SOFTWARE TRANSACTIONAL MEMORY

(WITH A DETOUR THROUGH HASKELL & MONADS)
COS 326
David Walker

Thanks fo Kathleen Fisher and recursively to
Simon Peyton Jones for much of the content of these slides.

Optional Reading:

“Beautiful Concurrency”,

"The Transactional Memory / Garbage Collection Analogy”

A Tutorial on Parallel and Concurrent Programming in Haskell”

Second Idea: Replace locks with
atomic blocks

Atomic blocks
are pieces of
code that you
can count on to
operate exactly
like sequential
programs

Atomic blocks

Hardware

Atomic blocks are
much easier to
use, and do
compose

Tricky gaps, so a
little harder than
immutable data but
you can do more
stuff

action 1: action 2:

read X read X
write x write x

read x read x
write x write x

Software Transactions:
A means to cut down program non-determinism

with transactions:

read x read X

write x write x

read X read X

write x write X

read X read X

)) write x write x
action 1: action 2: reachy readky

write x write x

read X read X
write x write x

read x read x
write x write x

without atomic transactions:

\
EE

T - e
write X
Y o

write x

STM in Haskell

Concurrent Threads in Haskell

= The fork function spawns a thread.
= It takes an action as its argument.

fork :: IO a -> IO ThreadId

id <- fork actionl
action?2

action 1 and
action 2 in
parallel

Atomic Blocks in Haskell

= Idea: add a function atomic that guarantees atomic
execution of a suspended (effectful) computation

main = do

id <- fork (atomic actionl)

atomic action?2

action 1 and
action 2
atomic

and parallel

id <- fork (atomic actionl)

atomic action?2

with transactions:

action 1: action 2: read x read X
write x write x

read x read X

read x read X : :
write x write x

write x write x

read x read x

. : read X read X
write x write x

write x write x
read x read x
write x write x

Atomic Details

= Introduce a type for imperative transaction variables
(TVar) and a new Monad (STM) to track transactions.

- STM a == a computation producing a value with type a that
does transactional memory book keeping on the side

- Haskell type system ensures TVars can only be modified in
transactions.

TVara == ‘aref

- \

Haskell OCaml

:: STM a -> IO a
::a -> STM (TVar a)

:: TVar a -> STM a
:: TVar a -> a -> STM ()

Atomic Example

——- inc adds 1 to the mutable reference r

inc :: TVar Int -> STM ()

inc r do

v <- read r

write r (v+1)

r <- atomic (new 0)
fork (atomic (inc r))
atomic (inc r) ;

Atomic Example

——- inc adds 1 to the mutable reference r

inc :: TVar Int -> STM ()

inc r do

v <- read r

write r (v+1)

r <- atomic (new 0)
fork (atomic (inc r))
atomic (inc r) ;

‘ Haskell is lazy so these

computations are suspended
and executed within the atomic

block

atomic :: STM a -> I0 a
new :: a -> STM (TVar a)

STM in Haskell read L oeer e T s e

write :: TVar a -> a -> STM()

The STM monad includes a specific set of operations:
= Cant use TVars outside atomic block

= Cant do IO inside atomic block:

atomic (if x<y then launchMissiles)

= atomic is a function, not a syntactic construct
- called afomically in the actual implementation
= ..and, best of all...

STM Computations Compose
(unlike locks)

inc r = do The type guarantees that
write r (v+1) always executed
atomically.
inc2 r = do - Glue many STM

computations together
inside a “do” block

inc r - Then wrap with atomic tfo
produce an IO action.

inc r

foo = atomic (inc2 r)

Composition is THE way to build big programs that work

Exceptions

The STM monad supports exceptions:

throw :: Exception -> STM a

catch :: STM a ->(Exception -> STM a) -> STM a

In the call (atomic s), if s throws an exception, the
transaction is aborted with no effect and the
exception is propagated to the enclosing code.

No need fo restore invariants, or release locks!

Starvation

= Worry: Could the system “thrash” by
continually colliding and re-executing?

= No: A fransaction can be forced to re-execute
only if another succeeds in committing. That
gives a strong progress guarantee.

= Buf: A particular thread could starve:

Thread 1 - — -
Thread 2 —— N — >
Thread 3 NI

Three more ideas:
retry, orElse, always

Idea 1: Compositional Blocking

withdraw :: TVar Int -> Int -> STM ()

withdraw acc n =

do bal <- readTVar acc

if bal < n then retry

writeTVar acc (bal-n) retry :: STM ()

retry means “abort the current transaction and re-
execute it from the beginning”.

Implementation avoids early retry using reads in the
transaction log (i.e. acc) to wait on all read variables.

- ie: retry only happens when one of the variables read on the
path to the retry changes

Compositional Blocking

withdraw :: TVar Int -> Int -> STM ()
withdraw acc n =

do { bal <- readTVar acc;
if bal < n then retry;
writeTVar acc (bal-n) }

= Retrying thread is woken up automatically when acc is
written, so there is no danger of forgotten notifies.

= No danger of forgetting to test conditions again when

woken up because the transaction runs from the
beginning.

= Correct-by-construction design!

What makes Retry Compositional?

= retry can appear anywhere inside an atomic block,
including nested deep within a call. For example,

atomic (do { withdraw al 3;
withdraw a2 7 })

waits for:
= al balance > 3
= and a2 balance > 7

= without any change fo withdraw function.

Idea 2: Choice

= Suppose we want to transfer 3 dollars from
either account al or a2 into account b.

Try this ..and if it retries, try

atomic (

do
(withdraw al 3) "orElse (withdraw a2 3)
deposit b 3

then afterward, do this

orElse :: STM a -> STM a -> STM a

Choice is composable, too!

transfer :: atomic (
TVar Int -> transfer al a2 b
"orElse’ transfer a3 a4 b

TVar Int ->)

TVar Int ->
STM ()

transfer al a2 b =
do

withdraw al 3 "orElse’ withdraw a2 3
deposit b 3

» The function transfer calls orElse, but calls to
transfer can still be composed with orElse.

Composing Transactions

A transaction is a value of type STM a.
Transactions are first-class values.

Build a big fransaction by composing little
transactions: in sequence, using orElse and
retry, inside procedures....

Finally seal up the fransaction with
atomic :: STM a -> IO a

Equational Reasoning

STM supports nice equations for reasoning:

a “orElse’ (b “orElse’ ¢) == (a ‘orElse” b) ‘orElse’ s

retry “orElse” s == s

s ‘orElse” retry ==s

(These equations make STM an instance of a structure
known as a MonadPlus -- a Monad with some extra
operations and properties.)

Idea 3: Invariants

The route to sanity is to esfablish invariants that
are assumed on entry, and guaranteed on exif, by

every afomic block.
- Just like in a module with representation invariants
- this gives you local reasoning about your code

" We want fo check these guarantfees. Buf we

dont want to test every invariant after every
atomic block.

= Hmm.... Only test when something read by the
invariant has changed.... rather like retry.

Invariants: One New Primitive

always :: STM Bool -> STM ()

newAccount :: STM (TVar Int)

newAccount = An arbitrary boolean
do { r <- new O0; valued STM computation

always (accountlInv r);
return v }

accountInv r = do { x <- read r;
return (x >= 0)};

Any transaction that modifies the account will check the
invariant (no forgotten checks). If the check fails, the
transaction restfarts. A persistent assert!!

What always does

always :: STM Bool -> STM ()

The function always adds a new invariant to a global
pool of invariants.

Conceptually, every invariant is checked as every
transaction commits.

But the implementation checks only invariants that
read TVars that have been written by the transaction

..and garbage collects invariants that are checking
dead Tvars.

What does it all mean?

Everything so far is infuitive and arm-wavey.

But what happens if its raining, and you are inside an
orElse and you throw an exception that contains a
value that mentions...?

We need a precise specification!

|10 transitiors ~ P,0 % 0.0 |

Ploutcharc]; @ -5 Plreturn ()], @ (PUTC)
Plgetchar]; @ 5 Plreturnd]; @ (GETC)
P[forkio M|, ®,A — (P[returnz] | M;); P,AU{r} r&A (FORK)

M — N
PM];® — P[N].O®

(ADMIN)

M, ® = return N, @ (ARET) M, ©A 3 throw N, & A
Platomically M]; @ — P[returnN], @ "

ATHROW
Platomically M]; ®,A — P[throw N]; &,A’ ()

|Administrative transitions M — N|

O n e / 1 if E[M] =Vand M £V (EVAL)

return N>>=M MN (BIND)
throw N>>=M throw N (THROW)

(]
ex l S+S catch (throw M) N NM (CATCHI)
catch (return M) N return M (CATCH?2)

|STM transitions ~ M;® = N,@ |

E[readTvar #]; #,A = [E[return $(r)]; P,A if r € dom(®) (READ)
E[writeTvar rN]; ©,A = [E[rsturn ()]; $[r— MLA if r € dom(P) (WRITE)
E[newTvar M]; #,A = [E[return #]; $[r— M,AU{r} itrgA (NEW)

M — N
EM].®@ — E[N]. @

(AADMIN)

E[M,]; @ & E[returnN], @ (ORD) E[M,]; @ = E[throw N]; @
E[M, ‘orElse M1]; @ = E[return N}, @ E[M) ‘orElse M2]; @ = [E[throw N]; @

(OR2)

E[M,]; @ & E[retry], @
E[M; “orElse’ Ma), @ = E[Ma);

o (OR3)

See “Composable Memory Transactions” for details.
Take COS 510 to understand what it means!

EIG
Implementation

Performance

= At first, atomic blocks look insanely expensive.
A naive implementation (c.f. databases):
- Every load and store instruction logs information
info a thread-local log.
- A store instruction writes the log only.

- A load instruction consults the log first.

- Validate the log at the end of the block.

o If succeeds, atomically commit to shared memory.
o If fails, restart the transaction.

Normalised execution time

State of the Art Circa 2003

3
Fine-grained Traditional STM
locking (2.57x) (5.69x)
Coarse-grained
locking (1.13x)
2
Sequential

baseline (1.00x)

. =

Workload: operations on
a red-black tree,
1 thread, 6:1:1

lookup:insert:delete mix
with keys 0..65535

See “"Optimizing Memory Transactions” for more information.

New Implementation Techniques

* Direct-update STM

- Allows transactions tfo make updates in place in the heap

- Avoids reads needing to search the log to see earlier
writes that the transaction has made

- Makes successful commit operations faster at the cost of
extra work on contention or when a transaction aborts

= Compiler integration
- Decompose transactional memory operations into
primitives
- Expose these primitives to compiler optimization

(e.g.)’ro hoist concurrency control operations out of a
loop

= Runtime system integration

- Integrates transactions with the garbage collector to
scale to atomic blocks containing 100M memory accesses

Results: Concurrency Control Overhead

3 Fine-grained - Traditional STM
locking (2.57x) (5.69x)

\ S
= ,
+ Coarse-grained Direct-update
g lOCklng (1.13)() STM (2.04)()
'-o':-; I
8 2
%() Sequential Direcf—upc.ia’re STM +
- baseline (1.00x) compiler integration
) e (1.46x)
A
_g' AN
= = |
Z

\
_ B

0]
Scalable to multicore

Workload: operations on
a red-black tree,
1 thread, 6:1:1

lookup:insert:delete mix
with keys 0..65535

Microseconds per operation

Results: Scalability
(for some benchmark; your experience may vary)

Coarse-grained locking

Fine-grained locking

Traditional STM

Direct-update STM +

n— compiler integration
| ///"‘_//
°¥ T T T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10 11 12

Hthreads

Performance, Summary

Naive STM implementation is hopelessly inefficient.

There is a lot of research going on in the compiler
and architfecture communities fo optimize STM.

This work typically assumes transactions are smallish
and have low contention. If these assumptions are
wrong, performance can degrade drastically.

We need more experience with “real” workloads and
various optimizations before we will be able to say
for sure that we can implement STM sufficiently
efficiently to be useful.

STM Wrapup

STM in Mainstream Languages

= There are similar proposals for adding STM to
Java and other mainstream languages.

class Account {
float balance;
void deposit(float amt) ({
atomic { balance += amt; }
}
void withdraw(float amt) {
atomic {
if (balance < amt) throw new OutOfMoneyError () ;
balance -= amt; }
}
void transfer (Acct other, float amt) {
atomic { // Can compose withdraw and deposit.
other.withdraw (amt) ;
this.deposit(amt); }

Weak vs Strong Atomicity

= Unlike Haskell, type systems in mainstream
languages dont control where effects occur.

= What happens if code outside a transaction
conflicts with code inside a transaction?

- Weak Atomicity: Non-transactional code can see
inconsistent memory states. Programmer should
avoid such situations by placing all accesses to
shared state in transaction.

- Strong Atomicity: Non-transactional code is
guaranteed fo see a consistent view of shared
state. This guarantee may cause a performance hit.

For more information: “Enforcing Isolation and Ordering in STM”

Even in Haskell: Easier, But Not Easy.

The essence of shared-memory concurrency is deciding
where critical sections should begin and end. This is still a
hard problem.
- Too small: application-specific data races (Eg, may see deposit
but not withdraw if transfer is not atomic).

- Too large: delay progress because deny other threads access to
needed resources.

In Haskell, we can compose STM subprograms but at some
point, we must decide to wrap an STM in “atomic”

- When and where to do it can be a hard decision

Programs can still be non-deterministic and hard to debug

Still Not Easy, Example

= Consider the following program:

Initially, x =

Thread 1 Thread 2

// atomic ({ / /A0 atomic { //A3
atomic { x = 1; } / /Al if (x==0) abort;
atomic { if (y==0) abort; } //A2 y = 1;

//} }

= Successful completion requires A3 to run after Al
but before AZ2.

= So deleting a critical section (by uncommenting
AO) changes the behavior of the program (from
terminating to non-terminating).

STM Conclusions

Atomic blocks (atomic, retry, orElse) dramatically raise the level of
abstraction for concurrent programming.

- Gives programmer back some control over when and where they have to
worry about interleavings

It is like using a high-level language instead of assembly code.
Whole classes of low-level errors are eliminated.

- Correct-by-construction design

Not a silver bullet:

- Yyou can still write buggy programs;
- concurrent programs are still harder than sequential ones
- aimed only at shared memory concurrency, not message passing

There is a performance hit, but it is usually acceptable in Haskell
(and things can only get better as the research community focuses
on the question.)

Exploring Haskell
In a little more depth

module type MONAD = si
Haskell vs. OCaml N .

return:'a->'a M
(>»=):'aM->(a->bM)->'bM
end

val read_file : file_name -> string M

do readfile f1
let concat f1f2 = :
: _ thendo readfile 2
OCaml readfile f1 »= (fun confentsl -> thendo contentsl *

readfile f2 >>= (fun contents2 -> contents?

return (contentsl © contents?2)

Another Haskell Detail:

Haskell function types are pure -- totally effect-free

Haskell’s type system forces* purity on
functions with type a -> b

no printing

no mutable data

no reading from files
no concurrency
no benign effects (like memoization)

* except for a function called unsafePerformlO

Another Haskell Detail:

fOO cint - int e totally pure function

suspended (lazy)
computation

<code> :: IO int that performs effects

when executed

Another Haskell Detail:

fOO cint - int e totally pure function

suspended (lazy)
computation

<code> :: IO int that performs effects

when executed

bar :: int -> IO int P [otally pure function

that returns suspended

effectful computation

Another Haskell Detail:

foo iiint -> int E—

suspended (lazy)
computation

<code> :: IO int that performs effects

when executed

bar :: int -> IO int P [otally pure function

that returns suspended

effectful computation

use monad operations to compose suspended computations
all effects in Haskell are treated as a kind of book keeping W 10 is the catch-all monad

An Example

print :: string -> IO ()
\ the “IO monad”

-- contains effectful computations
like printing

reverse :: string -> string

reverse "hello" :: string

print (reverse “hello") :: IO ()

v

the type system always tells you when an
effect has happened - effects can’t “escape” the I/O monad

Another Example

read :: Refa->I0a

(+) it int -> int -> int

Doesn't type
check

Another Example

read :: Refa->I0a

(+) it int -> int -> int

(read r) »= \x ->
X+ 3 IO Int

Use Bind to keep
the computation
in the monad!!

Another Example

read :: Refa->I0a

(+) it int -> int -> int

do

X <- read r

return (x + 3) \

new :: a -> I0 (Ref a)

Mutable State read :: Ref a -> IO a
write :: Ref a -> a -> IO ()

Haskell uses new, read, and write* functions
within the IO Monad to manage mutable state.

main :: IO ()

main = do
r <- new 0
inc r
s <- read r
print s

Int -> IO ()

v <- read r
write r (v+1)

* actually newRef, readRef, writeRef, ...

module type MONAD = si
Haskell vs. OCaml N .

return:'a->'a M
(>>=):'aM->(Ca->bM)->bM
end

val read_file : file_name -> string M
do readfile f1

let concat f1f2 = .
OCaml f§ readfile f1 >s= (fun contentsl -> thendo readfile f2

readfile f2 >>= (fun contents2 -> then do ccoonr“rJreenn‘rTssl2
return (contentsl ~ contents2)

the kind of monad is
controlled by the type
Maybe == option

concat :: filename -> filename -> Maybe string

keyword do begins
concaty z = monadic block of code!

) do
Haskell contentsl <- readfile fl

contents2 <- readfile f2 syntax is pretty!
return (contentsl * contents2) Compiler automatically

L : translates in to something
very similar to the OCaml

In a nutshell

Haskell is already using monads to implement state
Its type system controls where mutation can occur

So now, software transactional memory is just a
slightly more sophisticated version of Haskell's
existing I0 monad.

PS: Scala Monads

Check out James Iry blog:
- http://james-iry.blogspot.com/2007/09/monads-are-
elephants-part-1.html + 3 more parts
- hes a hacker and hes using equational reasoning to
explain monads!
Main thing to remember:

- bind is called “flatmap” in Scala
- return is called “unit” in Scala
- do notation in Haskell is similar to for notation in Scala

for (x <- monad) yield result

== monad >= (fun x -> return result)
== map (fun x -> result) monad

PPS: Check out monads in Python via generators:
http:/ /www.valuedlessons.com/2008/01/monads-in-python-with-nice-syntax.html

Haskell: A Language with a Monadic Skin

In languages like ML or Java, the fact that the language is in the
IO monad is baked in to the language. There is no need to mark
anything in the type system because IO is everywhere.

In Haskell, the programmer can choose when to live in the IO
monad and when to live in the realm of pure functional
programming.

— Counter-point: We have shown that it is useful to be able to
build pure abstractions using imperative infrastructure (eg:
laziness, futures, parallel sequences, memoization). You cant do
that in Haskell (without escaping the type system via unsafel0)

Interesting perspective: It is not Haskell that lacks imperative
features, but rather the other languages that lack the ability to
have a statically distinguishable pure subset.

At any rate, a checked pure-impure separation facilitates
concurrent programming.

The Central Challenge

VMR Arbitrary effects

Useless

Dangerous Safe

The Challenge of Effects

Plan A

(everyone glse)
Arbitrary effects ‘

Useful

Plan B
(Haskell)

Useless

Dangerous Safe

Two Basic Approaches: Plan A

Arbitrary effects -

Default = Any effect
Plan = Add restrictions

Examples

m Regions

= Ownership types

" Vault, Spec#, Cyclone

Two Basic Approaches: Plan B

Default = No effects
Plan = Selectively permit effects

Types play a major role

Two main approaches:

= Domain specific languages
(SQL, Xquery, Google
map/reduce)

= Wide-spectrum functional Value oriented
languages + controlled programming
effects (e.g. Haskell)

Lots of Cross Over

Plan A
(everyone glse)

VMR Arbitrary effects

Plan B
(Haskell)

Useless

Dangerous Safe

Lots of Cross Over

Plan A
(everyone glse)

VMR Arbitrary effects

Ideas; e.g. Software
Transactional Memory
(retry, orElse)

Plan B
(Haskell)

Useless

Dangerous Safe

An Assessment and a Prediction

Take home message: Haskell is cool. Check it out.

End

