3). For the Jan.
15. 2009 CAIDA traces, the reduction in event-record rate ranged
from 24% (16 cache entries) to 52% (1024 entries); for the Benson
et al. traces, reductions ranged from 65% (16 entries) to almost
91% (1024 entries). Thus, even a fairly small on-ASIC cache pro-
vides significant event-rate reductions for a data-center workload,
and useful rate reductions for an Internet backbone workload.

4Data for the “sanjose-B/2011-11-17” trace shows a much lower
mean packet size, but CAIDA suspects this trace may be anoma-
lous.

4.2 ASIC-to-CPU bandwidth
The bandwidth available for streaming event records from the

ASIC to the CPU, and hence to its DRAM, depends on the specific
system configuration:

• PCIe link to off-ASIC CPU: In this configuration, the ASIC
appears to the CPU as a PCIe device. PCIe provides var-
ious bandwidths, ranging from 250 MB/sec (PCIe v1.x) to
8 GB/sec (PCIe v6.0) per “lane.” PCIe supports up to 32
lanes, so the maximum available bandwidth is quite large.
However, space and power considerations might limit what
is feasible.

• 10GbE link to off-ASIC CPU: One of the switch ASIC
ports could be dedicated to communicate with the switch
CPU, if the CPU has an integrated NIC. This link could be
made loss-free, using 802.1Qbb “Priority-based Flow Con-
trol.” However, this approach provides relatively low band-
width compared to the other options, consumes a switch port,
and requires an extra NIC on the CPU.

• On-ASIC CPU reading from on-ASIC buffer: In this con-
figuration, an on-ASIC CPU would read event records from
a small SRAM buffer, and then write data to counters in off-
ASIC DRAM. Here, bandwidth between the buffer and the
CPU is not likely to be the rate-limiting step. Rather, the
CPU itself is likely the bottleneck; we discuss CPU over-
heads in §4.3.

How do these bandwidths compare to the demands required for
streaming event records? A worst-case analysis (full link utilization
with min-size packets, no compression) for a 48x10GbE switch
requires 2.86 GByte/sec; a more realistic packet-size distribution
(e.g., 400 Bytes/packet) for the same switch, at full utilization,
would require 572 MByte/sec. Realistic rates should be sustain-
able with any of the configurations listed above.

4.3 CPU processing costs
The switch CPU must read event records and update a set of

counters for each such record; OpenFlow requires updating two 64-
bit counters. Can a reasonable CPU keep up with this processing
rate?

 0

 100

 200

 300

 400

 500

 600

 524288 65536 16384 4096 1024 16

E
ve

nt
 r

ec
or

ds
 p

er
 m

ic
ro

se
c

Working set (number of rules)

Xeon 2.67GHz
Xeon 3.2GHz

(Triggers) Xeon 3.2GHz
ARM 1GHz

Figure 2: Event-processing microbenchmark

Microbenchmark: We wrote an oversimplified microbench-
mark, which loops through a large buffer of event records (too large
to fit into the CPU caches, in order to emulate the cache misses that
a real input stream would create). We initialized the 32-bit event
records in this buffer with random values for the 19-bit ruleNum-
ber and 13-bit byteCount fields. (These event records contain no
timestamp field.) The inner loop extracts the ruleNumber, uses this
as an index into an in-memory array of counters, and then updates

29



the 64-bit packetCount and byteCount values for the corresponding
counter record.

The microbenchmark allows us to specify the range of randomly-
chosen rule numbers in the event records, to emulate working sets
of various sizes. Optionally, we can recompile the benchmark so
that the inner loop checks, on each event record, whether the total
packet or byte count has exceeded a per-rule “trigger” value, as in
DevoFlow. This makes the counter records 8 bytes larger, and adds
a few more instructions to the inner loop.

Clearly this is an unrealistic benchmark. It ignores any costs for
decompression, for communication with the SDN controller, and
for processing the OpenFlow duration field (which, probably, does
not have to be updated on every packet). It also fails to model most
of the advanced counter processing discussed in §2.5. On the other
hand, if the ASIC can coalesce multiple events into one record, that
should reduce the memory-access workload for the CPU.

We ran the benchmark on several different CPUs: an HP SL390s
server, with a 2.66 GHz X5650 (“Nehalem”) Xeon and DDR3-1333
memory; an HP xw8200 workstation, with an older 3.2GHz Xeon
and DDR2-400 memory; and a Trim-Slice H “miniature desktop,”
with a 1.0GHz Cortex-A9 ARM CPU and DDR2-667 memory.5

All of these systems are multi-core, but our benchmark is single-
threaded.

Figure 2 shows microbenchmark results for these configurations.
The best-case (small working-set) results are 535, 225, and 53 event
records processed per microsecond for the SL390s, xw8200, and
ARM processors, respectively. These rates are presumably limited
by the CPU core. The worst-case (512K-counter working set) re-
sults are 133, 13.4, and 6.3 records/µsec, respectively. These rates
are probably limited by memory bandwidth, which is affected both
by the type of DRAM and by the processor design.

For comparison, using a mean packet size = 400 bytes we expect
3.125 recs/µsec/port, or ∼150 recs/µsec for a 10GbEx48 switch.
These rates are plausibly within the range of a dual-core ARM
CPU, if there is enough locality, whereas the worst-case (minimal-
packet) rate of 715 recs/µsec clearly is not. If there is no locality,
then clearly our design is not currently feasible for such a high-end
switch (without adding many cores and memory controllers).

In Figure 2, the data set marked “(Triggers)” shows how perfor-
mance for the 3.2GHz Xeon declines with the optional DevoFlow-
style trigger processing. Some of the decline (34%, for small work-
ing sets) appears to come from the additional instruction execu-
tions; at larger working sets, the decline (23%) may be due in part
to higher cache miss rates. We suspect that our implementation of
triggers could be further optimized.

Available locality: How much locality is available in real-world
network traffic? Benson et al. [4] report that, over their university
and private data centers, the number of active flows at any single
switch never exceeded 10,000, and in most cases was consider-
ably lower. Other researchers have assumed even more flow-level
locality for SDN switches, perhaps because most existing switch
ASICs support relatively small flow tables. For example, Tavakoli
et al. analyzed flow-entry requirements for both VL2 and NOX;
their scalability analysis suggested that at most 5,000 entries would
be required [11].

We analyzed a subset of Benson’s traces6 to model flow-indexed
caches of various sizes. A 1K-entry cache would yield hit rates of
78%–97% for these traces. A similar analysis of 1-second slices
of the Jan. 15 2009 CAIDA traces shows 43%–52% hit rates for a
1K-entry cache.

5
http://trimslice.com/web/trim-slice-h-specifications

6
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html

For a working-set size of 1K rules, the data in Figure 2 show
that a single ARM core can process 51 event-records/µsec, so three
such cores (or one Xeon core) could conceivably handle most of the
event-record load for a 48x10GbE switch in a data center similar to
those studied by Benson et al. An Internet backbone switch, with
less locality, might require several Xeon cores to handle the load.

In short, the feasibility of SDCs boils down to a set of assump-
tions about traffic rates, packet size distributions, flow-level local-
ity, and the amount of hardware one is willing to devote to event-
record processing. In the worst case, SDC is probably not feasible
with current CPU and memory hardware. In more realistic cases,
SDC seems like a promising approach for providing SDN counter
support.

5. SUMMARY
Software-defined networking, and OpenFlow in particular, has

provided an incentive to reconsider the division of labor be-
tween switch ASICs, switch-local CPUs, and server-based con-
trollers. We believe that a “smart controller, dumb switch” model
is too naïve, especially with the decreasing cost of putting high-
performance embedded CPUs into switches. By exploiting these
switch-local CPUs, we can move complexity out of the ASICs and
provide many more opportunities for interesting evolution in the
kinds and features of SDN counters.

Acknowledgments
We would like to thank Theo Benson (U. Wisconsin) and Paul Hick
(CAIDA) for access to their data, and Dwight Barron and John
Wickeraad of HP for their technical advice. We also thank the
anonymous reviewers for their helpful suggestions.

6. REFERENCES
[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and

A. Vahdat. Hedera: Dynamic Flow Scheduling for Data Center
Networks. In Proc. NSDI, 2010.

[2] T. Benson. Pers. communication, 2012.
[3] T. Benson, A. Akella, and D. A. Maltz. Network Traffic

Characteristics of Data Centers in the Wild. In Proc. IMC, pages
267–280, 2010.

[4] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding Data
Center Traffic Characteristics. In Proc. WREN, pages 65–72, 2009.

[5] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC
3954 (Informational), October 2004.

[6] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee. DevoFlow: Scaling Flow Management for
High-Performance Networks. In Proc. SIGCOMM, pages 254–265,
2011.

[7] N. Farrington, E. Rubow, and A. Vahdat. Data Center Switch
Architecture in the Age of Merchant Silicon. In Proc. Hot
Interconnects, pages 93–102, 2009.

[8] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A Network Programming
Language. In Proc. ICFP, pages 279–291, 2011.

[9] P. Hick, kc claffy, and D. Andersen. The CAIDA UCSD Anonymized
Internet Traces – 15 Jan 2009. http://www.caida.org/
data/passive/passive_2009_dataset.xml.

[10] P. Hick, kc claffy, and D. Andersen. Trace Statistics for CAIDA
Passive OC48 and OC192 Traces. http:
//www.caida.org/data/passive/trace_stats/, 2012.

[11] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying NOX
to the Datacenter. In Proc. HotNets, 2009.

[12] J. Twycross and M. M. Williamson. Implementing and Testing a
Virus Throttle. In Proc. USENIX Security, pages 285–294, 2003.

[13] S. Waldbusser, R. Cole, C. Kalbfleisch, and D. Romascanu.
Introduction to the Remote Monitoring (RMON) Family of MIB
Modules. RFC 3577 (Informational), 2003.

30



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




