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Abstract

The development of clause learning has had a tremendous effect on the over-
all performance of SAT-Solvers. Clause learning has allowed SAT-Solvers to
tackle industrial sized problems that formerly would have required imprac-
tical time scales. The development of techniques for efficient clause man-
agement and storage have also proved important in reducing some of the
memory usage problems inherent in naive clause learning strategies. This
paper attempts an introduction to some better known clause-learning strate-
gies as a comparison among these strategies. A brief explanation of some
of the techniques available to minimize memory usage when storing learned
clauses in a database is also presented.



1 Introduction

The following paper is intended as both an introduction to some of the more
important clause learning strategies common to modern SAT-Solvers and as
a comparison between them. The first section discusses the general moti-
vation behind clause learning. Following this is a discussion and definition
of fundamental terms without which any further discussion or comparison
of learning strategies would be incoherent. After this two important clause
learning strategies are discussed. This discussion includes an explanation of
how learned clauses are resolved in each strategy discussed. The following
sections include brief discussions on techniques for clause maintenance as
well as strategies for reducing the memory ’footprint’ involved with storing
learned causes in a usable database. The paper continues with a short dis-
cussion of the affect of clause learning on another powerful SAT-Solver strat-
egy, namely restarts. After this, worst case complexity for clause learning
in general is briefly discussed and benchmark results for each of the learn-
ing strategies discussed earlier are presented. The paper concludes with a
summary of the more important ideas presented earlier.

2 Motivation

The performance of common SAT-Solvers relies primarily on two issues,
namely unit propagation and backtracking. Unit propagation involves in-
ferring information from clauses that have a single unassigned literal and
assigning the literal a value such that the clause is then satisfied. Backtrack-
ing involves returning to the point in a search where a literal was assigned
a value leading to a contradiction and reassigning that literal another value.
In Boolean satisfiability problems this means assigning the opposite value
of the previous assignment. Naive backtracking schemes simply jump back
to the most recent choice variable assigned. This technique might lead to
subtrees involving conflicts that were already encountered in a previously
explored subtree. Such repetitions of conflict resolution, if possible, should
be avoided in order to increase the performance of the search. Backjumping
with learning focuses on this task and, through the use of learned clauses,
prunes portions of the search tree that can never contain a solution.

Once clause learning is adapted as a strategy to improve solver perfor-
mance, the classic tradeoff between runtime performance and memory usage
is encountered. Unrestricted clause learning, where all learned clauses are
stored in a database, is infeasible due to the memory required for storing
clauses resolved at all conflicts. Furthermore, as the clause database be-
comes larger the time spent in unit propagation becomes longer as well. It
becomes possible that any advantage gained by retaining learned causes is
negated due to the increase in time spent in propagation. The motivation
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behind techniques such as size bounded and relevance bounded learning rests
in helping to overcome such problems at the expense of losing some of the
information stored in learned clauses.

3 Definitions

In this section some essential definitions are given. These terms are needed
to understand the different learning schemes described in chapter 3.

3.1 Conflict Clause

A conflict clause represents an assignment to a subset of variables from the
problem that can never be part of a solution. By adding a conflict clause
to a set of clauses, a kind of constraint is created, that excludes a corre-
sponding variable assignment involving a conflict. Such a conflict is hard to
detect in the worst case because participating variables might be scattered
over multiple clauses. This situation is overcome by representing such a con-
flicting variable assignment with one clause. In addition, a conflict clause
may imply a reason for the conflict to occur. This holds some importance
especially in unsatisfiable problem cases, in which the question of why a
problem is not satisfiable might be of interest. Learning in SAT involves
finding and recording conflict clauses. A proper conflict clause must meet
some properties, namely:

• the clause must be an Asserting Clause, thus containing exactly one
literal assigned at the conflict level.

• the clause must be logically implied by the original set of formula, to
ensure correctness.

• the clause must be made false by the variable assignment involving the
corresponding conflict.

3.2 Decision Level

During the process of problem solving each variable assignment takes place
at certain decision levels starting from zero upwards. If the problem can be
solved by unit propagation alone, then each variable is assigned at decision
level zero. With each encountered decision variable the decision level is
incremented by one. Implied variables have their values decided upon in
unit propagation. Every implied variable gets the same decision level as the
previous decision variable. Therefore in the worst case, where no values are
assigned to variables during unit propagation, the maximum decision level
is equal to the number of literals occurring in the set of clauses.
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3.3 Implication Graph

An Implication Graph, furthermore referred to as an I-Graph, is a directed
acyclic graph where each vertex represents a variable assignment,or in other
words a literal. An incident edge to a vertex represents the reason leading
to that assignment. These reasons are clauses that became unit and forced
the variable assignment. For this reason, decision variables have no incident
edges in contrast to implied variables that have assignments forced during
unit propagation. As discussed earlier, each variable (decision or implied)
has a decision level associated with it. If a graph contains a variable assigned
both 1 and 0, that is both x and ¬x exist in the graph, then the I-Graph
contains a conflict.

An I-Graph is build according to the following formal steps.

Building the I-Graph G

1. Add a node for each decision labelled with the literal. These nodes
have no incident edges.

2. While there exists a known clause C = (li ∨ ...lk ∨ l) such that ¬li,...,¬lk
are in G:

a. Add a node labeled l if not already in G.

b. Add edges (li, l) for 1 ≤ i ≤ k if not already extant in G.

c. Add C to the label set of these edges to associate the edges as
a group with clause C.

3. (optional) Add a node λ to the graph and add a directed edge from a
variable occurring both positively and negatively to λ, which could be
thus referred to as the conflict node.

Let’s consider a small example with a partial assignment which makes
x1 the current decision variable and let’s assume further that x1 was decided
to be false. The current decision level in the example is 4.

Clauses:

w1 = (x1 ∨ x2)

w2 = (x1 ∨ x3 ∨ x7)

w3 = (¬x2 ∨ ¬x3 ∨ x4)

w4 = (¬x4 ∨ x5 ∨ x8)

w5 = (¬x4 ∨ x6 ∨ x9)
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Figure 1: I-Graph after step 1

w6 = (¬x5 ∨ ¬x6)

Current partial assignment: {x7 = 0@1, x8 = 0@2, x9 = 0@3}
Current decision assignment: {x1 = 0@4}

According to step 1 of the formalization given above of how to build an I-
Graph, we get a temporary graph (see Figure 2) with no edges that contains
only the nodes corresponding to decision variables x7, x8, x9 and x1.

Following the rules of step 2, the complete I-Graph (see Figure 3) is build
step by step and finally depicts the conflict that arises through x5 which is
implied to be both true and false by the current assignment.

3.4 Unique Implication Point

A Unique Implication Point (UIP) is any node at the current decision level
such that any path from the decision variable to the conflict node must pass
through it.

3.5 Cut

In case of a conflict, the I-Graph can be split by a bipartition called a
cut. The two sides of the partition can be referred to as the conflict side
and the reason side of the implication graph. The conflict side contains
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Figure 2: Complete I-Graph containing a conflict

the conflicting nodes. The reason side contains the nodes of the I-Graph
bipartition not included in the conflict side. The conflict side can contain
more nodes than just the conflict node λ and the conflicting nodes with
edges leading to λ. There are various ways for creating such extensions of
the conflict side and they are equivalent to various cuts. Different cuts of the
I-Graph distinguish learning schemes from one another, because the conflict
clause, and thus the knowledge gained from the conflict, is derived from the
bipartition of the I-Graph. Two important techniques for producing cuts in
the I-graph are described in the next section.

4 Learning Schemes

As already mentioned above, different learning schemes correspond to dif-
ferent cuts. In other words, different extensions of the conflict side of the
I-Graph correspond to different cut techniques. Different cuts generate dif-
ferent conflict clauses which are then added to the database of clauses. This
storage of these additional learned clauses represents the learned portion of
the search.
Let’s consider our small example, where a conflict occured through x5. The
conflicting nodes are on the conflict side, all other nodes on the reason side.

5



In the following, 2 learning schemes will be described. The 1-UIP scheme,
applied by MiniSAT and zChaff [7, 8], and the technique used by Rel Sat
[1].

4.1 1-UIP

The 1-UIP scheme corresponds to the 1-UIP cut or First-UIP cut. Both
terms describe the same cut which divides the I-Graph right before the
first UIP encountered on the path leading from the conflict node back to
the decision variable. That way, the cut is set close to the conflict by this
extension. The notion behind which is that hopefully the knowledge gained
is as relevant to the conflict as possible. In our example there are only two
UIPs, x4 and the decision variable x1 itself. The first UIP is x4.
All nodes following x4 belong to the conflict side, all other nodes, including
x4, belong to the reason side.
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Once the cut is decided upon the question of how to derive the conflict
clause from the bipartioned I-Graph remains to be answered.

Deriving the Conflict Clause The conflict clause consists of all nodes,
belonging to the reason side, that have edges leading into the conflict side.
The variables represented by these nodes, in our example x4, x8, x9 have to
be negated in the conflict clause according to their current assignment, since
the conflict clause should be made false by, and thus exclude, an assignment
leading to the conflict. Therefore in our example above the derived conflict
clause C would be:

Conflict Clause: C = (¬x4 ∨ x8 ∨ x9)

The updated database of clauses would be:

w1 = (x1 ∨ x2)

w2 = (x1 ∨ x3 ∨ x7)

w3 = (¬x2 ∨ ¬x3 ∨ x4)

w4 = (¬x4 ∨ x5 ∨ x8)
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w5 = (¬x4 ∨ x6 ∨ x9)

w6 = (¬x5 ∨ ¬x6)

C = (¬x4 ∨ x8 ∨ x9)

This additional conflict clause affects the backtracking process in the
following way. With naive backtracking the solver would just backtrack to
the decision variable at the current decision level. That is in our example
x1, which would then be set to true. But this branch can lead exactly to
the same conflict through x5 as before.

Effect on Backtracking With clause learning the backtrack level is de-
termined by analyzing the conflict clause.

backtracklevel = max {level (x) : x is an element of C − p}
p is the one literal of C assigned at conflict level.

In our example p = x4 and the maximum (decision) level of the other literals
in C is 3. The solver backtracks to x9 and flips it assignment to 1.

8



Current partial assignment: {x7 = 0, x8 = 0, x9 = 1, x4 = 1}

Take note that the former assignment of p, in our example x4 is not
discarded but kept in the new branch although the the backtrack level is
smaller than the decision level at which p was assigned. Actually this is
what forces the decision variable that was backtracked to to flip since the
conflict clause is made unit.

C = (¬x4 ∨ x8 ∨ x9)

x8 = 0 remains untouched because it was assigned at decision level 2, x4 = 1
is kept and C becomes a unit clause which forces x9 to flip to 1. If we pursue
this new branch with the partial assignment we arrive at a solution for the
problem which my be:

{x7 = 0, x8 = 0, x9 = 1, x4 = 1, x5 = 1, x6 = 0, x1 = 0, x2 = 1, x3 = 1}

Most importantly, it is no longer possible to arrive at the same conflict
involving x5 again, which is what was to be expected.

4.2 Rel Sat

In contrast to the 1-UIP scheme, The Rel Sat scheme corresponds to what
is referred to as the Last-UIP cut [1]. This cut divides the I-Graph right
before the last UIP. The last UIP is the decision variable at the conflict
level itself. In our example this corresponds to literal x1. In this extension
the conflict side contains all literals assigned at the conflict level except the
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decision variable itself. Conversly, the reason side consists of all variables
assigned at levels with a value less than that of the conflict level and the
actual decision variable whose assignment was responsible for the confict.

The conflict clause derived would be:

C = (x1 ∨ x7 ∨ x8 ∨ x9)

This conflict clause holds more information than the clause formed in
the 1-UIP scheme. Nevertheless, in our example the solver would backtrack
to level 3 and flip x9 to 1 as well, which will lead to a possible solution in
the best case. The difference is, besides the conflict clause, the p variable,
in our example x1, whose assignment is kept after backtracking.

5 Conflict Clause Maintenance

As mentioned earlier clause learning, if not somehow restricted, can quickly
create memory related problems due to the potentially large number of
learned clauses. In the learning schemes discussed above each conflict can
potentially add at least one clause to the problem database for every confict
discovered. Furthermore, the conflict clauses themselves can become very
large as the search progresses. With no restrictions on the size of clauses
added and no mechanism to discard irrelevant clauses, clause learning can
add a prohibitive overhead in terms of the space needed for clause database
storage. Also, the time spent for unit propagation increases with the number
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of learned clauses added. Thus retaining all learned clauses is impractical.
Bounded learning is one strategy that can help alleviate the problems of
memory overhead and excessive time spent in propagation.

5.1 Bounded Learning

The different types of bounded-learning discussed here can be used with the
learning schemes discussed in the previous section to restrict the recording
of clauses based on some quality and to discard learned clauses that are
no longer relevant. The two types of bounded learning discussed here are
size-bounded learning and relevance-bounded learning.

Size-bounded learning constrains the size of the learned clauses to be less
than some number i and is called i-order learning. Relevance-bounded learn-
ing, on the other hand, adds no constraints to the addition of clauses but
instead discards learned clauses when they are no longer relevant according
to some metric. For instance with i-relevance, a learned clause is not con-
sidered relevant if it differs by the current assignment by > i assignments or
when > i literals in the clause are unassigned. The idea then is that i-order
relevance maintains only the set of learned clauses that are i-relevant [6, 1].

Clauses can be removed from the database periodically based on one
(or a combination) of the above bounding strategies. Consider, as an ex-
ample, the conflict clause (x1 ∨ x7 ∨ x8 ∨ x9) and the literal assignment
x7 = 0, x2 = 1, x4 = 0, x6 = 1, x5 = 0. The preceding conflict clause would
be removed from the database using i-relevance bounding because more than
three literals of the clause do not currently have assignments or if more than
three values for literals in the clause differed from those of the current literal
assignment. In other words, when i > 3. The clause would also be deleted
using size-bounded learning if the size of learned clauses were bounded at 4.

Bounded learning helps to reduce the potentially exponential addition
of learned clauses by restricting the addition of arbitrarily large clauses.
This is also helpful due to larger clauses being more expensive to process.
Shorter clauses also tend to be more relevant to literal assignments higher
in the search tree. Bounded learning also removes clauses which are less
relevant to the locality of the current search. Ideally all learned clauses
would be recorded, thus maximizing the information learned during the
search. However the storage complexity and the added overhead of having
to maintain and examine all recorded clauses when building the i-graph,
encountering a conflict or during propagation make any such strategy too
expensive to be useful.

6 Using Efficient Data Structures

As discussed in the previous section, naive clause recording can incur a heavy
cost in terms of memory storage. This problem of memory consumption can
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further be reduced using specialized data structures. The use of appropri-
ate data structures can reduce the database memory usage associated with
learned clauses.

One such strategy for reducing the memory required for clause learning
is the use of cache aware implementations for learned clause storage. Cache
aware implementations attempt to avoid on-chip cache misses by using ar-
rays rather than pointer based data structures when storing clauses. Storing
data this way results in more memory accesses involving contiguous mem-
ory locations. The idea is to minimize the number of main memory accesses
which tends to be far less efficient than accessing cache memory.

Special data structures are also implemented for shorter stored clauses.
These data structures keep a list for each literal p of all literals q for which
there is a binary clause ¬p ∨ q. The list is then scanned during unit prop-
agation when assigning literal p the value true. This idea can also be ex-
tended to ternary clauses. All clauses can also be ordered by size, smallest
to largest, during unit propagation. While there exist other strategies for
reducing the time spent in unit propagation, such as the two-watched literal
scheme, they are beyond the scope of this paper. Each of the forementioned
strategies can have negligible decrease on the time spent in unit propagation
and on memory consumption.

7 Clause Learning and Restarts

Restarts, as well as recording learned clauses, have proven to be a powerful
strategy in improving the efficiency of SAT solvers. While a full explanation
of restarting strategies in SAT solvers is beyond the scope of this paper, a
brief description of the process is helpful to understand the impact of clause
learning on SAT-Solver restart strategies.

During the search, the SAT solver may enter an area where useful con-
flict clauses are not produced, resulting in a phenomenon known as thrash-
ing. Restarting the search attempts to solve this problem by throwing away
the current literal assignment (except for those assignments created during
the initial unit propagation) and then restarting the search from ”scratch”.
Without clause learning there is a possibility the solver, after a restart, will
follow a similar path through the search tree as the preceding iteration.

Clause learning reduces this potential for reproducing searches. Since
most SAT solvers that utilize clause learning retain the cache of the clauses
from the previous start, the newly started search will avoid the conflicts
learned in the previous search iteration stored in the learned portion of
the previous search. Such a ”memory” from a previous restart will usually
result in different variables being instantiated during unit propagation. This
ultimately results in a different path through the search tree. Potentially
duplicated searches are further reduced when using clause learning as the

12



sheer number of learned clauses typically tend to dominate the original input
formula. Due to this the learned clauses, after time, have a greater affect
on the choice of decision literal. This is especially true when the choice
of decision literal itself is based upon some heuristic involving the clause
database.

8 Remarks on Complexity

All learning schemes previously discussed can be implemented using a graph
traversal algorithm of the implication graph. The worst case behaviour of
this algorithm is O(V+E) where V is the number of vertices of the implica-
tion graph and E are the number of directed edges within the graph.

9 Benchmark Results and Comparison

The following section presents a comparison of runtimes for the two learn-
ing schemes discussed earlier, namely the First-UIP and Rel Sat learning
schemes. Data for a third more complicated learning scheme (GRASP) [5].
In the comparison discussed here two distinct heuristics were used for choos-
ing decision literals. The first and simplest method used is referred to as
fixed branching and the second is the VSIDS (Variable State Independent
Decaying Sum) heuristic. Three classes of benchmarks are used for compar-
ison. The first is formal microprocessor verification, the second is bounded
model checking and the third consists of a planning problem. The numeric
value in brackets beside the name of each specific benchmark is the number
of times the problem was run. The times presented are the average of all
runs. The numeric value in red beside some average times indicates the
number of times the problem completed. Times that exceeded the arbitrary
cut-off are not factored into the average times discussed here. The litera-
ture surveyed did not elaborate on any of the specific benchmarks within
each benchmark class. Nevertheless definite improvements are seen with
some learning schemes over others and between the two different decision
heurisitics used.

The fixed branching heuristic chooses the first unassigned variable with
smallest index based upon some variable preordering. The VSIDS heuristic
is more complicated [7, 8]. For each literal l in the original formula keep
a score s(l) which, initially, is the number of occurrences in the formula of
the literal. The idea is then to increment s(l) each time a clause with l is
added to the database of clauses. After N number of decisions the score
s(l) is recomputed so that s(l) = r(l) + s(l)/2 where r(l) is the number of
occurrences of l in conflict clauses since the last update. The heuristic would
choose the literal l with te highest s(l) value. The idea is that this decsion
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Figure 3: Experimental results for 1UIP, Grasp and Rel Sat.

would be relevant to the most clauses in the database and thus be more
likely to generate the most unit clauses during propagation.

The benchmark results clearly show that while the VSIDS decision heuris-
tic may not always be faster, it is certainly more robust. 1UIP, considered
the simplest strategy to implement, outperformed Rel Sat and GRASP in
all but 2 benchmarks. In every instance but one all runs were completed be-
fore the cut-off using the VSIDS decision heuristic, regardless of the learning
scheme. In most cases the VSIDS heurisitic was faster or at least competi-
tive. Exceptions to this are the first verification benchmark, fvp-unsat.1.0,
and the barrel model checking problem instance. The learning scheme that
proved to be the fastest in all instances was the simplest, namely the 1UIP
learning scheme. Grasp appears to have the advantage in microprocessor
verification and Rel Sat outperformed Grasp in the model checking and
planning instances.

Interesting to note is that the SAT-Competition Winner for 2005, SATElite
incorporated both the 1UIP learning scheme and VSIDS decision heuristic.
The competition consists of what are considered industrial sized SAT prob-
lems with potentially millions of literals and clauses.

10 Conclusion

In the previous discussion it is clear that clause learning has the potential
to speed up the solving process by pruning the search space of subtrees
that cannot contain solutions. This pruning is accomplished through the
recording of the reasons for conflicts that occur during the search. These
clauses are recorded in a database that includes the original clauses of the
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problem instance as well. The learned clauses can be used to choose decision
literals (VSIDS) and are used during unit propagation to avoid decisions
made earlier in the search that led to conflicts.

Some form of conflict clause maintenance is necessary for practical SAT
applications due to the potential of an exponential number of conflict clauses
being discoverd. Bounding learned clauses based on either size or relevancy
helps reduce the size of the clause database. Unbounded learning is simply
not feasible for larger problem instances due to exponential storage require-
ments and the prohibitive time spent in propagating when the database
becomes to large. This is to say there is a trade off between the number of
clauses stored, the speed of the resulting search and the amount of memory
used. Efficient data structures can also reduce the memory needed by SAT
solvers and can also speed up unit propagation. Worth noting is the power
that clause learning adds to the restart strategy. Erroneous paths through
the search space can be “memorized” if the database of learned clauses is
retained from restart to restart.

Experimental results clearly showed that the 1UIP learning scheme out-
performed the Grasp and Rel Sat schemes when used with the VSIDS
branching heuristic. Even when not using VSIDS, IUIP failed to outper-
form Grasp and Rel Sat in only one benchmark instance. Regardless of the
learning scheme involved, it is commonly agreed upon that clause learning
is a major step forward in the efficiency of SAT-Solvers.
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