Lazy Programming

COS 326
David Walker
Princeton University

[Serial Killer? Programming Languages Researcher?]

[Serial Killer? Programming Languages Researcher?]

Simon Peyton Jones: Inventor and architect of Haskell

Interesting fact: No PhD, but one of the most influential
researchers in PL over the last two decades

Welcome to the Infinite!

module type INFINITE =
Sig

type ‘a stream

val const : ‘a -> ‘a stream

val head : ‘a stream -> ‘a
val tail : ‘a stream -> ‘a stream

(* an infinite series of values *)
(* an infinite series — all the same *)

(* get the next value — there always is one! *)
(* get all the rest *)

val map : (‘a -> ‘b) -> ‘a stream -> ‘b stream

end

module Inf : INFINITE = ... ?

Consider this definition:

type ‘a stream =
Cons of ‘a * (‘a stream)

We can write functions to extract the head and tail of a stream:

let head(s:’a stream):’'a =
match s with
| Cons (h,) -> h

let tail(s:’'a stream):’a stream =
match s with
| Cons (_,t) > t

But there’s a problem...

type ‘a stream =
Cons of ‘a * (‘a stream)

How do | build a value of type ‘a stream?

attempt: Cons (3,) ... Cons(3,Cons(4,)

There doesn’t seem to be a base case (e.g., Nil)

Since we need a stream to build a stream,
what can we do to get started?

One idea

type ‘a stream =
Cons of ‘a * (‘a stream)

let rec ones = Cons(1l,ones) ;;

What happens?

let rec ones = Cons(1,ones);;
val ones : int stream =
Cons (1,
Cons (1,
Cons (1,
Cons (1, ...

)))
"Clnterrupted

An alternative would be to use refs

type ‘a stream =

Cons of ‘a * (‘a stream) option ref
r

let circular cons h =

. None
let r = ref None 1in C
let ¢ = Cons(h,r) in
(r := (Some c); c) Cons(h, r)
T None
C
This works ... Cons(h, r)
but has a serious drawback
Some)

-

3

An alternative would be to use refs

type ‘a stream =
Cons of ‘a * (‘a stream) option ref

let circular cons h =
let r = ref None in
let ¢ = Cons(h,r) in
(r := (Some c); c)

This works but has a serious drawback...
when we try to get out the tail, it may not exist.

Back to our earlier idea

type ‘a stream =
Cons of ‘a * (‘a stream)

let rec ones = Cons(1l,ones) ;;

let rec ones = Cons(1,ones);;
val ones : int stream =
Cons (1,
Cons (1,
Cons (1,
Cons (1, ...

)))
"Clnterrupted

The only “problem” here is that ML evaluates our code just a little bit too eagerly.

We want it to “wait” to evaluate the right-hand side only when necessary ... ,

Back to our earlier idea

One way to implement “waiting” is to wrap a computation

up in a function and then call that function later when we want to.

Another attempt:

type ‘a stream = Cons of ‘a * (‘a stream)

let rec ones =
fun () -> Cons(1l,ones)

let head (x) = “\\\\\\\\

mazCh X r(lé W-‘-t}_‘l > b Darn. Doesn’t type check!
ons (hd, tail) - It’s a function with type
unit -> int stream

not a stream

o o
r7

head (ones);;

11

Lazy Evaluation

What if we changed the definition of streams?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec ones : int stream =
fun () -> Cons(1l,ones)

Or, the way we’d normally write it:

let rec ones () = Cons(1,ones)

Lazy Evaluation

How would we define head, tail, and map?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

13

Lazy Evaluation

How would we define head, tail, and map?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let head(s:’a stream):’'a =

Lazy Evaluation

How would we define head, tail, and map?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’'a =
match s() with
| Cons(h,) -> h

Lazy Evaluation

How would we define head, tail, and map?

type ‘a str = Cons of ‘a

and ‘a stream = unit ->

let head(s:’a stream):’a
match s() with
| Cons(h,) -> h

* ('a stream)
‘a str

let tail(s:’a stream):’'a stream =

match s() with
| Cons(_,t) -> t

16

Lazy Evaluation

How would we define head, tail, and map?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let rec map (f:’'a->'b) (s:’'a stream)

"b stream

17

Lazy Evaluation

How would we define head, tail, and map?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let rec map (f:’'a->'b) (s:’'a stream)
Cons(f (head s), map £ (tail s))

"b stream

18

Lazy Evaluation

How would we define head, tail, and map?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let rec map (f:’'a->'b) (s:’'a stream) : ’'b stream
fun () -> Cons(f (head s), map £ (tail s))

Importantly, map
returns a function
which delays
evaluating the
recursive call to
map.

19

Lazy Evaluation

Now we can use map to build other infinite streams:

let rec map(f:’a->'b)(s:’a stream):’'b stream =
fun () -> Cons(f (head s), map £ (tail s))

let rec ones = fun () -> Cons(1l,ones) ;;
let inc x = x + 1
let twos = map inc ones ;;

head twos

--> head (map inc ones)

--> head (fun () -> Cons (inc (head ones), map inc (tail ones)))

--> match (fun () ->...) () with Cons (hd,) ->h

--> match Cons (inc (head ones), map inc (tail ones)) with Cons (hd,) ->h
--> match Cons (inc (head ones), fun () ->...) with Cons (hd,) ->h

-=-> .. > 2

20

Another combinator for streams:

let rec zip f sl s2 =

fun () ->
Cons (f (

head sl) (head s2),

map f (tail sl) (tail s2)) ;;

let threes

= z1lp (+) ones twos ;;

let rec fibs =

fun () ->

Cons (0,

fun () ->
Cons (1,
zip (+) fibs (tail fibs)))

21

Unfortunately

This is not very efficient:

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

Every time we want to look at a stream (e.g., to get the head or
tail), we have to re-run the function.

So when you ask for the 10t fib and then the 11t fib, we are re-

calculating the fibs starting from 0, when we could cache or
memoize the result of previous fibs.

22

Memoizing Streams

We can take advantage of refs to memoize:

type ‘a thunk =
Unevaluated of unit -> ‘a | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref

When we build a stream, we use an Unevaluated thunk to be
lazy. But when we ask for the head or tail, we remember
what Cons-cell we get out and save it to be re-used in the
future.

23

Memoizing Streams

type ‘a thunk =
Unevaluated of unit -> ‘a | Evaluated of ‘a ;;

type ‘a lazy t = (‘a thunk) ref ;;
type ‘a str = Cons of ‘a * ('‘a stream)
and ‘a stream = (‘a str) lazy t;;

let rec head(s:’'a stream):’'a =
match !s with
| Evaluated (Cons(h,)) -> h
| Unevaluated f ->
(s := Evaluated (f()); head s) ;;

24

Memoizing Streams]

type ‘a thunk =

Unevaluated of unit -> ‘a | Ey/ Common pattern!

type ‘a lazy t = (’a thunk) re Dereference & check

if evaluated:

* If so, take the
value.

* |f not, evaluate it

& take the value

type ‘a str = Cons of ‘a * ('
and ‘a stream = (‘a str)

let rec head(s:’ ream):’'a =

match !s with
| Evaluated (Cons(h,)) -> h
| Unevaluated f ->
(s := Evaluated (f()); head s)

we
we

25

Memoizing Streams

type ‘a thunk = Unevaluated of unit -> ‘a | Evaluated of ‘a
type ‘a lazy t = (’a thunk) ref ;;

type ‘a str = Cons of ‘a * (’‘a stream)
and ‘a stream = (‘a str) lazy t;;

let rec force(t:’'a lazy t):'a =
match !t with
| Evaluated v -> v
| Unevaluated f ->
let v = £() in
t:= Evaluated v;
\"

let head(s:’'a stream):’'a =
match force s with
| cons(h,_) -> h ;;

let tail(s:’'a stream):’'a =
match force s with
| Cons(_,t) -> t ;;

26

Memoizing Streams

type ‘a thunk =
Unevaluated of unit -> ‘a | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref;;

let rec ones =

ref (Unevaluated (fun () => Cons(1l,ones))) ;;

27

Memoizing Streams

type ‘a thunk
Unevaluated

type ‘a str =

and ‘a stream

let suspend f

let rec ones

of unit -> ‘a | Evaluated of ‘a

Cons of ‘a * (‘a stream)
= ('a str) thunk ref;;

ref (Unevaluated f)

suspend (fun () => Cons(1l,ones))

28

OCaml’s Builtin Lazy Constructor

If you use Ocaml’s built-in lazy _t, then you can write:

type 'a str = Cons of 'a * ('a stream)
and 'a stream = 'a str lazy t
let rec zeros : int stream = lazy (Cons (0, zeros))

lazy takes care of wrapping “ref (Unevaluated (fun () => ...))”

So for example:

let rec fibs =
lazy (Cons (0,
lazy (Cons (1, zip (+) fibs (tail fibs)))))

29

More fun with streams:

let rec filter p s =
if p (head s) then
lazy (Cons (head s,

filter p (tail s)))

else (filter p (tail s))

let even x

let odd x

let evens
let odds

= (x mod 2) = 0;;

not(even x);;

filter even nats ;;
filter odd nats ;;

30

Analyzing a Finite Portion of a Stream

let rec take n s =
1if n = 0 then []

else
let Cons (x

, = Lazy.force s 1n
X::take (n-1

let rec nats from n =
lazy (Cons (n, nats from (n+1)))

let nats = nats from 0
let upto n = take n nats

let upto3 = upto 3

Sieve of Eratosthenes

let not div by n m =
not (m mod n = 0) ;;

let rec sieve s =

lazy (Cons (head s,
sieve (filter (not div by (head s))

(tail s))))

o o
rrs

let primes = sieve (tail (tail nats)) ;;

32

[

Taylor Series

let rec fact n =
if n <= 0 then 1
else n * (fact (n-1))

let £ ones = map float of int ones

(* The following series corresponds to the Taylor
* expansion of e:
* 1/1! + 1/2! + 1/3! + ...
* So you can just pull the floats off and start adding
* them up. *)
let e series =
zip (/.) £ ones (map float of int (map fact nats))

let e up to n =
List.fold left (+.) 0. (take n e series)

33

Pi

(* pl 1s approximated by the Taylor series:
* 4/1 - 4/3 + 4/5 - 4/7 + ...
*)
let rec alt fours =
lazy (Cons (4.0,
lazy (Cons (-4.0, alt fours))));;

let pi series = zip (/.) alt fours (map
float of int odds);;

let pi up to n =
List.fold left (+.) 0.0
(first n pi series) ;;

34

Integration to arbitrary precision...

let approx area (f:float->float)(a:float)(b:float) =
(((f a) +. (£ b)) *. (b -. a)) /. 2.0 ;;

let mid a b = (a +. b) /. 2.0 ;;

let rec integrate f a b =
lazy (Cons (approx area f a b,
zip (+.) (integrate f a (mid a b))
(integrate £ (mid a b) b))) ;;

let rec within eps s =
let (h,t) = (head s, tail s) in

if abs(h -. (head t)) < eps then h else within eps t ;;

let integral f a b eps = within eps (integrate f a b) ;;

Exercises

Do other Taylor series using streams:

— e.g., cos(x) =1—(x?/21) + (x*/4!) —(x®/6!) + (x3/8]!) ...
Approximate pi, as in assighnment 1

— allow the user to sample as many iterations as they want later

You can model a wire as a stream of booleans and a combinational
circuit as a stream transformer.

— define the “not” circuit which takes a stream of booleans and
produces a stream where each value is the negation of the values in
the input stream.

— define the “and” and “or” circuits which take streams of booleans and
produce a stream of the logical-and/logical-or of the input values.

n «u

— better: define the “nor” circuit and show how “not”, “and”, and “or”
can be defined in terms of “nor”.

— For those of you in EE: define a JK-flip-flop

How would you define infinite trees?

[A note on laziness

By default, Ocaml is an eager language, but you can use the “lazy”
features to build lazy datatypes.

Other functional languages, notably Haskell, are lazy by default.
Everything is delayed until you ask for it.

— generally much more pleasant to do programming with infinite data.
— but harder to reason about space and time.

— and has bad interactions with side-effects.
* don’t know when something will get printed!

— Haskell’s type system/library design helps you out

The basic idea of laziness gets used a lot:
— e.g., Unix pipes, TCP sockets, etc.
— dynamic programming algorithms
— big data: Naiad (Microsoft)

[

Summary

You can build infinite data structures.
— Not really infinite — represented using cyclic data and/or lazy
evaluation.
Lazy evaluation is a useful technique for delaying computation until
it’s needed.
— Can model using just functions.
— But behind the scenes, we are memoizing (caching) results using refs.

This allows us to separate model generation from evaluation to get
“scale-free” programming.

— e.g., we can write down the routine for calculating pi regardless of
the number of bits of precision we want.

— Other examples: geometric models for graphics (procedural
rendering); search spaces for Al and game theory (e.g., tree of moves

and counter-moves).

END

