SDN Programming Languages COS 597E: Software Defined Networking Jennifer Rexford Princeton University MW 11:00am-12:20pm

Policy as a Function

Policy in OpenFlow

- · Defining "policy" is complicated
 - All rules in all switches
 - Packet-in handlers
 - Polling of counters
- Programming "policy" is error-prone
 - Duplication between rules and handlers
 - Frequent changes in policy (e.g., flowmods)
 - Policy changes affect packets in flight

6

From Rules to a Policy Function

- · Located packet
 - A packet and its location (switch and port)
- Policy function
 - From located packet to set of located packets
- Examples
 - Original packet: identity
 - Drop the packet: none
 - Modified header: modify(f=v)
 - New location: fwd(a)

From Bit Patterns to Predicates

- OpenFlow
 - No direct way to specify dstip!=10.0.0.1
 - Requires two prioritized bitmatches
 - Higher priority: dstip=10.0.0.1
 - Lower priority: *
- · Using boolean predicates
 - Providing &, |, and ~
 - -E.g., ~match(dstip=10.0.0.1)

8

Virtual Header Fields

- · Unified abstraction
 - Real headers: dstip, srcport, ...
 - Packet location: switch and port
 - User-defined: e.g., traffic_class
- · Simple operations
 - Match: match(f=v)
 - Modify: modify(f=v)
- Example
 - match(switch=A) & match(dstip='1.0.0.3')

Queries as Buckets

- · Forwarding to a "bucket"
 - -Q = packets(limit=1,group_by=['srcip'])
- · Callback functions
 - -Q.register_callback(printer)
- · Multiple kinds of buckets
 - Packets: with limit on number
 - Packet counts: with time interval
 - Byte counts: with time interval

10

Power of Policy as a Function

- Dynamic policy
 - A stream of policy functions
- Composition
 - Parallel: Monitor + Route
 - Sequential: Firewall >> Route

Computing Policy

Parallel and Sequential Composition
Topology Abstraction

12

Dividing the Traffic Over Modules • Predicates - Specify which traffic traverses which modules - Based on input port and packet-header fields Web traffic dstport = 80 Non-web dstport != 80 Monitor + Routing

Paper Discussion

Pyretic and Maple

26

Questions

- Other ways to combine multiple policies?
- · How to compile policies efficiently?
- Relationships to the other papers we've read (e.g., HSA, VeriFlow, NICE, ndb)?
- Comparison of Pyretic and Maple?
- Support for distributed controllers, fault tolerance, supporting more sophisticated switches, etc.?

27