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Today we continue the topic of low-dimensional approximation to datasets and matrices.
Last time we saw the singular value decomposition of matrices.

1 SVD computation

Recall this theorem from last time.

Theorem 1 (Singular Value Decomposition and best rank-k-approximation)
An m × n real matrix has t ≤ min {m,n} nonnegative real numbers σ1, σ2, . . . , σt (called
singular values) and two sets of unit vectors U = {u1, u2, . . . , ut} which are in <m and
V = v1, v2, . . . , vt ∈ <n (all vectors are column vectors) where U, V are orthogonormal sets
and

uTi M = σivi and Mvi = σiu
T
i . (1)

(When M is symmetric, each ui = vi and the σi’s are eigenvalues and can be negative.)
Furthermore, M can be represented as

M =
∑
i

σiuiv
T
i . (2)

The best rank k approximation to M consists of taking the first k terms of (2) and discarding
the rest (where σ1 ≥ σ2 · · · ≥ σr).

Taking the best rank k approximation is also called Principal Component Analysis or
PCA.

You probably have seen eigenvalue and eigenvector computations in your linear algebra
course, so you know how to compute the PCA for symmetric matrices. The nonsymmetric
case reduces to the symmetric one by using the following observation. If M is the matrix
in (2) then

MMT = (
∑
i

σiuiv
T
i )(
∑
i

σiviu
T
i ) =

∑
i

uiu
T
i since vTi vi = 1.

Thus we can recover the ui’s and σi’s by computing the eigenvalues and eigenvectors of
MMT , and then recover vi by using (1).

Another application of singular vectors is the Pagerank algorithm for ranking webpages.
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1.1 The power method

The eigenvalue computation you saw in your linear algebra course takes at least n3 time.
Often we are only interested in the top few eigenvectors, in which case there’s a method that
can work much faster (especially when the matrix is sparse, i.e., has few nonzero entries).

As usual, we first look at the subcase of symmetric matrices. To compute the largest
eigenvector of matrix M we do the following. Pick a random unit vector x. Then repeat
the following a few times: replace x by Mx.

To analyse this we do the same calculation as the one we used to analyse Markov
chains. We can write x as

∑
i αiei where ei’s are the eigenvectors and λi’s are numbered

in decreasing order by absolute value. Then t iterations produces M tx =
∑

i αiλ
t
iei. Since

x is a unit vector,
∑

i α
2
i = 1. Now suppose there is a gap of γ between the the top two

eigenvalues: λ1 − λ2 = γ. Since |γi| ≤ |α1| − γ for i ≥ 2, we have∑
i≥2

∣∣αt
i

∣∣ ≤ n(α1 − γ)t = n |α1|t (1− γ/ |α1|)t.

Furthermore, since x was a random unit vector (and recalling that its projection α1 on the
fixed vector ei is normally distributed), the probability is at least 0.99 that α1 > 1/(10n).
Thus setting t = O(log n/γ) the components for i ≥ 2 become miniscule and x ≈ αt

1e1.
Thus rescaling to make it a unit vector we get e1 up to some error. Then we can project
all vectors to the subspace perpendicular to e1 and continue with the process to find the
remaining eigenvectors and eigenvalues.

This process works under the above gap assumption. What if the gap assumption does
not hold? Say, the first 3 eigenvalues are all close together, and separated by a gap from the
fourth. Then the above process ends up with some random vector in the subspace spanned
by the top three eigenvectors. For real-life matrices the gap assumption often holds.

2 Recovering planted bisections

Now we return to the planted bisection problem, also introduced last time.
The observation in Figure 1 suggests that the adjacency matrix is close to a rank 2

matrix shown there: the block within S1, S2 have value p in each entry; the blocks between
S1, S2 have q in each entry. This is rank 2 since it has only two distinct column vectors.

Now we sketch why the best rank-2 approximation to the adjacency will more or less
recover the planted bisection. This has to do with the properties of rank k approximations.
First we define two norms of a matrix.

Definition 1 (Frobenius and spectral norm) If M is an n×n matrix then its Frobe-

nius norm |M |F is
√∑

ij M
2
ij and its spectral norm |M |2 is the maximum value of |Mx|2

over all unit vectors x ∈ <n. (By Courant-Fisher, the spectral norm is also the highest
eigenvalue.) For matrices that are not symmetric the definition of Frobenius norm is anal-
ogous and the spectral norm is the highest singular value.

Last time we defined the best rank k approximation to M as the matrix M̃ that is rank

k and minimizes
∣∣∣M − M̃ ∣∣∣2

F
. The following theorem shows that we could have defined it

equivalently using spectral norm.
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Figure 1: Planted Bisection problem: Edge probability is p within S1, S2 and q between
S1, S2 where q < p. On the right hand side is the adjacency matrix. If we somehow knew
S1, S2 and grouped the corresponding rows and columns together, and squint at the matrix
from afar, we’d see more density of edges within S1, S2 and less density between S1, S2.
Thus from a distance the adjacency matrix looks like a rank 2 matrix.

Lemma 2
Matrix M̃ as defined above also satisfies that

∣∣∣M − M̃ ∣∣∣
2
≤ |M −B|2 for all B that have

rank k.

Theorem 3
If M̃ is the best rank-k approximation to M , then for every rank k matrix C:∣∣∣M̃ − C∣∣∣2

F
≤ 5k |M − C|22 .

Proof: Follows by Spectral decomposition and Courant-Fisher theorem, and the fact that
the column vectors in M̃ and C together span a space of dimension at most 2k. Thus∣∣∣M̃ − C∣∣∣2

F
involves a matrix of rank at most 2k. Rest of the details are cut and pasted from

Hopcroft-Kannan in Figure 2.
2

Returning to planted graph bisection, let M be the adjacency matrix of the graph with
planted bisection. Let C be the rank-2 matrix that we think is a good approximation to
M , namely, the one in Figure 1. Let M̃ be the true rank 2 approximation found via SVD.
In general M̃ is not the same as C. But Theorem 3 implies that we can upper bound the
average coordinate-wise squared difference of M̃ and C by the quantity on the right hand
side, which is the spectral norm (i.e., largest eigenvalue) of M − C.

Notice, M − C is a random matrix whose each coordinate is one of four values 1 −
p,−p, 1− q,−q. More importantly, the expectation of each coordinate is 0 (since the entry
of M is a coin toss whose expected value is the corresponding entry of C). The study
of eigenvalues of such random matrices is a famous subfield of science with unexpected
connections to number theory (including the famous Riemann hypothesis), quantum physics
(quantum gravity, quantum chaos), etc. We show below that |M − C|22 is at most O(np).
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Figure 2: Proof of Theorem 3 from Hopcroft-Kannan book
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We conclude that the average column vector in M̃ and C (whose square norm is about np)
are apart by O(p). Thus intuitively, clustering the columns of C into two will find us the
bipartition. Actually showing this requires more work which we will not do.

Here is a generic clustering algorithm into two clusters: Pick a random column of M̃
and put into one cluster all columns whose distance from it is at most 10p. Put all other
columns in the other cluster.

2.1 Eigenvalues of random matrices

We prove the following simple theorem to give a taste of this beautiful area.

Theorem 4
Let R be a random matrix such that Rij ’s are independent random variables in [−1, 1] of
expectation 0 and variance at most σ2. Then with probability 1 − exp(−n) the largest
eigenvalue of R is at most O(σ

√
n).

For simplicity we prove this for σ = 1.
Proof: Recalling that the largest eigenvalue is maxx

∣∣xTRx∣∣, we break the proof as follows.

Idea 1) For any fixed unit vector x ∈ <n,
∣∣xTRx∣∣ ≤ O(

√
n) with probability 1−exp(−Cn)

where C is an arbitrarily large constant. This follows from Chernoff-type bounds. Note that
xTRx =

∑
ij Rijxixj . By Chernoff bounds (Hoeffding’s inequality) the probability that this

exceeds t is at most

exp(− t2∑
i x

2
ix

2
j

) ≤ exp(−Ω(t2)),

since (
∑

ij x
2
ix

2
j )

1/2 ≤
∑

i x
2
i = 1.

Idea 2) There is a set of exp(n) special directions x(1), x(2), . . . , that approximately
“cover”the set of unit vectors in <n. Namely, for every unit vector v, there is at least
one x(i) such that < v, x(i) > > 0.9.

This is true because < v, x(i) > > 0.9 iff∣∣v − x(i)∣∣2 = |v|2 +
∣∣x(i)∣∣2 − 2 < v, x(i) > ≤ 0.2.

In other words we are trying to cover the unit sphere with spheres of radius 0.2.
Try to pick this set greedily. Pick x(1) arbitrarily, and throw out the unit sphere of

radius 0.2 around it. Then pick x(2) arbitrarily out of the remaining sphere, and throw out
the unit sphere of radius 0.2 around it. And so on.

How many points did we end up with? We note that by construction, the spheres of
radius 0.1 around each of the picked points are mutually disjoint. Thus the maximum
number of points we could have picked is the number of disjoint spheres of radius 0.1 in a
ball of radius at most 1.1. Denoting by B(r) denote the volume of spheres of volume r, this
is at most B(1.1)/B(0.1) = exp(n).

Idea 3) Combining Ideas 1 and 2, and the union bound, we have with high probability,∣∣∣xT(i)Rx(i)∣∣∣ ≤ O(
√
n) for all the special directions.

Idea 4): If v is the eigenvector corresponding to the largest eigenvalue satisfies then there

is some special direction satisfying
∣∣∣xT(i)Rx(i)∣∣∣ > 0.4vTRv.
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By the covering property, there is some special direction x(i) that is close to v. Represent

it as αv + βu where u ⊥ v and u is a unit vector. So α ≥ 0.9 and β ≤
√

0.18 ≤ 0.5. Then∣∣∣xT(i)Rx(i)∣∣∣ = αvTRv + βuTRu. But v is the largest eigenvalue so
∣∣uTRu∣∣ ≤ vTRv. We

conclude
∣∣∣xT(i)Rx(i)∣∣∣ ≥ (0.9− 0.5)vTRv, as claimed.

The theorem now follows from Idea 3 and 4. 2
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