
Princeton University
COS 521: Advanced Algorithms

Final Exam Fall 2013
Sanjeev Arora

Due Jan 14 5pm in Sanjeev’s office, Room 307. Pls send us email if you need an
extension.

Instructions: The test has 7 questions. Finish the test within 48 hours after first
reading it. You can consult any notes/handouts from this class and feel free to quote,
without proof, any results from there. You cannot consult any other source or person in
any way.

Do not read the test before you are ready to work on it.

Write and sign the honor code pledge on your exam (The pledge is “I pledge
my honor that I have not violated the honor code during this examination.”)

Sanjeev and Aman will be available Jan 8–14 by email to answer any questions. We will
also offer to call you if your confusion does not clear up. In case of unresolved doubt, try
to explain your confusion as part of the answer and maybe you will receive partial credit.
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1. (15 points) A set of points S in <n is said to be in isotropic position if Ex∈S [(w·x)2] = 1
for all unit vectors w ∈ <n (i.e., the expected squared projection in every direction is
1.) Describe a polynomial time algorithm that given a set of points computes a linear
transformation whose application puts them in isotropic position.

2. (15 points) Suppose you are given the intercity distances (`2)of n cities in the US.
We wish to compute the coordinates of each city (assuming the center of the earth
is the point (0, 0, 0) in 3D space). Describe a polynomial-time algorithm to compute
the coordinates given the intercity distances. Is the answer unique?

(Extra credit) Describe conditions under which it recovers the true coordinates even
if there is ”noise” in the intercity distances.

3. (Learning disks; 20 points) You have to write an algorithm that learns the concept
of “disks”in the plane. There is an unknown disk D in <2 and points are picked
uniformly at random from it. Describe a polynomial time algorithm that learns the
disk from these samples. Here “learning”means outputting a disk D′ such that (a) no
point outside D is in D′ (b) A random point in D is also in D′ with probability at
least 1− δ.
Describe how many sampled points does your algorithm need.

(Hint: There are infinitely many disks in the plane, and you need a clever union bound
against all incorrect disks.)

4. (Sparse Recovery; 20 points ) Normally one solves linear equations by matrix inversion.
In Sparse recovery one uses a matrix A whose columns are unit vectors that are all
“almost orthogonal.”Note that if the matrix has n rows it cannot have more than n
mutually orthogonal columns.

(a) First we show that if we only require the columns to be “almost orthogonal”then
it can have many more columns, say m = n3.

Suppose you pick m random unit vectors A1, A2, . . . , Am in <n by picking each
coordinate according to a univariate gaussian with mean 0 and variance 1/n, and
then scaling these vectors to be unit vectors.

Show that with high probability they satisfy |Ai ·Aj | ≤ O(

√
logm√
n

) for all i, j.

(b) Now let A be the matrix whose ith column is Ai. In sparse recovery some
unknown vector x ∈ {−1, 1, 0}m (say, brain wave pattern) is out in nature, and
we are able to observe Ax (where measuring of Ax is done by precisely setting
up the measuring equipment according to A).

We say x is k-sparse if it has only k nonzeros. Give a polynomial time algorithm
that recovers x from Ax if x is k-sparse if k = o(

√
n/
√

logm). Your algorithm is
given A and Ax.

(Aside: Note that there are many solutions x; the system is underdetermined.
The main point is that the true x is k-sparse, and we are interested in this sparse
solution.)
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5. (Upperbounds on MAX-CUT; 20 points) For a graph G = (V,E) let its Laplacian be
the matrix

Lij =


degree(i) i = j

−1 {i, j} ∈ E
0 else.

(a) Show that n
4λmax(L) is an upperbound on MAX-CUT of G, where λmax is the

largest eigenvalue.

(b) Show that for every u ∈ <n such that
∑

i ui = 0, the following is also an upper
bound on MAX-CUT of G:

f(u) =
n

4
λmax(L+ diag(u)).

(c) Show that f is convex.

(d) Sketch and analyse an algorithm to compute the minimum value of f over all u
such that

∑
i ui = 0. It should compute a value within (1 + ε) of the minimum

in time polynomial in n and 1/ε.

6. (Lowerbounds for Experts; 20 points) Recall the experts setup from lectures 8, 10 with
n experts, T days, and {0, 1} losses. You have to prove that to get within an (1 + ε)
factor of the loss of the best expert requires at least T = Ω( logn

ε2
) days, matching the

upper bound we gave.

Hint: Take a n× T random matrix with 0/1 entries, and designate the ith column of
the random matrix as payoffs for the experts on day i.

Useful Fact you can use without proof: For a random n × T matrix with 0/1
entries, with high probability there is a row with at most T/2−

√
T log n/2 1’s.

7. (Nearest Neighbor; 20 points) In the nearest neighbor (NN) problem we are given a
database of n vectors in <d which has to be stored in a data structure. (Think of d
as large; e.g. number of pixels in an image) The algorithm receives a query q ∈ <d
and has to return the point (“nearest neighbor”) in the database that is closest to q.
The problem is difficult, so in practice this objective is relaxed to the c-approximate
nearest neighbor so that the algorithm is allowed to return any point x in the database
whose distance from q is at most cR, where R is the distance from q to the nearest
neighbor. In this problem we will assume (using bucketing) that R ∈ [1, 1 + ε) so it
suffices to return a point at distance at most c (if one exists). The distance in question
is Euclidean (i.e., `2). The algorithm has to succeed with probability Ω(1) for each
query, where the probability is over the choice of the randomized data structure.

(a) Suppose b is picked randomly from [0,W−1] and we define h : [0, 1)→ {0, 1, . . . ,W − 1}
as h(x) = bx+ bc. Show that for each x, y ∈ [0, 1):

Pr[h(x) = h(y)] = 1− |x− y|.
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(b) Show that given any number R constant c > 0 there is a W and a map g mapping
<n to {0, 1, . . . ,W − 1} of the form b(r · x+ b) mod W c satisfying

|x− y|2 ≤ R⇒ Pr[g(x) = g(y)] ≥ p1

|x− y|2 ≥ c ·R⇒ Pr[g(x) = g(y)] ≤ p2,

where p1 > p2 are constants.

(c) Now define a hash function f : <d → {0, 1, . . . ,W − 1}k such that

|x− y|2 ≤ R⇒ Pr[f(x) = f(y)] ≥ pk1

|x− y|2 ≥ c ·R⇒ Pr[f(x) = f(y)] ≤ pk2,

(d) Put together these ideas to describe a data structure of size O(n1+ρ) which allows

c-approximate NN to be answered for any query q in nρ time, where ρ ≈ log 1/p1
log 1/p2

.
Find a rough expression for ρ as a function of c.

(e) (Extra credit) Show that ρ can be made as small as 1/c.
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