
CIEL: a universal execution engine for distributed data-flow computing

Derek G. Murray Malte Schwarzkopf Christopher Smowton
Steven Smith Anil Madhavapeddy Steven Hand

University of Cambridge Computer Laboratory

Abstract
This paper introduces CIEL, a universal execution en-
gine for distributed data-flow programs. Like previous
execution engines, CIEL masks the complexity of dis-
tributed programming. Unlike those systems, a CIEL job
can make data-dependent control-flow decisions, which
enables it to compute iterative and recursive algorithms.

We have also developed Skywriting, a Turing-
complete scripting language that runs directly on CIEL.
The execution engine provides transparent fault toler-
ance and distribution to Skywriting scripts and high-
performance code written in other programming lan-
guages. We have deployed CIEL on a cloud computing
platform, and demonstrate that it achieves scalable per-
formance for both iterative and non-iterative algorithms.

1 Introduction

Many organisations have an increasing need to process
large data sets, and a cluster of commodity machines on
which to process them. Distributed execution engines—
such as MapReduce [18] and Dryad [26]—have become
popular systems for exploiting such clusters. These sys-
tems expose a simple programming model, and auto-
matically handle the difficult aspects of distributed com-
puting: fault tolerance, scheduling, synchronisation and
communication. MapReduce and Dryad can be used to
implement a wide range of algorithms [3, 39], but they
are awkward or inefficient for others [12, 21, 25, 28, 34].
The problems typically arise with iterative algorithms,
which underlie many machine-learning and optimisation
problems, but require a more expressive programming
model and a more powerful execution engine. To address
these limitations, and extend the benefits of distributed
execution engines to a wider range of applications, we
have developed Skywriting and CIEL.

Skywriting is a scripting language that allows the
straightforward expression of iterative and recursive

task-parallel algorithms using imperative and functional
language syntax [31]. Skywriting scripts run on CIEL,
an execution engine that provides a universal execu-
tion model for distributed data-flow. Like previous sys-
tems, CIEL coordinates the distributed execution of a set
of data-parallel tasks arranged according to a data-flow
DAG, and hence benefits from transparent scaling and
fault tolerance. However CIEL extends previous mod-
els by dynamically building the DAG as tasks execute.
As we will show, this conceptually simple extension—
allowing tasks to create further tasks—enables CIEL to
support data-dependent iterative or recursive algorithms.
We present the high-level architecture of CIEL in Sec-
tion 3, and explain how Skywriting maps onto CIEL’s
primitives in Section 4.

Our implementation incorporates several additional
features, described in Section 5. Like existing systems,
CIEL provides transparent fault tolerance for worker
nodes. Moreover, CIEL can tolerate failures of the cluster
master and the client program. To improve resource util-
isation and reduce execution latency, CIEL can memoise
the results of tasks. Finally, CIEL supports the streaming
of data between concurrently-executing tasks.

We have implemented a variety of applications in
Skywriting, including MapReduce-style (grep, word-
count), iterative (k-means, PageRank) and dynamic-
programming (Smith-Waterman, option pricing) algo-
rithms. In Section 6 we evaluate the performance of
some of these applications when run on a CIEL cluster.

2 Motivation

Several researchers have identified limitations in the
MapReduce and Dryad programming models. These
systems were originally developed for batch-oriented
jobs, namely large-scale text mining for information re-
trieval [18, 26]. They are designed to maximise through-
put, rather than minimise individual job latency. This is
especially noticeable in iterative computations, for which



MapReduce Dryad Pregel Iterative MR Piccolo CIEL

Feature [2, 18] [26] [28] [12, 21] [34]
Dynamic control flow 7 7 3 3 3 3

Task dependencies Fixed (2-stage) Fixed (DAG) Fixed (BSP) Fixed (2-stage) Fixed (1-stage) Dynamic
Fault tolerance Transparent Transparent Transparent 7 Checkpoint Transparent
Data locality 3 3 3 3 3 3

Transparent scaling 3 3 3 3 7 3

Figure 1: Analysis of the features provided by existing distributed execution engines.

multiple jobs are chained together and the job latency is
multiplied [12, 21, 25, 28, 34].

Nevertheless, MapReduce—in particular its open-
source implementation, Hadoop [2]—remains a pop-
ular platform for parallel iterative computations with
large inputs. For example, the Apache Mahout ma-
chine learning library uses Hadoop as its execution en-
gine [3]. Several of the Mahout algorithms—such as
k-means clustering and singular value decomposition—
are iterative, comprising a data-parallel kernel inside a
while-not-converged loop. Mahout uses a driver pro-
gram that submits multiple jobs to Hadoop and performs
convergence testing at the client. However, since the
driver program executes logically (and often physically)
outside the Hadoop cluster, each iteration incurs job-
submission overhead, and the driver program does not
benefit from transparent fault tolerance. These problems
are not unique to Hadoop, but are shared with both the
original version of MapReduce [18] and Dryad [26].

The computational power of a distributed execution
engine is determined by the data flow that it can express.
In MapReduce, the data flow is limited to a bipartite
graph parameterised by the number of map and reduce
tasks; Dryad allows data flow to follow a more general
directed acyclic graph (DAG), but it must be fully spec-
ified before starting the job. In general, to support it-
erative or recursive algorithms within a single job, we
need data-dependent control flow—i.e. the ability to cre-
ate more work dynamically, based on the results of pre-
vious computations. At the same time, we wish to retain
the existing benefits of task-level parallelism: transparent
fault tolerance, locality-based scheduling and transparent
scaling. In Figure 1, we analyse a range of existing sys-
tems in terms of these objectives.

MapReduce and Dryad already support transparent
fault tolerance, locality-based scheduling and transparent
scaling [18, 26]. In addition, Dryad supports arbitrary
task dependencies, which enables it to execute a larger
class of computations than MapReduce. However, nei-
ther supports data-dependent control flow, so the work in
each computation must be statically pre-determined.

A variety of systems provide data-dependent control
flow but sacrifice other functionality. Google’s Pregel

is the largest-scale example of a distributed execution
engine with support for control flow [28]. Pregel is a
Bulk Synchronous Parallel (BSP) system designed for
executing graph algorithms (such as PageRank), and
Pregel computations are divided into “supersteps”, dur-
ing which a “vertex method” is executed for each vertex
in the graph. Crucially, each vertex can vote to terminate
the computation, and the computation terminates when
all vertices vote to terminate. Like a simple MapRe-
duce job, however, a Pregel computation only operates
on a single data set, and the programming model does
not support the composition of multiple computations.

Two recent systems add iteration capabilities to
MapReduce. CGL-MapReduce is a new implementation
of MapReduce that caches static (loop-invariant) data in
RAM across several MapReduce jobs [21]. HaLoop ex-
tends Hadoop with the ability to evaluate a convergence
function on reduce outputs [12]. Neither system provides
fault tolerance across multiple iterations, and neither can
support Dryad-style task dependency graphs.

Finally, Piccolo is a new programming model for data-
parallel programming that uses a partitioned in-memory
key-value table to replace the reduce phase of MapRe-
duce [34]. A Piccolo program is divided into “kernel”
functions, which are applied to table partitions in paral-
lel, and typically write key-value pairs into one or more
other tables. A “control” function coordinates the kernel
functions, and it may perform arbitrary data-dependent
control flow. Piccolo supports user-assisted checkpoint-
ing (based on the Chandy-Lamport algorithm), and is
limited to fixed cluster membership. If a single machine
fails, the entire computation must be restarted from a
checkpoint with the same number of machines.

We believe that CIEL is the first system to support all
five goals in Figure 1, but it is not a panacea. CIEL
is designed for coarse-grained parallelism across large
data sets, as are MapReduce and Dryad. For fine-grained
tasks, a work-stealing scheme is more appropriate [11].
Where the entire data set can fit in RAM, Piccolo may
be more efficient, because it can avoid writing to disk.
Ultimately, achieving the highest performance requires
significant developer effort, using a low-level technique
such as explicit message passing [30].
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Figure 2: A CIEL job is represented by a dynamic task graph, which contains tasks and objects (§3.1). In this example,
root task A spawns tasks B, C and D, and delegates the production of its result to D. Internally, CIEL uses task and
object tables to represent the graph (§3.3).

3 CIEL

CIEL is a distributed execution engine that can execute
programs with arbitrary data-dependent control flow. In
this section, we first describe the core abstraction that
CIEL supports: the dynamic task graph (§3.1). We then
describe how CIEL executes a job that is represented as
a dynamic task graph (§3.2). Finally, we describe the
concrete architecture of a CIEL cluster that is used for
distributed data-flow computing (§3.3).

3.1 Dynamic task graphs

In this subsection, we define the three CIEL primitives—
objects, references and tasks—and explain how they are
related in a dynamic task graph (Figure 2).

CIEL is a data-centric execution engine: the goal of
a CIEL job is to produce one or more output objects.
An object is an unstructured, finite-length sequence of
bytes. Every object has a unique name: if two objects
exist with the same name, they must have the same con-
tents. To simplify consistency and replication, an object
is immutable once it has been written, but it is sometimes
possible to append to an object (§5.3).

It is helpful to be able to describe an object without
possessing its full contents; CIEL uses references for this
purpose. A reference comprises a name and a set of lo-
cations (e.g. hostname-port pairs) where the object with
that name is stored. The set of locations may be empty:
in that case, the reference is a future reference to an ob-
ject that has not yet been produced. Otherwise, it is a
concrete reference, which may be consumed.

A CIEL job makes progress by executing tasks. A
task is a non-blocking atomic computation that executes
completely on a single machine. A task has one or more

dependencies, which are represented by references, and
the task becomes runnable when all of its dependencies
become concrete. The dependencies include a special
object that specifies the behaviour of the task (such as an
executable binary or a Java class) and may impose some
structure over the other dependencies. To simplify fault
tolerance (§5.2), CIEL requires that all tasks compute a
deterministic function of their dependencies. A task also
has one or more expected outputs, which are the names of
objects that the task will either create or delegate another
task to create.

Tasks can have two externally-observable behaviours.
First, a task can publish one or more objects, by cre-
ating a concrete reference for those objects. In particu-
lar, the task can publish objects for its expected outputs,
which may cause other tasks to become runnable if they
depend on those outputs. To support data-dependent con-
trol flow, however, a task may also spawn new tasks that
perform additional computation. CIEL enforces the fol-
lowing conditions on task behaviour:

1. For each of its expected outputs, a task must either
publish a concrete reference, or spawn a child task
with that name as an expected output. This ensures
that, as long as the children eventually terminate,
any task that depends on the parent’s output will
eventually become runnable.

2. A child task must only depend on concrete refer-
ences (i.e. objects that already exist) or future refer-
ences to the outputs of tasks that have already been
spawned (i.e. objects that are already expected to be
published). This prevents deadlock, as a cycle can-
not form in the dependency graph.

The dynamic task graph stores the relation between
tasks and objects. An edge from an object to a task means



that the task depends on that object. An edge from a task
to an object means that the task is expected to output
the object. As a job runs, new tasks are added to the
dynamic task graph, and the edges are rewritten when a
newly-spawned task is expected to produce an object.

The dynamic task graph provides low-level data-
dependent control flow that resembles tail recursion: a
task either produces its output (analogous to returning a
value) or spawns a new task to produce that output (anal-
ogous to a tail call). It also provides facilities for data-
parallelism, since independent tasks can be dispatched
in parallel. However, we do not expect programmers
to construct dynamic task graphs manually, and instead
we provide the Skywriting script language for generating
these graphs programmatically (§4).

3.2 Evaluating objects
Given a dynamic task graph, the role of CIEL is to eval-
uate one or more objects that correspond to the job out-
puts. Indeed, a CIEL job can be specified as a single
root task that has only concrete dependencies, and an
expected output that names the final result of the com-
putation. This leads to two natural strategies, which are
variants of topological sorting:

Eager evaluation. Since the task dependencies form a
DAG, at least one task must have only concrete de-
pendencies. Start by executing the tasks with only
concrete dependencies; subsequently execute tasks
when all of their dependencies become concrete.

Lazy evaluation. Seek to evaluate the expected output
of the root task. To evaluate an object, identify the
task, T , that is expected to produce the object. If T
has only concrete dependencies, execute it immedi-
ately; otherwise, block T and recursively evaluate
all of its unfulfilled dependencies using the same
procedure. When the inputs of a blocked task be-
come concrete, execute it. When the production of
a required object is delegated to a spawned task, re-
evaluate that object.

When we first developed CIEL, we experimented with
both strategies, but switched exclusively to lazy evalua-
tion since it more naturally supports the fault-tolerance
and memoisation features that we describe in §5.

3.3 System architecture
Figure 3 shows the architecture of a CIEL cluster. A sin-
gle master coordinates the end-to-end execution of jobs,
and several workers execute individual tasks.

The master maintains the current state of the dynamic
task graph in the object table and task table (Figure 2(b)).
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Figure 3: A CIEL cluster has a single master and many
workers. The master dispatches tasks to the workers for
execution. After a task completes, the worker publishes
a set of objects and may spawn further tasks.

Each row in the object table contains the latest refer-
ence for that object, including its locations (if any), and
a pointer to the task that is expected to produce it (if any:
an object will not have a task pointer if it is loaded into
the cluster by an external tool). Each row in the task ta-
ble corresponds to a spawned task, and contains pointers
to the references on which the task depends.

The master scheduler is responsible for making
progress in a CIEL computation: it lazily evaluates out-
put objects and pairs runnable tasks with idle workers.
Since task inputs and outputs may be very large (on the
order of gigabytes per task), all bulk data is stored on the
workers themselves, and the master handles references.
The master uses a multiple-queue-based scheduler (de-
rived from Hadoop [2]) to dispatch tasks to the worker
nearest the data. If a worker needs to fetch a remote ob-
ject, it reads the object directly from another worker.

The workers execute tasks and store objects. At
startup, a worker registers with the master, and periodi-
cally sends a heartbeat to demonstrate its continued avail-
ability. When a task is dispatched to a worker, the ap-
propriate executor is invoked. An executor is a generic
component that prepares input data for consumption and
invokes some computation on it, typically by executing
an external process. We have implemented simple execu-
tors for Java, .NET, shell-based and native code, as well
as a more complex executor for Skywriting (§4).

Assuming that a worker executes a task successfully,
it will reply to the master with the set of references that
it wishes to publish, and a list of task descriptors for any
new tasks that it wishes to spawn. The master will then
update the object table and task table, and re-evaluate the
set of tasks now runnable.

In addition to the master and workers, there will be one
or more clients (not shown). A client’s role is minimal: it
submits a job to the master, and either polls the master to
discover the job status or blocks until the job completes.



function process_chunk(chunk, prev_result) {
// Execute native code for chunk processing.
// Returns a reference to a partial result.
return spawn_exec(...);

}

function is_converged(curr_result, prev_result) {
// Execute native code for convergence test.
// Returns a reference to a boolean.
return spawn_exec(...)[0];

}

input_data = [ref("ciel://host137/chunk0"),
ref("ciel://host223/chunk1"),
...];

curr = ...; // Initial guess at the result.

do {
prev = curr;
curr = [];
for (chunk in input_data) {
curr += process_chunk(chunk, prev);

}
} while (!*is_converged(curr, prev));

return curr;

Figure 4: Iterative computation implemented in Skywrit-
ing. input data is a list of n input chunks, and curr is
initialised to a list of n partial results.

A job submission message contains a root task, which
must have only concrete dependencies. The master adds
the root task to the task table, and starts the job by lazily
evaluating its output (§3.2).

Note that CIEL currently uses a single (active) mas-
ter for simplicity. Despite this, our implementation can
recover from master failure (§5.2), and it did not cause
a performance bottleneck during our evaluation (§6).
Nonetheless, if it became a concern in future, it would be
possible to partition the master state—i.e. the task table
and object table—between several hosts, while retaining
the functionality of a single logical master.

4 Skywriting

Skywriting is a language for expressing task-level paral-
lelism that runs on top of CIEL. Skywriting is Turing-
complete, and can express arbitrary data-dependent con-
trol flow using constructs such as while loops and re-
cursive functions. Figure 4 shows an example Skywrit-
ing script that computes an iterative algorithm; we use a
similar structure in the k-means experiment (§6.2).

We introduced Skywriting in a previous paper [31],
but briefly restate the key features here:

• ref(url) returns a reference to the data stored
at the given URL. The function supports common
URL schemes, and the custom ciel scheme, which
accesses entries in the CIEL object table. If the URL
is external, CIEL downloads the data into the cluster
as an object, and assigns a name for the object.

function f(x) {
    ...
}
return f(42);

Skywriting script

T

t0 result

(a) Skywriting task

T

t1 tn...

Arguments of T

n results

jar = z
inputs = x, y
cls = a.b.Foo x y z

(b) Other (e.g. Java) tasks

f(); g();

Continuation of T
a = spawn(f);
b = spawn(g);
return *a + *b;

a = spawn(f);
b = spawn(g);
return *a + *b;

F G

Tʹ

T

t0

(c) Implicit continuation due to dereferencing

Figure 5: Task creation in Skywriting. Tasks can be cre-
ated using (a) spawn(), (b) spawn exec() and (c) the
dereference (*) operator.

• spawn(f, [arg, ...]) spawns a parallel task
to evaluate f(arg, ...). Skywriting functions
are pure: functions cannot have side-effects, and all
arguments are passed by value. The return value is
a reference to the result of f(arg, ...).

• exec(executor, args, n) synchronously runs
the named executor with the given args. The ex-
ecutor will produce n outputs. The return value is a
list of n references to those outputs.

• spawn exec(executor, args, n) spawns a
parallel task to run the named executor with the
given args. As with exec(), the return value is a
list of n references to those outputs.

• The dereference (unary-*) operator can be applied
to any reference; it loads the referenced data into
the Skywriting execution context, and evaluates to
the resulting data structure.

In the following, we describe how Skywriting maps on
to CIEL primitives. We describe how tasks are cre-
ated (§4.1), how references are used to facilitate data-
dependent control flow (§4.2), and the relationship be-
tween Skywriting and other frameworks (§4.3).



4.1 Creating tasks

The distinctive feature of Skywriting is its ability to
spawn new tasks in the middle of executing a job. The
language provides two explicit mechanisms for spawning
new tasks (the spawn() and spawn exec() functions)
and one implicit mechanism (the *-operator). Figure 5
summarises these mechanisms.

The spawn() function creates a new task to run the
given Skywriting function. To do this, the Skywriting
runtime first creates a data object that contains the new
task’s environment, including the text of the function to
be executed and the values of any arguments passed to
the function. This object is called a Skywriting continu-
ation, because it encapsulates the state of a computation.
The runtime then creates a task descriptor for the new
task, which includes a dependency on the new continu-
ation. Finally, it assigns a reference for the task result,
which it returns to the calling script. Figure 5(a) shows
the structure of the created task.

The spawn exec() function is a lower-level task-
creation mechanism that allows the caller to invoke code
written in a different language. Typically, this function is
not called directly, but rather through a wrapper for the
relevant executor (e.g. the built-in java() library func-
tion). When spawn exec() is called, the runtime seri-
alises the arguments into a data object and creates a task
that depends on that object (Figure 5(b)). If the argu-
ments to spawn exec() include references, the runtime
adds those references to the new task’s dependencies, to
ensure that CIEL will not schedule the task until all of
its arguments are available. Again, the runtime creates
references for the task outputs, and returns them to the
calling script. We discuss how names are chosen in §5.1.

If the task attempts to dereference an object that has
not yet been created—for example, the result of a call
to spawn()—the current task must block. However,
CIEL tasks are non-blocking: all synchronisation (and
data-flow) must be made explicit in the dynamic task
graph (§3.1). To resolve this contradiction, the runtime
implicitly creates a continuation task that depends on
the dereferenced object and the current continuation (i.e.
the current Skywriting execution stack). The new task
therefore will only run when the dereferenced object has
been produced, which provides the necessary synchro-
nisation. Figure 5(c) shows the dependency graph that
results when a task dereferences the result of spawn().

A task terminates when it reaches a return statement
(or it blocks on a future reference). A Skywriting task has
a single output, which is the value of the expression in the
return statement. On termination, the runtime stores
the output in the local object store, publishes a concrete
reference to the object, and sends a list of spawned tasks
to the master, in order of creation.

Skywriting ensures that the dynamic task graph re-
mains acyclic. A task’s dependencies are fixed when
the task-creation function is evaluated, which means
that they can only include references that are stored in
the local Skywriting scope before evaluating the func-
tion. Therefore, a task cannot depend on itself or any of
its descendants. Note that the results of spawn() and
spawn exec() are first-class futures [24]: a Skywriting
task can pass the references in its return value or in a sub-
sequent call to the task-creation functions. This enables a
script to create arbitrary acyclic dependency graphs, such
as the MapReduce dependency graph (§4.3).

4.2 Data-dependent control flow
Skywriting is designed to coordinate data-centric com-
putations, which means that the objects in the computa-
tion can be divided into two spaces:

Data space. Contains large data objects that may be up
to several gigabytes in size.

Coordination space. Contains small objects—such as
integers, booleans, strings, lists and dictionaries—
that determine the control flow.

In general, objects in the data space are processed by pro-
grams written in compiled languages, to achieve better
I/O or computational performance than Skywriting can
provide. In existing distributed execution engines (such
as MapReduce and Dryad), the data space and coordi-
nation space are disjoint, which prevents these systems
from supporting data-dependent control flow.

To support data-dependent control flow, data must be
able to pass from the data space into the coordination
space, so that it can help to determine the control flow.
In Skywriting, the *-operator transforms a reference to
a (data space) object into a (coordination space) value.
The producing task, which may be run by any executor,
must write the referenced object in a format that Sky-
writing can recognise; we use JavaScript Object Notation
(JSON) for this purpose [4]. This serialisation format is
only used for references that are passed to Skywriting,
and the majority of executors use the appropriate binary
format for their data.

4.3 Other languages and frameworks
Systems like MapReduce have become popular, at least
in part, because of their simple interface: a developer can
specify a whole distributed computation with just a pair
of map() and reduce() functions. To demonstrate that
Skywriting approaches this level of simplicity, Figure 6
shows an implementation of the MapReduce execution
model, taken from the Skywriting standard library.



function apply(f, list) {
outputs = [];
for (i in range(len(list))) {
outputs[i] = f(list[i]);

}
return outputs;

}

function shuffle(inputs, num_outputs) {
outputs = [];
for (i in range(num_outputs)) {
outputs[i] = [];
for (j in range(len(inputs))) {

outputs[i][j] = inputs[j][i];
}

}
return outputs;

}

function mapreduce(inputs, mapper, reducer, r) {
map_outputs = apply(mapper, inputs);
reduce_inputs = shuffle(map_outputs, r);
reduce_outputs = apply(reducer, reduce_inputs);
return reduce_outputs;

}

Figure 6: Implementation of the MapReduce program-
ming model in Skywriting. The user provides a list of in-
puts, a mapper function, a reducer function and the num-
ber of reducers to use.

The mapreduce() function first applies mapper to
each element of inputs. mapper is a Skywriting func-
tion that returns a list of r elements. The map outputs
are then shuffled, so that the ith output of each map be-
comes an input to the ith reduce. Finally, the reducer

function is applied r times to the collected reduce in-
puts. In typical use, the inputs to mapreduce() are data
objects containing the input splits, and the mapper and
reducer functions invoke spawn exec() to perform
computation in another language.

Note that the mapper function is responsible for par-
titioning data amongst the reducers, and the reducer

function must merge the inputs that it receives. The im-
plementation of mapper may also incorporate a com-
biner, if desired [18]. To simplify development, we have
ported portions of the Hadoop MapReduce framework to
run as CIEL tasks, and provide helper functions for par-
titioning, merging, and processing Hadoop file formats.

Any higher-level language that is compiled into a DAG
of tasks can also be compiled into a Skywriting pro-
gram, and executed on a CIEL cluster. For example,
one could develop Skywriting back-ends for Pig [32]
and DryadLINQ [39], raising the possibility of extending
those languages with support for unbounded iteration.

5 Implementation issues

The current implementation of CIEL and Skywriting
contains approximately 9,500 lines of Python code, and
a few hundred lines of C, Java and other languages in the

executor bindings. All of the source code, along with a
suite of example Skywriting programs (including those
used to evaluate the system in §6), is available to down-
load from our project website:
http://www.cl.cam.ac.uk/netos/ciel/

The remainder of this section describes three interest-
ing features of our implementation: memoisation (§5.1),
master fault tolerance (§5.2) and streaming (§5.3).

5.1 Deterministic naming & memoisation
Recall that all objects in a CIEL cluster have a unique
name. In this subsection, we show how an appropriate
choice of names can enable memoisation.

Our original implementation of CIEL used globally-
unique identifiers (UUIDs) to identify all data objects.
While this was a conceptually simple scheme, it compli-
cated fault tolerance (see following subsection), because
the master had to record the generated UUIDs to support
deterministic task replay after a failure.

This motivated us to reconsider the choice of names.
To support fault-tolerance, existing systems assume that
individual tasks are deterministic [18, 26], and CIEL
makes the same assumption (§3.1). It follows that two
tasks with the same dependencies—including the exe-
cutable code as a dependency—will have identical be-
haviour. Therefore the n outputs of a task created with
the following Skywriting statement

result = spawn_exec(executor, args, n);

will be completely determined by executor, args, n
and their indices. We could therefore construct a name
for the ith output by concatenating executor, args,
n and i, with appropriate delimiters. However, since
args may itself contain references, names could grow
to an unmanageable length. We therefore use a collision-
resistant hash function, H, to compute a digest of args
and n, which gives the resulting name:

executor : H(args||n) : i

We currently use the 160-bit SHA-1 hash function to
generate the digest.

Recall the lazy evaluation algorithm from §3.2: tasks
are only executed when their expected outputs are needed
to resolve a dependency for a blocked task. If a new
task’s outputs have already been produced by a previous
task, the new task need not be executed at all. Hence,
as a result of deterministic naming, CIEL memoises task
results, which can improve the performance of jobs that
perform repetitive tasks.

The goals of our memoisation scheme are similar to
the recent Nectar system [23]. Nectar performs static



analysis on DryadLINQ queries to identify subqueries
that have previously been computed on the same data.
Nectar is implemented at the DryadLINQ level, which
enables it to make assumptions about the semantics of
the each task, and the cost/benefit ratio of caching inter-
mediate results. For example, Nectar can re-use the re-
sults of commutative and associative aggregations from
a previous query, if the previous query operated on a pre-
fix of the current query’s input. The expressiveness of
CIEL jobs makes it more challenging to run these analy-
ses, and we are investigating how simple annotations in a
Skywriting program could provide similar functionality
in our system.

5.2 Fault tolerance

A distributed execution engine must continue to make
progress in the face of network and computer faults. As
jobs become longer—and, since CIEL allows unbounded
iteration, they may become extremely long—the proba-
bility of experiencing a fault increases. Therefore, CIEL
must tolerate the failure of any machine involved in the
computation: the client, workers and master.

Client fault tolerance is trivial, since CIEL natively
supports iterative jobs and manages job execution from
start to finish. The client’s only role is to submit the
job: if the client subsequently fails, the job will con-
tinue without interruption. By contrast, in order to exe-
cute an iterative job using a non-iterative framework, the
client must run a driver program that performs all data-
dependent control flow (such as convergence testing).
Since the driver program executes outside the frame-
work, it does not benefit from transparent fault tolerance,
and the developer must provide this manually, for exam-
ple by checkpointing the execution state. In our system, a
Skywriting script replaces the driver program, and CIEL
executes the whole script reliably.

Worker fault tolerance in CIEL is similar to
Dryad [26]. The master receives periodic heartbeat mes-
sages from each worker, and considers a worker to have
failed if (i) it has not sent a heartbeat after a specified
timeout, and (ii) it does not respond to a reverse message
from the master. At this point, if the worker has been
assigned a task, that task is deemed to have failed.

When a task fails, CIEL automatically re-executes it.
However, if it has failed because its inputs were stored
on a failed worker, the task is no longer runnable. In
that case, CIEL recursively re-executes predecessor tasks
until all of the failed task’s dependencies are resolved.
To achieve this, the master invalidates the locations in
the object table for each missing input, and lazily re-
evaluates the missing inputs. Other tasks that depend on
data from the failed worker will also fail, and these are
similarly re-executed by the master.

Master fault tolerance is also supported in CIEL. In
MapReduce and Dryad, a job fails completely if its mas-
ter process fails [18, 26]; in Hadoop, all jobs fail if the
JobTracker fails [2]; and master failure will usually cause
driver programs that submit multiple jobs to fail. How-
ever, in CIEL, all master state can be derived from the
set of active jobs. At a minimum, persistently storing the
root task of each active job allows a new master to be
created and resume execution immediately. CIEL pro-
vides three complementary mechanisms that extend mas-
ter fault tolerance: persistent logging, secondary masters
and object table reconstruction.

When a new job is created, the master creates a log
file for the job, and synchronously writes its root task
descriptor to the log. By default, it writes the log to a log
directory on local secondary storage, but it can also write
to a networked file system or distributed storage service.
As new tasks are created, their descriptors are appended
asynchronously to the log file, and periodically flushed to
disk. When the job completes, a concrete reference to its
result is written to the log directory. Upon restarting, the
master scans its log directory for jobs without a matching
result. For those jobs, it replays the log, rebuilding the
dynamic task graph, and ignoring the final record if it is
truncated. Once all logs have been processed, the master
restarts the jobs by lazily evaluating their outputs.

Alternatively, the master may log state updates to a
secondary master. After the secondary master registers
with the primary master, the primary asynchronously for-
wards all task table and object table updates to the sec-
ondary. Each new job is sent synchronously, to ensure
that it is logged at the secondary before the client re-
ceives an acknowledgement. In addition, the secondary
records the address of every worker that registers with the
primary, so that it can contact the workers in a fail-over
scenario. The secondary periodically sends a heartbeat to
the primary; when it detects that the primary has failed,
the secondary instructs all workers to re-register with it.
We evaluate this scenario in §6.5.

If the master fails and subsequently restarts, the work-
ers can help to reconstruct the object table using the con-
tents of their local object stores. A worker deems the
master to have failed if it does not respond to requests. At
this point, the worker switches into reregister mode, and
the heartbeat messages are replaced with periodic regis-
tration requests to the same network location. When the
worker finally contacts a new master, the master pulls a
list of the worker’s data objects, using a protocol based
on GFS master recovery [22].

5.3 Streaming

Our earlier definition of a task (§3.1) stated that a task
produces data objects as part of its result. This definition



implies that object production is atomic: an object either
exists completely or not at all. However, since data ob-
jects may be very large, there is often the opportunity to
stream the partially-written object between tasks, which
can lead to pipelined parallelism.

If the producing task has streamable outputs, it sends a
pre-publish message to the master, containing stream ref-
erences for each streamable output. These references are
used to update the object table, and may unblock other
tasks: the stream consumers. A stream consumer ex-
ecutes as before, but the executed code reads its input
from a named pipe rather than a local file. A separate
thread in the consuming worker process fetches chunks
of input from the producing worker, and writes them into
the pipe. When the producer terminates successfully, it
commits its outputs, which signals to the consumer that
no more data remains to be read.

In the present implementation, the stream producer
also writes its output data to a local disk, so that, if
the stream consumer fails, the producer is unaffected. If
the producer fails while it has a consumer, the producer
rolls back any partially-written output. In this case, the
consumer will fail due to missing input, and trigger re-
execution of the producer (§5.2). We are investigating
more sophisticated fault-tolerance and scheduling poli-
cies that would allow the producer and consumer to com-
municate via direct TCP streams, as in Dryad [26] and
the Hadoop Online Prototype [16]. However, as we show
in the following section, support for streaming yields
useful performance benefits for some applications.

6 Evaluation

Our main goal in developing CIEL was to develop a sys-
tem that supports a more powerful model of computa-
tion than existing distributed execution engines, without
incurring a high cost in terms of performance. In this
section, we evaluate the performance of CIEL running a
variety of applications implemented in Skywriting. We
investigate the following questions:

1. How does CIEL’s performance compare to a system
in production use (viz. Hadoop)? (§6.1, §6.2)

2. What benefits does CIEL provide when executing
an iterative algorithm? (§6.2)

3. What overheads does CIEL impose on compute-
intensive tasks? (§6.3, §6.4)

4. What effect does master failure have on end-to-end
job performance? (§6.5)

For our evaluation, we selected a set of algorithms to an-
swer these questions, including MapReduce-style, iter-
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Figure 7: Grep execution time on Hadoop and CIEL
(§6.1).

ative, and compute-intensive algorithms. We chose dy-
namic programming algorithms to demonstrate CIEL’s
ability to execute algorithms with data dependencies that
do not translate to the MapReduce model.

All of the results presented in this section were gath-
ered using m1.small virtual machines on the Amazon
EC2 cloud computing platform. At the time of writing,
an m1.small instance has 1.7 GB of RAM and 1 virtual
core (equivalent to a 2007 AMD Opteron or Intel Xeon
processor) [1]. In all cases, the operating system was
Ubuntu 10.04, using Linux kernel version 2.6.32 in 32-
bit mode. Since the virtual machines are single-core, we
run one CIEL worker per machine, and configure Hadoop
to use one map slot per TaskTracker.

6.1 Grep

Our grep benchmark uses the Grep example application
from Hadoop to search a 22.1 GB dump of English-
language Wikipedia for a three-character string. The
original Grep application performs two MapReduce jobs:
the first job parses the input data and emits the matching
strings, and the second sorts the matching strings by fre-
quency. In Skywriting, we implemented this as a single
script that uses two invocations of mapreduce() (§4.3).
Both systems use identical data formats and execute an
identical computation (regular expression matching).

Figure 7 shows the absolute execution time for Grep
as the number of workers increases from 10 to 100. Av-
eraged across all runs, CIEL outperforms Hadoop by
35%. We attribute this to the Hadoop heartbeat proto-
col, which limits the rate at which TaskTrackers poll for
tasks once every 5 seconds, and the mandatory “setup”
and “cleanup” phases that run at the start and end of
each job [38]. As a result, the relative performance of
CIEL improves as the job becomes shorter: CIEL takes
29% less time on 10 workers, and 40% less time on 100
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Figure 8: Results of the k-means experiment on Hadoop and CIEL with 20 workers (§6.2).

workers. We observed that a no-op Hadoop job (which
dispatches one map task per worker, and terminates im-
mediately) runs for an average of 30 seconds. Since Grep
involves two jobs, we would not expect Hadoop to com-
plete the benchmark in less than 60 seconds. These re-
sults confirm that Hadoop is not well-suited to short jobs,
which is a result of its original application (large-scale
document indexing). However, anecdotal evidence sug-
gests that production Hadoop clusters mostly run jobs
lasting less than 90 seconds [40].

6.2 k-means
We ported the Hadoop-based k-means implementation
from the Apache Mahout scalable machine learning
toolkit [3] to CIEL. Mahout simulates iterative-algorithm
support on Hadoop by submitting a series of jobs and
performing a convergence test outside the cluster; our
port uses a Skywriting script that performs all iterations
and convergence testing in a single CIEL job.

In this experiment, we compare the performance of the
two versions by running 5 iterations of clustering on 20
workers. Each task takes 64 MB of input—80,000 dense
vectors, each containing 100 double-precision values—
and k = 100 cluster centres. We increase the number of
tasks from 20 to 100, in multiples of the cluster size. As
before, both systems use identical data formats and exe-
cute an identical computational kernel. Figure 8(a) com-
pares the per-iteration execution time for the two ver-
sions. For each job size, CIEL is faster than Hadoop,
and the difference ranges between 113 and 168 seconds.
To investigate this difference further, we now analyse the
task execution profile.

Figure 8(b) shows the cluster utilisation as a function
of time for the 5 iterations of 100 tasks. From this fig-
ure, we can compute the average cluster utilisation: i.e.
the probability that a worker is assigned a task at any

point during the job execution. Across all job sizes, CIEL
achieves 89 ± 2% average utilisation, whereas Hadoop
achieves 84% utilisation for 100 tasks (and only 59%
utilisation for 20 tasks). The Hadoop utilisation drops to
70% at several points when there is still runnable work,
which is visible as troughs or “noise” in the utilisation
time series. This scheduling delay is due to Hadoop’s
polling-based implementation of task dispatch.

CIEL also achieves higher utilisation in this experi-
ment because the task duration is less variable. The
execution time of k-means is dominated by the map
phase, which computes k Euclidean distances for each
data point. Figure 8(c) shows the cumulative distribution
of map task durations, across all k-means experiments.
The Hadoop distribution is clearly bimodal, with 64%
of the tasks being “fast” (µ = 130.9, σ = 3.92) and
36% of the tasks being “slow” (µ = 193.5, σ = 3.71).
By contrast, all of the CIEL tasks are “fast” (µ = 134.1,
σ = 5.05). On closer inspection, the slow Hadoop tasks
are non-data-local: i.e. they read their input from an-
other HDFS data node. When computing an iterative job
such as k-means, CIEL can use information about previ-
ous iterations to improve the performance of subsequent
iterations. For example, CIEL preferentially schedules
tasks on workers that consumed the same inputs in pre-
vious iterations, in order to exploit data that might still
be stored in the page cache. When a task reads its input
from a remote worker, CIEL also updates the object table
to record that another replica of that input now exists. By
contrast, each iteration on Hadoop is an independent job,
and Hadoop does not perform cross-job optimisations, so
the scheduler is less able to exploit data locality.

In the CIEL version, a Skywriting task performs a con-
vergence test and, if necessary, spawns a subsequent it-
eration of k-means. However, compared to the data-
intensive map phase, its execution time is insignificant:
in the 100-task experiment, less than 2% of the total job
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Figure 9: Smith-Waterman (§6.3) and BOPM (§6.4)
are dynamic programming algorithms, with macro-level
(partition) and micro-level (element) dependencies.
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Figure 10: Smith-Waterman cluster utilisation against
time, for different block granularities. The best perfor-
mance is observed with 30× 30 blocks.

execution time is spent running Skywriting tasks. The
Skywriting execution time is dominated by communica-
tion with the master, as the script sends a new task de-
scriptor to the master for each task in the new iteration.

6.3 Smith-Waterman
In this experiment, we evaluate strategies for paral-
lelising the Smith-Waterman sequence alignment algo-
rithm [36]. For strings of size m and n, the algorithm
computes mn elements of a dynamic programming ma-
trix. However, since each element depends on three
predecessors, the algorithm is not embarrassingly par-
allel. We divide the matrix into blocks—where each
block depends on values from its three neighbours (Fig-
ure 9(a))—and process one block per task.

We use CIEL to compute the alignment between two
1 MB strings on 20 workers. Figure 10 shows the clus-
ter utilisation as the block granularity is varied: a gran-
ularity of m × n means that the computation is split
into mn blocks. For 10 × 10 (the most coarse-grained
case that we consider), the maximum degree of paral-
lelism is 10, because the dependency structure limits the
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Figure 11: Speedup of BOPM (§6.4) on 47 workers as
the number of tasks is varied and the resolution is in-
creased.

maximum achievable parallelism to the length of the an-
tidiagonal in the block matrix. Increasing the number
of blocks to 20 × 20 allows CIEL to achieve full util-
isation briefly, but performance remains poor because
the majority of the job duration is spent either ramp-
ing up to or down from full utilisation. We observe the
best performance for 30 × 30, which ramps up to full
utilisation more quickly than coarser-grained configura-
tions, and maintains full utilisation for an extended pe-
riod, because there are more runnable tasks than work-
ers. Increasing the granularity beyond 30 × 30 leads
to poorer overall performance, because the overhead of
task dispatch becomes a significant fraction of task dura-
tion. Furthermore, the scheduler cannot dispatch tasks
quickly enough to maintain full utilisation, which ap-
pears as “noise” in Figure 10.

6.4 Binomial options pricing

We now consider another dynamic programming algo-
rithm: the binomial options pricing model (BOPM) [17].
BOPM computes a binomial tree, which can be repre-
sented as an upper-triangular matrix, P . The rightmost
column of P can be computed directly from the input pa-
rameters, after which element pi,j depends on pi,j+1 and
pi+1,j+1, and the result is the value of p1,1. We achieve
parallelism by dividing the matrix into row chunks, creat-
ing one task per chunk, and streaming the top row of each
chunk into the next task. Figure 9(b) shows the element-
and chunk-level data dependencies for this algorithm.

BOPM is not an embarrassingly parallel algorithm.
However, we expect CIEL to achieve some speedup,
since rows of the matrix can be computed in parallel, and
we can use streaming tasks (§5.3) to obtain pipelined par-
allelism. We can also achieve better speedup by increas-
ing the resolution of the calculation: the problem size
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Figure 12: Cluster utilisation for three iterations of an
iterative algorithm (§6.5). In the lower case, the primary
master fails over to a secondary at the beginning of the
second iteration. The total downtime is 7.7 seconds.

(n) is inversely proportional to the time step (∆t), and
the serial execution time increases as O(n2).

Figure 11 shows the parallel speedup of BOPM on a
47-worker CIEL cluster. We vary the number of tasks,
and increase n from 2×105 to 1.6×106. As expected, the
maximum speedup increases as the problem size grows,
because the amount of independent work in each task
grows. For n = 2 × 105 the maximum speedup ob-
served is 4.9×, whereas for n = 1.6× 106 the maximum
speedup observed is 23.8×. After reaching the maxi-
mum, the speedup decreases as more tasks are added,
because small tasks suffer proportionately more from
constant per-task overhead. Due to our streaming im-
plementation, the minimum execution time for a stream
consumer is approximately one second. We plan to re-
place our simple, polling-based streaming implementa-
tion with direct TCP sockets, which will decrease the
per-task overhead and improve the maximum speedup.

6.5 Fault tolerance

Finally, we conducted an experiment in which master
fail-over was induced during an iterative computation.
Figure 12 contrasts the cluster utilisation in the non-
failure and master-failure cases, where the master fail-
over occurs at the beginning of the second iteration. Be-
tween the failure of the primary master and the resump-
tion of execution, 7.7 seconds elapse: during this time,
the secondary master must detect primary failure, con-
tact all of the workers, and wait until the workers register
with the secondary. Utilisation during the second itera-
tion is poorer, because some tasks must be replayed due
to the failure. The overall job execution time increases
by 30 seconds, and the original full utilisation is attained
once more in the third iteration.

7 Alternative approaches

CIEL was inspired primarily by the MapReduce and
Dryad distributed execution engines. However, there
are several different and complementary approaches to
large-scale distributed computing. In this section, we
briefly survey the related work from different fields.

7.1 High performance computing (HPC)
The HPC community has long experience in developing
parallel programs. OpenMP is an API for developing
parallel programs on shared-memory machines, which
has recently added support for task parallelism with de-
pendencies [7]. In this model, a task is a C or Fortran
function marked with a compiler directive that identifies
the formal parameters as task inputs and outputs. The
inputs and outputs are typically large arrays that fit com-
pletely in shared memory. OpenMP is more suitable than
CIEL for jobs that share large amounts of data that is fre-
quently updated on a fine-grained basis. However, the
parallel efficiency of a shared memory system is limited
by interconnect contention and/or non-uniform memory
access, which limits the practical size of an OpenMP job.
Nevertheless, we could potentially use OpenMP to ex-
ploit parallelism within an individual multi-core worker.

Larger HPC programs typically use the Message Pass-
ing Interface (MPI) for parallel computing on distributed
memory machines. MPI provides low-level primitives
for sending and receiving messages, collective commu-
nication and synchronisation [30]. MPI is optimised
for low-latency supercomputer interconnects, which of-
ten have a three-dimensional torus topology [35]. These
interconnects are optimal for problems that decompose
spatially and have local interactions with neighbouring
processors. Since these interconnects are highly reliable,
MPI does not tolerate intermittent message loss, and so
checkpointing is usually used for fault tolerance. For ex-
ample, Piccolo, which uses MPI, must restart an entire
computation from a checkpoint if an error occurs [34].

7.2 Programming languages
Various programming paradigms have been proposed to
simplify or fully automate software parallelisation.

Several projects have added parallel language con-
structs to existing programming languages. Cilk-NOW
is a distributed version of Cilk that allows developers
to spawn a C function on another cluster machine and
sync on its result [11]. X10 is influenced by Java, and
provides finish and async blocks that allow devel-
opers to implement more general synchronisation pat-
terns [15]. Both implement strict multithreading, which
restricts synchronisation to between a spawned thread



and its ancestor [10]. While this does not limit the ex-
pressiveness of these languages, it necessitates additional
synchronisation in the implementation of, for example,
MapReduce, where non-ancestor tasks may synchronise.

Functional programming languages offer the prospect
of fully automatic parallelism [8]. NESL contains a par-
allel “apply to each” operator (i.e. a map() function) that
processes the elements of a sequence in parallel, and the
implementation allows nested invocation of this opera-
tor [9]. Glasgow Distributed Haskell contains mecha-
nisms for remotely evaluating an expression on a par-
ticular host [33]. Though theoretically appealing, paral-
lel functional languages have not demonstrated as great
scalability as MapReduce or Dryad, which sacrifice ex-
pressivity for efficiency.

7.3 Declarative programming
The relational algebra, which comprises a relatively
small set of operators, can be parallelised in time
(pipelining) and space (partitioning) [19]. Pig and Hive
implement the relational algebra using a DAG of MapRe-
duce jobs on Hadoop [32, 37]; DryadLINQ and SCOPE
implement it using a Dryad graph [14, 39].

The relational algebra is not universal but can be made
more expressive by adding a least fixed point opera-
tor [5], and this research culminated in support for re-
cursive queries in SQL:1999 [20]. Recently, Bu et al.
showed how some recursive SQL queries may be trans-
lated to iterative Hadoop jobs [12].

Datalog is a declarative query language based on first-
order logic [13]. Recently, Alvaro et al. developed a ver-
sion of Hadoop and the Hadoop Distributed File System
using Overlog (a dialect of Datalog), and demonstrated
that it was almost as efficient as the equivalent Java code,
while using far fewer lines of code [6]. We are not
aware of any project that has used a fully-recursive logic-
programming language to implement data-intensive pro-
grams, though the non-recursive Cascalog language,
which runs on Hadoop, is a step in this direction [29].

7.4 Distributed operating systems
Hindman et al. have developed the Mesos distributed
operating system to support “diverse cluster computing
frameworks” on a shared cluster [25]. Mesos performs
fine-grained scheduling and fair sharing of cluster re-
sources between the frameworks. It is predicated on the
idea that no single framework is suitable for all applica-
tions, and hence the resources must be virtualised to sup-
port different frameworks at once. By contrast, we have
designed CIEL with primitives that support any form of
computation (though not always optimally), and allow
frameworks to be virtualised at the language level.

8 Conclusions

We designed CIEL to provide a superset of the features
that existing distributed execution engines provide. With
Skywriting, it it possible to write iterative algorithms
in an imperative style and execute them with transpar-
ent fault tolerance and automatic distribution. However,
CIEL can also execute any MapReduce job or Dryad
graph, and the support for iteration allows it to perform
Pregel- and Piccolo-style computations.

Our next step is to integrate CIEL primitives with ex-
isting programming languages. At present, only Skywrit-
ing scripts can create new tasks. This does not limit uni-
versality, but it requires developers to rewrite their driver
programs in Skywriting. It can also put pressure on
the Skywriting runtime, because all scheduling-related
control-flow decisions must ultimately pass through in-
terpreted code. The main benefit of Skywriting is that it
masks the complexity of continuation-passing style be-
hind the dereference operator (§4.2). We now seek a
way to extend this abstraction to mainstream program-
ming languages.

CIEL scales across hundreds of commodity machines,
but other scaling challenges remain. For example, it is
unclear how best to exploit multiple cores in a single
machine, and we currently pass this problem to the ex-
ecutors, which receive full use of an individual machine.
This gives application developers fine control over how
their programs execute, at the cost of additional complex-
ity. However, it limits efficiency if tasks are inherently
sequential and multiple cores are available. Furthermore,
the I/O saving from colocating a stream producer and
its consumers on a single host may outweigh the cost
of CPU contention. Finding the optimal schedule is a
hard problem, and we are investigating simple annota-
tion schemes and heuristics that improve performance in
the common case. The recent work on cluster operating
systems and scheduling algorithms [25, 27] offers hope
that this problem will admit an elegant solution.

Further information about CIEL and Skywriting, in-
cluding the source code, a language reference and a tuto-
rial, is available from the project website:
http://www.cl.cam.ac.uk/netos/ciel/

Acknowledgements

We wish to thank our past and present colleagues in the
Systems Research Group at the University of Cambridge
for many fruitful discussions that contributed to the evo-
lution of CIEL. We would also like to thank Byung-
Gon Chun, our shepherd, and the anonymous reviewers,
whose comments and suggestions have been invaluable
for improving the presentation of this work.



References

[1] Amazon EC2. http://aws.amazon.com/ec2/.

[2] Apache Hadoop. http://hadoop.apache.org/.

[3] Apache Mahout. http://mahout.apache.org/.

[4] JSON. http://www.json.org/.

[5] AHO, A. V., AND ULLMAN, J. D. Universality of data retrieval
languages. In Proceedings of POPL (1979).

[6] ALVARO, P., CONDIE, T., CONWAY, N., ELMELEEGY, K.,
HELLERSTEIN, J. M., AND SEARS, R. BOOM Analytics: Ex-
ploring data-centric, declarative programming for the cloud. In
Proceedings of EuroSys (2010).
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