A Lazy Fix!

COS 326
David Walker

Streams in OCaml|

type ‘a stream =
Cons of ‘a * ('a stream)

let rec ones = Cons(1l,ones) ;;
Surprisingly, this does work in OCaml.

let head (Cons (hd,tl)) = hd
let tail (Cons (hd,tl)) = tl

head ones --> 1

head (tail ones) -->1
head (tail (tail ones)) --> 1

It’s an infinite list of ones!

Two ways to think about this:

let rec ones = Cons(1l,ones) ;;
We can think in terms of the substitution model:

let ones =

Cons(1l, (let rec ones = Cons(l,ones) in
ones)) ;i

let ones =
Cons(1l,Cons(1l, (let rec ones = Cons(l,ones) in
ones))) ;;

But the substitution model tells us that we can unwind this forever.
Somehow, OCaml cleverly constructs the limit of this unwinding process
and represents an infinite list of ones with a finite memory...

What really happens:

let rec ones = Cons(1l,ones) ;;

OCaml allocates space for the Cons (without initializing it
yet) and makes ones point to the Cons-cell.

Cons (-, =)

ones

Then it initializes the contents of the Cons-cell with the
values of the arguments:

2 Cons (1 \‘
ones | (Lr =

This doesn’t always work...

let rec x 1 + x ;3

The example above gives us an error — we’re trying
to use the value of x before we’ve finished
defining it.

In general, it seems to work only when we build a
cyclic data structure where we don’t peek inside
the recursive parts of the data structure.

Processing Circular Lists

type ‘a stream =
Cons of ‘a * (‘a stream)

let rec ones = Cons(1l,ones) ;;
What happens if we write map?
let rec map (f:’a->'b) (s:’'a stream) =

match s with
| Cons(h,t) -> Cons(f h, map f t)

Processing Circular Lists

type ‘a stream =
Cons of ‘a * ('a stream)

let rec ones = Cons(l,ones) ;;
Or equivalently:

let rec map (f:’'a->'b) (s:’a stream) =
Cons(f (head s), map £ (tail s))

Processing Circular Lists

type ‘a stream =
Cons of ‘a * (‘a stream)

let rec ones = Cons(1l,ones) ;;
Or equivalently:

let rec map (f:’a->'b) (s:’'a stream) =
Cons(f (head s),map £ (tail s))

map ((+) 1) ones --> 7?

Processing Circular Lists

let rec ones = Cons(1l,ones) ;;

let rec map (f:’'a->'b) (s:’'a stream) =
Cons(f (head s),map £ (tail s))

Alas, map will run forever on a stream (or more properly,
until we run out of stack space since it’s not tail-
recursive.)

map ((+) 1) ones --> 7?

Processing Circular Lists

let rec ones = Cons(1l,ones) ;;

let rec map (f:’'a->'b) (s:’'a stream) =
Cons(f (head s),map £ (tail s))

We still need to convince ML to be a little less eager to unwinding recursive
definitions.

lazy t — the type of lazy computations

lazy(exp) — create a lazy expression that computes exp
later

Lazy.force e — do the computation now (if not already
done) and extract the result from the lazy
computation

type 'a s = Cons of 'a * ('a stream) Back to
and 'a stream = 'a s lazy t LaZV LiStS

type 'a s = Cons of 'a * ('a stream) Back to

and 'a stream = 'a s lazy t LaZV LiStS
let rec zeros = lazy (Cons (0, zeros))
let head s =

let Cons (hd,)

Lazy.force s 1in hd

let tail s =
let Cons (,tl)

Lazy.force s 1n tl

type 'a s = Cons of

and 'a stream

let rec zeros

let head s =

let Cons (hd,

let tail s =
let Cons (

let rec take n s =
if n = 0 then []
else (head s) ::tak

y 1)

'a s

lazy

)

[

'a * ('a stream)
lazy t

Back to
Lazy Lists

(Cons (0, zeros))

Lazy.force s 1in hd

Lazy.force s 1n tl

e (n-1) (tail s)

type 'a s = Cons of 'a * ('a stream) Back to

and 'a stream = 'a s lazy t LaZV LiStS
let rec zeros = lazy (Cons (0, zeros))
let head s =

let Cons (hd,)

Lazy.force s 1in hd

let tail s =
let Cons (,tl)

Lazy.force s 1n tl

let rec take n s =
if n = 0 then []
else (head s)::take (n-1) (tail s)

let rec map £ s =
lazy (Cons (f (head s), map £ (tail s)))

