SDN Programming Languages

COS 597E: Software Defined Networking

Jennifer Rexford
Princeton University
MW 11:00am-12:20pm

10/2/13

Programming SDNs

* The Good
— Network-wide visibility
— Direct control over the switches
— Simple data-plane abstraction

* The Bad
— Low-level programming interface
— Functionality tied to hardware
— Explicit resource control
» The Ugly
— Non-modular, non-compositional
— Challenging distributed programming

Network Control Loop

Read
state

OpenFlow
Switches

Language-Based Abstractions

Query

Update
abstractions

abstractions

OpenFlow
Switches

Policy as a Function

Policy in OpenFlow

Defining “policy” is complicated

— All rules in all switches

— Packet-in handlers

— Polling of counters

Programming “policy” is error-prone

— Duplication between rules and handlers

— Frequent changes in policy (e.g., flowmods)
— Policy changes affect packets in flight

From Rules to a Policy Function

« Located packet

— A packet and its location (switch and port)
* Policy function

— From located packet to set of located packets
* Examples

— Original packet: identity

— Drop the packet: none

— Modified header: modify(f=v)

— New location: fwd(a)

10/2/13

From Bit Patterns to Predicates

* OpenFlow

— No direct way to specify dstip!=10.0.0.1
— Requires two prioritized bitmatches

« Higher priority: dstip=10.0.0.1

* Lower priority: *

» Using boolean predicates
— Providing &, |, and ~
—E.g., ~match(dstip=10.0.0.1)

Virtual Header Fields

+ Unified abstraction
— Real headers: dstip, srcport, ...
— Packet location: switch and port
— User-defined: e.g., traffic_class
» Simple operations
— Match: match(f=v)
— Modify: modify(f=v)
* Example
—match(switch=A) & match(dstip=1.0.0.3")

Queries as Buckets

» Forwarding to a “bucket”
—Q = packets(limit=1,group_by=["'srcip'])
+ Callback functions
—Q.register_callback(printer)
» Multiple kinds of buckets
— Packets: with limit on number
— Packet counts: with time interval
— Byte counts: with time interval

Power of Policy as a Function

» Dynamic policy
— A stream of policy functions
» Composition
— Parallel: Monitor + Route
— Sequential: Firewall >> Route

Computing Policy

Parallel and Sequential Composition
Topology Abstraction

10/2/13

Combining Many Networking Tasks

Monolithic
application

B Monitor + Route + FW + LB
Controller Platform

Hard to program, test, debug, reuse, port, ...

Modular Controller Applications

A module for
each task

S o Roue] P] o |

Easier to program, test, and debug
Greater reusability and portability

14

Beyond Multi-Tenancy

Each module controls a
different portion of the traffic

I sico 1] sice 2 B sice]
Controller Platform

Relatively easy to partition rule space, link
bandwidth, and network events across modules

Modules Affect the Same Traffic

Each module
partially specifies

the handling of
Controller Platform

How to combine modules into a complete application?

16

Parallel Composition

dstip = 1.2.3.4 > fwd(1)
dstip = 3.4.5.6 > fwd(2)

Monitor on + Route on
source destination
Controller Platform

srcip = 5.6.7.8 - count

Parallel Composition

dstip = 1.2.3.4 > fwd(1)
dstip = 3.4.5.6 > fwd(2)

Monitor on + Route on
source destination
Controller Platform

srcip = 5.6.7.8, dstip = 1.2.3.4 - fwd(1), count

srcip = 5.6.7.8, dstip = 3.4.5.6 > fwd(2), count

srcip = 5.6.7.8 > count

dstip = 1.2.3.4 > fwd(1)

dstip = 3.4.5.6 > fwd(2) 18

srcip = 5.6.7.8 - count

Sequential Composition

srcip = 0%, dstip=1.2.3.4 - dstip=10.0.0.1 dstip = 10.0.0.1 > fwd(1)
srcip = 1%, dstip=1.2.3.4 - dstip=10.0.0.2 dstip = 10.0.0.2 > fwd(2)

Load .
ot Jog oo

10/2/13

Sequential Composition

srcip = 0%, dstip=1.2.3.4 - dstip=10.0.0.1 dstip = 10.0.0.1 > fwd(1)
srcip = 1%, dstip=1.2.3.4 - dstip=10.0.0.2 dstip = 10.0.0.2 > fwd(2)

Load)
= £

Controller Platform

LB

srcip = 0%, dstip = 1.2.3.4 > dstip = 10.0.0.1, fwd(1)
srcip = 1%, dstip = 1.2.3.4 > dstip = 10.0.0.2, fwd(2)

Dividing the Traffic Over Modules

* Predicates
— Specify which traffic traverses which modules
— Based on input port and packet-header fields

Web traffic Load :
:

Non-web
dstport != 80

Abstract Topology: Load Balancer

* Present an abstract topology

— Information hiding: limit what a module sees
— Protection: limit what a module does
— Abstraction: present a familiar interface

Abstract view -

:

/

Real network ,,

Abstract Topology: Gateway

Abstract Topology: Gateway

e Ethernet Gateway

\
e) e_ — & g e
—-&@ ‘
.
! \
\

+ Left: learning switch on MAC addresses
» Middle: ARP on gateway, plus simple repeater

» Right: shortest-path forwarding on IP prefixes

24

10/2/13

High-Level Architecture

Program
Controller Platform

Paper Discussion

Pyretic and Maple

Questions

Other ways to combine multiple policies?
How to compile policies efficiently?
Relationships to the other papers we've
read (e.g., HSA, VeriFlow, NICE, ndb)?
Comparison of Pyretic and Maple?
Support for distributed controllers, fault
tolerance, supporting more sophisticated
switches, etc.?

