
princeton univ. F’13 cos 521: Advanced Algorithm Design

Lecture 2: Karger’s Min Cut Algorithm

Lecturer: Sanjeev Arora Scribe:Sanjeev

Today’s topic is simple but gorgeous: Karger’s min cut algorithm and its extension. It

is a simple randomized algorithm for finding the minimum cut in a graph: a subset of

vertices S in which the set of edges leaving S, denoted E(S, S) has minimum size among

all subsets. You may have seen an algorithm for this problem in your undergrad class that

uses maximum flow. Karger’s algorithm is elementary and and a great introduction to

randomized algorithms.

The algorithm is this: Pick a random edge, and merge its endpoints into a single “su-

pernode.”Repeat until the graph has only two supernodes, which is output as our guess for

min-cut. (As you continue, the supernodes may develop parallel edges; these are allowed.

Selfloops are ignored.)

Note that if you pick a random edge, it is more likely to come from parts of the graph

that contain more edges in the first place. Thus this algorithm looks like a great heuristic

to try on all kinds of real-life graphs, where one wants to cluster the nodes into “tightly-

knit”portions. For example, social networks may cluster into communities; graphs capturing

similarity of pixels may cluster to give di↵erent portions of the image (sky, grass, road etc.).

Thus instead of continuing Karger’s algorithm until you have two supernodes left, you could

stop it when there are k supernodes and try to understand whether these correspond to a

reasonable clustering.

Today we will first see that the above version of the algorithm yields the optimum min

cut with probability at least 2/n2
. Thus we can repeat it say 20n2

times, and output the

smallest cut seen in any iteration. The probability that the optimum cut is not seen in any

repetition is at most (1� 2/n2
)

20n2
< 0.01.

Unfortunately, this simple version has running time about n4
which is not great.

So then we see a better version with a simple tweak that brings the running time down

to closer to n2
. The idea is that roughly that repetition ensures fault tolerance. The real-life

advice of making two backups of your hard drive is related to this: the probability that both

fail is much smaller than one does. In case of Karger’s algorithm, the overall probability

of success is too low. But if run part of the way until the graph has n/
p
2 supernodes,

the chance that the mincut hasn’t changed is at least 1/2. So you make two independent

runs that go down to n/
p
2 supernodes, and recursively solve both of these. Thus the

expected number of instances that will yield the correct mincut is 2⇥ 1
2 = 1. (Unwrapping

the recursion, you see that each instance of size n/
p
2 will generate two instances of size

n/2, and so on.) Simple induction shows that this 2-wise repetition is enough to bring the

probability of success above 1/ log n.
As you might suspect, this is not the end of the story but improvements beyond this

get more hairy. If anybody is interested I can give more pointers.

Also this algorithm forms the basis of other algorithms for other tasks. Again, talk to

me for pointers.

1

CSE 103: Probability and statistics Winter 2010

Topic 4 — Randomized algorithms, II

4.1 Karger’s minimum cut algorithm

4.1.1 Clustering via graph cuts

Suppose a mail order company has the resources to prepare two different versions of its catalog, and it wishes
to target each version towards a particular sector of its customer base. The data it has is a list of its regular
customers, along with their purchase histories. How should this set of customers be partitioned into two
coherent groups?

One way to do this is to create a graph with a node for each of the regular customers, and an edge
between any two customers whose purchase patterns are similar. The goal is then to divide the nodes into
two pieces which have very few edges between them.

More formally, the minimum cut of an undirected graph G = (V,E) is a partition of the nodes into two
groups V1 and V2 (that is, V = V1 ∪ V2 and, V1 ∩ V2 = ∅), so that the number of edges between V1 and V2

is minimized. In the graph below, for instance, the minimum cut has size two and partitions the nodes into
V1 = {a, b, e, f} and V2 = {c, d, g, h}.

a b c d

e f g h

4.1.2 Karger’s algorithm

Here’s a randomized algorithm for finding the minimum cut:

• Repeat until just two nodes remain:

– Pick an edge of G at random and collapse its two endpoints into a single node

• For the two remaining nodes u1 and u2, set V1 = {nodes that went into u1} and V2 = {nodes in u2}

An example is shown in Figure 4.1. Notice how some nodes end up having multiple edges between them.

4.1.3 Analysis

Karger’s algorithm returns the minimum cut with a certain probability. To analyze it, let’s go through a
succession of key facts.

Fact 1. If degree(u) denotes the number of edges touching node u, then
∑

u∈V

degree(u) = 2|E|.

4-1

Sanjeev
Lecture notes of Sanjoy Dasgupta, CS103, Winter 2010 at UC San Diego

CSE 103 Topic 4 — Randomized algorithms, II Winter 2010

a b c d

e f g h

14 edges to choose from
Pick b− f (probability 1/14)

a c d

e g h
bf

13 edges to choose from
Pick g − h (probability 1/13)

a c d

e
bf

gh

12 edges to choose from
Pick d− gh (probability 1/6)

a c

e
bf

dgh

10 edges to choose from
Pick a− e (probability 1/10)

c

bf
dgh

ae 9 edges to choose from
Pick ab− ef (probability 4/9)

c

dgh

abef 5 edges to choose from
Pick c− dgh (probability 3/5)

abef cdgh Done: just two nodes remain

Figure 4.1. Karger’s algorithm at work.

4-2

CSE 103 Topic 4 — Randomized algorithms, II Winter 2010

To see this, imagine the following experiment: for each node, list all the edges touching it. The number
of edges in this list is exactly the left-hand sum. But each edge appears exactly twice in it, once for each
endpoint.

Fact 2. If there are n nodes, then the average degree of a node is 2|E|/n.

This is a straightforward calculation: when you pick a node X at random,

E[degree(X)] =
∑

u∈V

Pr(X = u)degree(u) =
1

n

∑

u

degree(u) =
2|E|

n

where the last step uses the first Fact.

Fact 3. The size of the minimum cut is at most 2|E|/n.

Consider the partition of V into two pieces, one containing a single node u, and the other containing the
remaining n− 1 nodes. The size of this cut is degree(u). Since this is a valid cut, the minimum cut cannot
be bigger than this. In other words, for all nodes u,

(size of minimum cut) ≤ degree(u).

This means that the size of the minimum cut is also ≤ the average degree, which we’ve seen is 2|E|/n.

Fact 4. If an edge is picked at random, the probability that it lies across the minimum cut is at most 2/n.

This is because there are |E| edges to choose from, and at most 2|E|/n of them are in the minimum cut.

Now we have all the information we need to analyze Karger’s algorithm. It returns the right answer as
long as it never picks an edge across the minimum cut. If it always picks a non-cut edge, then this edge will
connect two nodes on the same side of the cut, and so it is okay to collapse them together.

Each time an edge is collapsed, the number of nodes decreases by 1. Therefore,

Pr(final cut is the minimum cut) = Pr(first selected edge is not in mincut)×

Pr(second selected edge is not in mincut)× · · ·

≥

(

1−
2

n

)(

1−
2

n− 1

)(

1−
2

n− 2

)

· · ·

(

1−
2

4

)(

1−
2

3

)

=
n− 2

n
·
n− 3

n− 1
·
n− 4

n− 2
· · ·

2

4
·
1

3

=
2

n(n− 1)
.

The last equation comes from noticing that almost every numerator cancels with the denominator two
fractions down the line.

Karger’s algorithm succeeds with probabililty p ≥ 2/n2. Therefore, it should be run Ω(n2) times, after
which the smallest cut found should be chosen.

Those who are familiar with minimum spanning tree algorithms might be curious to hear that another
way to implement Karger’s algorithm is the following:

• Assign each edge a random weight

• Run Kruskal’s algorithm to get the minimum spanning tree

• Break the largest edge in the tree to get the two clusters

(Do you see why?) Over the decades, the running time of Kruskal’s algorithm has been thoroughly optimized
via special data structures. Now this same technology can be put to work for cuts!

4-3

=
n� 2

n
⇥ n� 3

n� 1
⇥ · · ·⇥ 2

4
⇥ 1

3

=
2

(n)(n� 1)

=
1�n
2

⇥ .

In order to boost the probability of success, we simply run the algorithm ⇥
�n
2

⇥
times. The probability that

at least one run succeeds is at least

1�
⌥

1� 1�n
2

⇥
��(n

2)
⌅ 1� e��.

Setting ⇥ = c lnn we have error probability ⇤ 1/nc.

It’s easy to implement Karger’s algorithm so that one run takes O(n2) time. Therefore, we have an O(n4 log n)
time randomized algorithm with error probability 1/poly(n).

A faster version of this algorithm was devised by Karger and Stein [4]. The key idea comes from looking at
the telescoping product. In the initial contractions it’s very unlikely we contracted an edge in the minimum
cut. Towards the end of the algorithm, our probability of contracting an edge in the minimum cut grows.

From the earlier analysis we have the following. For a fixed minimum cut �(S), the probability that this cut
survives down to ⇥ vertices is at least

��
2

⇥
/
�n
2

⇥
. Thus, for ⇥ = n/

⇧
2 we have probability ⌅ 1/2 of succeeding.

Hence, in expectation two trails should su⇤ce.

Improved algorithm: From a multigraph G, if G has at least 6 vertices, repeat twice:

1. run the original algorithm down to n/
⇧

2 + 1 vertices.

2. recurse on the resulting graph.

Return the minimum of the cuts found in the two recursive calls.

The choice of 6 as opposed to some other constant will only a⇥ect the running time by a constant factor.

We can easily compute the running time via the following recurrence (which is straightforward to solve, e.g.,
the standard Master theorem applies):

T (n) = 2
⇤
n2 + T (n/

⇧
2)

⌅
= O(n2 log n).

Since we succeed down to n/
⇧

2 with probability ⌅ 1/2, we have the following recurrence for the probability
of success, denote by P (n):

P (n) ⌅ 1�
⇧

1� 1
2
P (n/

⇧
2 + 1)

⌃2

.

This solves to P (n) = �
⇤

1
log n

⌅
. Hence, similar to the earlier argument for the original algorithm, with

O(log2 n) runs of the algorithm, the probability of success is ⌅ 1� 1/poly(n).

Therefore, in O(n2 log3 n) total time, we can find the minimum cut with probability ⌅ 1� 1/poly(n).

Before finishing, we observe an interesting corollary of Karger’s original algorithm which we will use in the
next lecture to estimate the (un)reliability of a network.

3

Sanjeev
From lecture notes of Eric Vigoda, CS7530 Spring 2010 at Georgia Tech

Sanjeev

Sanjeev
Inner term = Prob. that the
subinstance preserved min cut AND
recursive call found this optimum

Sanjeev

Sanjeev

Sanjeev
Use

1/(log n -0.5)

is approx.

1/log n + 0.5/(log n)^2

Sanjeev

Corollary 5 Any graph has at most O(n2) minimum cuts.

This follows from Lemma 3 since that holds for any specified minimum cut.

Note, we can also enumerate all of these cuts by the above algorithm.

References

[1] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. J. Assoc. Comput.
Mach., 35(4):921–940, 1988.

[2] J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a graph. In Proceedings of
the Third Annual ACM-SIAM Symposium on Discrete Algorithms (Orlando, FL, 1992), pages 165–174,
New York, 1992. ACM.

[3] D. R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. In
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (Austin, TX, 1993),
pages 21–30, New York, 1993. ACM.

[4] D. R. Karger and C. Stein. A new approach to the minimum cut problem. J. ACM, 43(4):601–640, 1996.

4

