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Today we first see LP duality, which will then be explored a bit more in the homeworks.
Duality has several equivalent statements.

1. If K is a polytope and p is a point outside it, then there is a hyperplane separating p
from K.

2. The following system of inequalities

a1 ·X ≥ b1
a2 ·X ≥ b2

...
am ·X ≥ bm

X ≥ 0

(1)

is infeasible iff using positive linear combinations of the inequalities it is possible to
derive −1 ≥ 0, i.e. there exist λ1, λ2, . . . λm ≥ 0 such that

m∑
i=1

λiai < 0 and
m∑
i=1

λibi > 0.

This statement is called Farkas’ Lemma.

1 Linear Programming and Farkas’ Lemma

In courses and texts duality is taught in context of LPs. Say the LP looks as follows:
Given: vectors c,a1,a2, . . .am ∈ Rn, and real numbers b1, b2, . . . bm.

Objective: find X ∈ Rn to minimize c ·X, subject to:

a1 ·X ≥ b1
a2 ·X ≥ b2

...
am ·X ≥ bm

X ≥ 0

(2)

The notation X > Y simply means that X is componentwise larger than Y. Now we
represent the system in (2) more compactly using matrix notation. Let

A =


aT1
aT2
...

aTm

 and b =


b1
b2
...
bm


1
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Then the Linear Program (LP for short) can be rewritten as:

min cTX :
AX ≥ b
X ≥ 0

(3)

This form is general enough to represent any possible linear program. For instance,
if the linear program involves a linear equality a · X = b then we can replace it by two
inequalities

a ·X ≥ b and − a ·X ≥ −b.

If the variable Xi is unconstrained, then we can replace each occurence by X+
i −X

−
i where

X+
i , X

−
i are two new non-negative variables.

2 LP Duality Theorem

With every LP we can associate another LP called its dual. The original LP is called the
primal. If the primal has n variables and m constraints, then the dual has m variables and
n constraints.

Primal Dual
min cTX :
AX ≥ b
X ≥ 0

max YTb :
YTA ≤ cT

Y ≥ 0

(4)

(Aside: if the primal contains an equality constraint instead of inequality then the
corresponding dual variable is unconstrained.)

It is an easy exercise that the dual of the dual is just the primal.

Theorem 1
The Duality Theorem. If both the Primal and the Dual of an LP are feasible, then the
two optima coincide.

Proof: The proof involves two parts:

1. Primal optimum ≥ Dual optimum.
This is the easy part. Suppose X∗,Y∗ are the respective optima. This implies that

AX∗ ≥ b.

Now, since Y∗ ≥ 0, the product Y∗AX∗ is a non-negative linear combination of the
rows of AX∗, so the inequality

Y∗TAX∗ ≥ Y∗Tb

holds. Again, since X∗ ≥ 0 and cT ≥ Y∗TA, the inequality

cTX∗ ≥ (Y∗TA)X∗ ≥ Y∗Tb

holds, which completes the proof of this part.
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2. Dual optimum ≥ Primal optimuml.
Let k be the optimum value of the primal. Since the primal is a minimization problem,
the following set of linear inequalities is infeasible for any ε > 0:

−cTX ≥ −(k − ε)
AX ≥ b

(5)

Here, ε is a small positive quantity. Therefore, by Farkas’ Lemma, there exist λ0, λ1, . . . λm ≥
0 such that

−λ0c +

m∑
i=1

λiai < 0 (6)

−λ0(k − ε) +

m∑
i=1

λibi > 0. (7)

Note that λ0 > 0 omitting the first inequality in (5) leaves a feasible system by
assumption about the primal. Thus, consider the vector

Λ = (
λ1
λ0
, . . .

λm
λ0

)T .

The inequality (6) implies that ΛTA ≤ cT . So Λ is a feasible solution to the Dual.
The inequality (7) implies that ΛTb > (k − ε), and since the Dual is a maximization
problem, this implies that the Dual optimal is bigger than k− ε. Letting ε go to zero,
we get that the Dual optimal ≥ k = Primal optimal. Thus, this part is proved, too.
Hence the Duality Theorem is proved.

2

My thoughts on this business:
(1) Usually textbooks bundle the case of infeasible systems into the statement of the Duality
theorem. This muddies the issue for the student. Usually all applications of LPs fall into
two cases: (a) We either know (for trivial reasons) that the system is feasible, and are only
interested in the value of the optimum or (b) We do not know if the system is feasible and
that is precisely what we want to determine. Then it is best to just use Farkas’ Lemma.
(2) The proof of the Duality theorem is interesting. The first part shows that for any
dual feasible solution Y the various Yi’s can be used to obtain a weighted sum of primal
inequalities, and thus obtain a lowerbound on the primal. The second part shows that
this method of taking weighted sums of inequalities is sufficient to obtain the best possible
lowerbound on the primal: there is no need to do anything fancier (e.g., taking products of
inequalities or some such thing).

3 Example: Max Flow Min Cut theorem in graphs

The input is a directed graph G(V,E) with one source s and one sink t. Each edge e has
a capacity ce. The flow on any edge must be less than its capacity, and at any node apart
from s and t, flow must be conserved: total incoming flow must equal total outgoing flow.
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We wish to maximize the flow we can send from s to t. The maximum flow problem can be
formulated as a Linear Program as follows:

Let P denote the set of all (directed) paths from s to t. Then the max flow problem
becomes:

max
∑
P∈P

fP : (8)

∀P ∈ P : fP ≥ 0 (9)

∀e ∈ E :
∑

P :e∈P
fP ≤ ce (10)

Since P could contain exponentially many paths, this is an LP with exponentially many
variables. Luckily duality tells us how to solve it using the Ellipsoid method.

Going over to the dual, we get:

min
∑
e∈E

ceye : (11)

∀e ∈ E : ye ≥ 0 (12)

∀P ∈ P :
∑
e∈P

ye ≥ 1 (13)

Notice that the dual in fact represents the Fractional min s − t cut problem: think of
each edge e being picked up to a fraction ye. The constraints say that a total weight of
1 must be picked on each path. Thus the usual min cut problem simply involves 0 − 1
solutions to the ye’s in the dual.

Exercise 1 Prove that the optimum solution does have ye ∈ {0, 1}.

Thus, the max-st-flow = (capacity of) min-cut.

Polynomial-time algorithms? The primal has exponentially many variables! (Aside:
turns out it is equivalent to a more succinct LP but lets’ proceed with this one.) Nevertheless
we can use the Ellipsoid method by applying it to the dual, which has m variables and
exponentially many constraints. As we saw last time, we only need to show a polynomial-
time separation oracle for the dual. Namely, for each candidate vector (ye) we need to check
if it satisfies all the dual constraints. This can be done by creating a weighted version of
the graph where the weight on edge e is ye. Then compute the shortest path from s to t
in this weighted graph. If the shortest path has length < 1 then we have found a violated
constraint.

4 Game theory and the minmax theorem

In the 1930s, polymath John von Neumann (professor at IAS) was interested in applying
mathematical reasoning to understand strategic interactions among people —or for that
matter, nations, corporations, political parties, etc. He was a founder of game theory,
which models rational choice in these interactions as maximization of some payoff function.
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A starting point of this theory is the zero-sum game. There are two players, 1 and 2,
where 1 has a choice of m possible moves, and 2 has a choice of n possible moves. When
player 1 plays his ith move and player 2 plays her jth move, the outcome is that player 1
pays Aij to player 2. Thus the game is completely described by an m×n payoff matrix. In
class we saw the payoff matrix for rock, paper, scissors.

In rational play, if player 1 announces he will play the ith move, player 2 would respond
by the j that maximises Aij . Conversely, if player 2 announces she will play the jth
move, player 1 will respond with move i′ that minimizes Ai′j . In general, there may be no
equilibrium in such announcements: the response of player 1 to player 2’s response to his
announced move i will not be i in general:

min
i

max
j
Aij 6= max

j
min
i
Aij .

In fact there is no such equilibrium in Rock/paper/scissors either, as every child knows.
This lack of equilibrium disappears if one allows players’ announced strategy to be a

distribution on moves. Player 1’s distribution is x ∈ <m satisfying xi ≥ 0 and
∑

i xi = 1;
Player 2’s distribution is y ∈ <n satisfying yj ≥ 0 and

∑
j yj = 1. Clearly, the expected

payoff from Player 1 to Player 2 then is
∑

ij xiAijyj = xTAy.
But has this fixed the problem about nonexistence of equilibrium? If Player 1 announces

first the payoff is minx maxy x
TAy whereas if Player 2 announces first it is maxy minx x

TAy.

Theorem 2 (Famous Min-Max Theorem of Von Neumann)
minx maxy x

TAy = maxy minx x
TAy.

Turns out this result is a simple consequence of LP duality and is equivalent to it. You
will explore it further in the homework.

What if the game is not zero sum? Defining an equilibrium for it was an open problem
until John Nash at Princeton managed to define it in the early 1950s; this solution is called
a Nash equilibrium. You can still catch a glimpse of Nash around campus.


