Modules
and Abstract Data Types

COS 326
David Walker
Princeton University

The Reality of Development

We rarely know the right algorithms or the right data
structures when we start a design project.
— When implementing a search engine, what data structures and

algorithms should you use to build the index? To build the query
evaluator?

Reality is that we often have to go back and change our code,
once we’ve built a prototype.

— Often, we don’t even know what the user wants (requirements)
until they see a prototype.

— Often, we don’t know where the performance problems are
until we can run the software on realistic test cases.

— Sometimes we just want to change the design -- come up with
simpler algorithms, architecture later in the design process

Engineering for Change

* Given that we know the software will change, how can we
write the code so that doing the changes will be easier?

Engineering for Change

* Given that we know the software will change, how can we
write the code so that doing the changes will be easier?

 The primary trick: use data and algorithm abstraction.

Engineering for Change

* Given that we know the software will change, how can we
write the code so that doing the changes will be easier?

 The primary trick: use data and algorithm abstraction.

— Don’t code in terms of concrete representations that the
language provides.

— Do code with high-level abstractions in mind that fit the
problem domain.

— Implement the abstractions using a well-defined interface.
— Swap in different implementations for the abstractions.
— Parallelize the development process.

Example

Goal: Implement a query engine.
Requirements: Need a scalable dictionary (a.k.a. index)

— maps words to set of URLs for the pages on which words
appear.

— want the index so that we can efficiently satisfy queries
e e.g., all links to pages that contain “Dave” and “Jill”.

Wrong way to think about this:

— Aha! A Jist of pairs of a word and a /ist of URLs.

— We can look up “Dave” and “lJill” in the list to get back a /ist of
URLs.

Example

type query =
Word of string
| And of query * query

| Or of query * query ;;

type index = (string * (url 1list)) list ;;

let rec eval (g:query) (h:index) : url list =
match g with
| Word x ->
let (,urls) = List.find (fun (w,urls) -> w = X) 1in
urls
| And (gl,g2) ->
merge lists (eval gl h) (eval g2 h)

| Or (qlqu) —>
(eval gl h) @ (eval g2 h)

Example

type query =
Word of string
| And of query * query

| Or of query * query ;;

type index = (string * (url 1list)) list ;;

let rec eval (g:query) (h:index)
merge expects to
be passed sorted
lists.

match g with

| Word x ->
let (,urls) = List.fi
urls

| And (gl,g2) ->
merge lists (eval gl h) (eval g2 h)

| Or (qlqu) —>
(eval gl h) @ (eval g2 h)

Example

type query =
Word of string
| And of query * query

| Or of query * query ;;

type index = (string * (url 1list)) list ;;

let rec eval (g:query) (h:index)
merge expects to
be passed sorted
lists.

match g with

| Word x ->
let (,urls) = List.fi
urls

| And (gl,g2) ->
merge lists

| Or (ql/qZ) —>
(eval gl h) @ (eval g2 h)

in

(eval gl h

Example

a better hash-

type query =
Word of string

table

| And of query * query
| Or of query * query

type index = string (url list) hashtable ;;

let rec eval (g:query) (h:index) : url list =
match g with
| Word x ->
let i = hash string h in
let 1 = Array.get h [1] in
let urls = assoc list find 11 x in
urls
| And (gl,g2) ->
| Or (gl,q92) ->

| find out there’s

implementation

10

A Better Way

type query =
Word of string
| And of query * query
| Or of query * query ;;

type index = string url set dictionary ;;

let rec eval(g:query) (d:index) : url set =
match g with
| Word x —> Dict.lookup d x
| And (gl,g2) -> Set.intersect (eval gl h) (eval g2 h)
| Or (gl,g2) -> Set.union (eval gl h) (eval g2 h)

11

A Better Way

The problem domain

talked about an

abstract type of
dictionaries and sets of
URLs.

type query =
Word of string

| And of query * query

| Or of query * query ;;

type index = string url set dictionary ;;

let rec eval(g:query) (d:index) : url set =
match g with
| Word x —> Dict.lookup d x
| And (gl,g2) -> Set.intersect (eval gl h) (eval g2 h)
| Or (gl,g2) -> Set.union (eval gl h) (eval g2 h)

12

A Better Way

The problem domain

talked about an

abstract type of
dictionaries and sets of

type query =
Word of string

| And of query * query

| Or of query * query ;;
Once we’ve written the
client, we know what

operations we need on
these abstract types.

type index = string url set dictiona

let rec eval (g:query) (d:index) url
match g with

| Word x —-> Dict.lookup d x
| And (gl,g2) -> Set.intersect (eval gl h) (eval g2 h)

| Or (gl,g2) -> Set.union (eval gl h) (eval g2 h)

13

The problem domain]

A Better Way

talked about an

abstract type of
dictionaries and sets of

type query =
Word of string

| And of query * query

| Or of query * query ;;
Once we’ve written the
client, we know what

operations we need on
these abstract types.

type index = string url set dictionaf

let rec eval (g:query) (d:index) url
match g with

| Word x —-> Dict.lookup d x
| And (gl,g2) -> Set.intersect (eval gl h) (eval g2 h)

| Or (gl,g2) -> Set.union (eval gl h) (eval g2 h)

So we can define an
interface, and send a pal
off to implement the
abstract types dictionary
and set.

Later on, when we find
out linked lists aren’t so
good for sets, we can
replace them with
balanced trees.

The problem domain]

A Better Way

talked about an

abstract type of
dictionaries and sets of

type query =
Word of string

| And of query * query

| Or of query * query ;;
Once we’ve written the
client, we know what

operations we need on
these abstract types.

type index = string url set dictionaf

let rec eval (g:query) (d:index) url
match g with

| Word x —-> Dict.lookup d x
| And (gl,g2) -> Set.intersect (eval gl h) (eval g2 h)

| Or (gl,g2) -> Set.union (eval gl h) (eval g2 h)

So we can define an
interface, and send a pal
off to implement the
abstract types dictionary
and set.

Later on, when we find
out linked lists aren’t so
good for sets, we can
replace them with
balanced trees.

Building Abstract Types in Ocaml|

* We can use the module system of Ocaml to build new
abstract data types.
— signature: an interface.

» specifies the abstract type(s) without specifying their
implementation

» specifies the set of operations on the abstract types
— structure: an implementation.
* acollection of type and value definitions
* notion of an implementation matching or satisfying an interface
— gives rise to a notion of sub-typing
— functor: a parameterized module
* really, a function from modules to modules
* allows us to factor out and re-use modules

functor kitten

16

The Abstraction Barrier

Rule of thumb: use the language to enforce the abstraction barrier.

— Second rule of thumb: What is not enforced automatically by the
controller will be broken some time down the line by a client

— this is what modules, signatures and structures are for

* reveal as little information about how something is implemented as
you can.

e provides maximum flexibility for change moving forward.
* pays off down the line

Like all design rules, we must be able to recognize when the barrier is
causing more trouble than it’s worth and abandon it.

— may want to reveal more information for debugging purposes
e eg: conversion to string so you can print things out

ML is particular good at allowing you to define flexible and yet
enforceable abstraction barriers

— precise control over how much of the type is left abstract
— different amounts of information can be revealed in different contexts
— type checker helps you detect violations of the abstraction barrier

[

Simple Modules

OCaml Con

vention:

— file Name.ml is a structure implementing a module named Name

— file Name.mli is a signature for the module named Name

* if there is no file Name.mli, OCaml infers the default signature

— Other modules, like ClientA or ClientB can:

* use dot notation to refer to contents of Name. eg: Name.val

* open Set: get access to all elements of Name

Signature

— opening a module puts lots of names in your namespace

— open modules with discretion

Structure

Name.mli

Name.ml

Name.x

ClientA.ml

open Name
o X e

ClientB.ml

At first glance: OCam| modules = C modules?

C has:
— .h files (signatures) similar to .mli files?
— .cfiles (structures) similar to .ml files?

But ML also has:
— tighter control over type abstraction

* define abstract, transparent or translucent types in signatures
— ie: give none, all or some of the type information to clients

— more structure

* modules can be defined within modules

* je: signatures and structures can be defined inside files
— more reuse

* multiple modules can satisfy the same interface

* the same module can satisfy multiple interfaces

* modules take other modules as arguments (functors)

— fancy features: dynamic, first class modules

Example Signature

module type INT STACK =

sig
type stack
val empty : unit -> stack
val push : i1nt -> stack -> stack
val 1s empty : stack -> bool
val pop : stack —-> stack option
val top : stack -> i1nt option

end

Example Signature

empty and push
are abstract
constructors:

functions that build

our abstract type.

module type INT STACK =
sig

type stack
val empty : unit -> stack
val push : i1nt -> stack -> stack
val 1s empty : stack -> bool
val pop : stack -> stack option
val top : stack -> i1nt option

end

Example Signature

module type INT STACK =

sig
type stack
val empty : unit -> stack
val push : i1nt -> stack -> stack
val 1s empty : stack -> bool
val pop : sta => stack option
val top : stack - ishempiylisian
end observer — useful

for determining
properties of the
ADT.

Example Signature

module type INT STACK =

sig
type stack
val empty : unit -> stack
val push : i1nt -> stack -> stack
val 1s empty : stack -> bool
val pop : stack -> stack option
val top > Ilnt option

end pop is sometimes

called a mutator
(though it doesn’t
really change the
input)

Example Signature

module type INT STACK =

sig
type stack
val empty : unit -> stack
val push : i1nt -> stack -> stack
val 1s empty : stack -> bool
val pop : stack -> stack option
val top : stack -> i1nt option

end

top is also an
observer, in this
functional setting
since it doesn’t
change the stack.

A Better Signature

module type INT STACK =

sig
type stack
(* create an empty stack *)
val empty : unit -> stack
(* push an element on the top of the stack *)
val push : int -> stack -> stack
(* returns true 1ff the stack 1s empty *)
val is empty : stack -> bool

(* pops top element off the stack, returns None
1f the stack is empty *)

val pop : stack -> stack

(* returns the top element of the stack,; returns
None 1f the stack 1s empty *)

val top : stack -> int
end

25

Signature Comments

e Signature comments are for clients of the module
— explain what each function should do

* how it manipulates abstract values (stacks)
— not how it does it

— don’t reveal implementation details that should be hidden
behind the abstraction

* Don’t copy sighature comments in to your structures

— your comments will get out of date in one place or the other
— an extension of the general rule: don’t copy code

* Place implementation comments inside your structure
— comments about implementation invariants hidden from client

— comments about helper functions

Example Structure

module ListIntStack : INT STACK =
struct
type stack = int list
let empty () : stack = []
let push (i:int) (s:stack) = 1i::s
let is empty (s:stack) =
match s with
| [] —-> true
| :: —-> false
let pop (s:stack) =
match s with
| [] —> None
| ::t -> Some t
let top (s:stack) =
match s with
| [] —> None
| h:: -> Some h

end

27

Example Structure

module ListIntStack : INT STACK =

struct
type stack = int list Inside the module,
let empty () : stack = [] we know the
let push (i:int) (s:stack) = 1i:

concrete type used
to implement the
abstract type.

let is empty (s:stack) =
match s with
| [] —-> true
| :: —-> false
let pop (s:stack) =
match s with
| [] —> None
| _::t -> Some t
let top (s:stack) =
match s with
| [] —-> None
| h:: -> Some h

end

Example Structure

module ListIntStack : INT STACK =

struct
type stack = int list
let empty () : stack = []

But by giving the
module the INT_STACK
interface, which does
not reveal how stacks
are being represented,
we prevent code
outside the module
from knowing stacks
are lists.

let push (1:1int) (s:stack) =
let is empty (s:stack) =
match s with
| [] —> true
| :: —-> false
let pop (s:stack) =
match s with
| [] —> None
| _::t -> Some t
let top (s:stack) =
match s with
| [] —> None
| h:: —-> Some h

end

An Example Client

module ListIntStack : INT STACK =
struct

end

let sO = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0;;
let s2 = ListIntStack.push 4 sl1;;
ListIntStack.top s2 ;;

An Example Client

module ListIntStack : INT STACK =
struct

end

let sO = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0;;
let s2 = ListIntStack.push 4 sl1;;
ListIntStack.top s2 ;;

sO ListIntStack.stack
sl : ListIntStack.stack
s2 ListIntStack.stack

31

An Example Client

module ListIntStack : INT STACK =
struct

end

let sO = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0;;
let s2 = ListIntStack.push 4 sl1;;
ListIntStack.top s2;;

- : option int = Some 4

32

An Example Client

module ListIntStack : INT STACK =

struct

end

let sO = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0;;
let s2 = ListIntStack.push 4 sl1;;
ListIntStack.top s2;;

- : option int

= Some 4

ListIntStack.top (ListIntStack.pop s2)

— : option int

= Some 3

.
14

.
14

33

An Example Client

module ListIntStack : INT STACK =
struct

end

let sO = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0;;
let s2 = ListIntStack.push 4 sl1;;
ListIntStack.top s2;;

- : option int = Some 4
ListIntStack.top (ListIntStack.pop s2)
- : option int = Some 3

open ListIntStack;;

.
14

.
14

34

An Example Client

module ListIntStack : INT STACK =
struct

end

let sO = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0;;
let s2 = ListIntStack.push 4 sl1;;
ListIntStack.top s2;;

- : option int = Some 4
ListIntStack.top (ListIntStack.pop s2)
- : option int = Some 3

open ListIntStack;;

top (pop (pop s2));;
— : option int = None

.
14

.
14

35

An Example Client

module type INT STACK =

sig
type stack
val push : int -> stack -> stack

Notice that the
client is not
allowed to know
that the stack is a
list.

module ListIntStack : INT STACK
let s2 = ListIntStack.

List.rev s2;;

Error: This expression has type stack but an
expression was expected of type ‘a list.

36

Example Structure]

module ListIntStack (* : INT STACK *) =
struct

type stack = int list

Note that when you
are debugging, you
may want to comment
out the signature
ascription so that you
can access the
contents of the
module.

let empty () : stack = []

let push (i:int) (s:stack) = 1i::s

let i1s empty (s:stack) =

match s with
| [] —-> true
| :: —> false

exception EmptyStack

let pop (s:stack) =
match s with
| [] -> raise EmptyStack
| it >t
let top (s:stack) =
match s with
| [] -> raise EmptyStack
| h:: -=>h
end

The Client without the Sighature

module ListIntStack (* : INT STACK *) =
struct

end

let s = ListIntStack.empty() ;-
let s1 = ListIntStack.push 3 s;;
let s2 ListIntStack.push 4 sl1;;

If we don’t seal
the module with
a signature, the
client can know
that stacks are
lists.

List.rev s2;;

- : 1Int list

I
w

38

Example Structure

module ListIntStack : INT STACK =
struct

When you put the signature
on here, you are restricting
client access to the
information in the
signature (which does not
reveal that stack = int list.)
So clients can only use the
stack operations on a stack
value (not list operations.)

type stack = int list

let empty () : stack = []

let push (1:int) (s:stack) =

let 1s empty (s:stack) =

match s with
| [] —-> true
| P -> false

exception EmptyStack

let pop (s:stack) =
match s with
| [] -> raise EmptyStack
| it >t
let top (s:stack) =
match s with
| [] -> raise EmptyStack
| h:: -=>h
end

Example Structure]

module type INT STACK =

sig
type stack
val inspect : stack -> 1nt list
val run unit tests : unit -> unit
Another technique:
end .

Add testing components to
your signature.

module ListIntStack : INT STACK =
struct Another option we will see:
have 2 signatures, one for
testing and one for the rest

of the code)

type stack = int 1list

let inspect (s:stack) : int list =
let run unit tests () : unit =
end

ANOTHER EXAMPLE

Polymorphic Queues

module type QUEUE =

sig
type ‘a queu
val empty
val enqueue

val 1s empty

e

unit -> ‘a queue

‘a -> ‘a queue —-> ‘a queue

‘a queue -> bool

exception EmptyQueue

val dequeue
val front

end

‘a queue —>

‘a queue —>

‘a

‘a queue

42

Polymorphic Queues]

These queues are
re-usable for

module type QUEUE =

sig

type ‘a queue

val empty

val enqueue

val 1s empty : ‘a queue -> bool

exception EmptyQueue

val dequeue
val front

end

different element
types.

unit -> ‘a queue

‘a -> ‘a queue —-> ‘a queue

‘a queue —->

Here's an exception
that client code
might want to

‘a queue —-> 1‘a

catch

43

One Implementation

module AppendListQueue : QUEUE =

struct
type ‘a queue = ‘'a list
let empty () = []
let enqueue(x:"a) (g:’a queue) : ‘a queue =

let 1s empty(g:’"a queue) =
match g with
| [] —> true
| :: —=> false

end

q

@

[x]

44

One Implementation

module AppendListQueue : QUEUE =

struct
type ‘a queue = ‘'a list
let empty () = []
let enqueue(x:"a) (g:’"a queue) : ‘'a queue = gq (@ [x]

let 1s empty(g:’'a queue) =

exception EmptyQueue
let deg(g:’a queue) : (‘'a * ‘a gqueue) =
match g with
| [] —-> raise EmptyQueue
| h::t -> (h,t)
let dequeue(g:’"a queue) : ‘a gqueue = snd (deqg q)
let front(g:"a queue) : ‘a = fst (deqg Q)
end

One Implementation]

module AppendListQueue : QUEUE =
struct

end

type ‘a queue = ‘'a list

let empty () = []

let ! 2
et enqueue (x:'a) (q:"a queue) Notice deq is a helper

function that doesn’t
show up in the
signature.

let 1s empty(g:’'a queue) =

exception EmptyQueue
let deg(g:’a queue) : (‘a * ‘a queue) =

match g with

| [] —-> raise EmptyQueue
| h::t -> (h,t)
let dequeue(g:’"a queue) : ‘a que

You can't use it
outside the module.

let front(g:"a queue) : ‘a = fst

46

One Implementation]

Notice enqueue takes
time proportional to
the length of the

module AppendListQueue : QUEUE =
struct

type ‘a queue = ‘a list queue
let empty () = []
let enqueue(x:"a) (g:’"a queue) : ‘'a queue = gq (@ [x]

let 1s empty(g:’'a queue) =

Dequeue runs in

exception EmptyQueue constant time.

let deg(g:’a queue)
match g with
| [] —-> raise EmptyQueue
| h::t -> (h,t)
let dequeue(g:’"a queue) : ‘a gqueue = snd (deqg q)
let front(g:"a queue) : ‘a = fst (deqg Q)
end

r

An Alternative Implementation

.

module DoublelistQueue : QUEUE =
struct
type ‘a queue = {front:’a list; rear:’'a list}

end

In Pictures

abstraction implementation

a,b,cd e {front=[a; b];rear=[e; d; c]}

let g0 = empty {front=[];rear=[]}

let gl = enqueue 3 g0 {front=[];rear=[3]}

let g2 = enqueue 4 gl {front=[];rear=[4;3]}
let g3 = enqueue 5 g2 {front=[];rear=[5;4;3]}

let gb = dequeue g4 {front=

[
[
[
[
let g4 = dequeue g3 {front=]
[
let g6 = enqueue 6 gb {front=]

[

let g7 = enqueue 7 g6 {front=

[An Alternative Implementation

module Doublel.istQueue : QUEUE =

struct
type ‘a queue = {front:’a list; rear:"a list}
let empty () = {front=[]; rear=[]}
let enqueue x g = {front=qg.front; rear=x::g.rear}

let is empty g =
match g.front, g.rear with
| [1, [] —-> true
. -> false

end

[An Alternative Implementation

module DoublelistQueue : QUEUE =
struct
type ‘a queue = {front:’a list; rear:"a list}

exception EmptyQueue

let deg (g:’a queue) : ‘a * ‘a queue =
match g.front with
| h::t -> (h, {front=t; rear=qg.rear})
| [] —-> match List.rev g.rear with
| h::t -> (h, {front=t; rear=J[]})

| [] -> raise EmptyQueue

let dequeue (g:’a queue) : ‘a queue = snd(deqg q)
let front (g:"a queue) : ‘a = fst(deqg Qq)
end

How would we design an abstraction?

Think:
— what data do you want?

* define some types for your data

— what operations on that data do you want?
* define some types for your operations

Write some test cases:

— example data, operations

From this, we can derive a signature

— list the types

— list the operations with their types

— don’t forget to provide enough operations that you can debug!
Then we can build an implementation

— when prototyping, build the simplest thing you can.
— later, we can swap in a more efficient implementation.

— (assuming we respect the abstraction barrier.)

[Common Interfaces

 The stack and queue interfaces are quite similar:

module type STACK =
sig
type ‘a stack
val empty : unit -> ‘a stack

val push : int -> ‘a stack -> ‘a stack

val is empty : ‘a stack -> bool

exception EmptyStack

val pop module type QUEUE =

val top sig

end type ‘a queue
val empty : unit -> ‘a queue
val enqueue : ‘a -> ‘a gqueue -> ‘a queue
val is empty : ‘a queue -> bool
exception EmptyQueue
val dequeue : ‘a queue -> ‘a gqueue
val front : ‘a queue -> ‘a
end

It’s a good idea to factor out patterns

* Stacks and Queues share common features.
e Both can be considered “containers”

* Create a reuseable container interface!

module type CONTAINER =

sig
type ‘'a t
val empty : unit -> ‘a t
val insert : ‘a -> Ya t -> ‘a t
val is empty : ‘a t -> bool
exception Empty
val remove : ‘a t -> ‘a t
val first : ‘a t -> ‘a

end

It’s a good idea to factor out patterns

module type CONTAINER = sig ... end
module Queue CONTAINER = struct ... end
module Stack CONTAINER = struct ... end

module DepthFirstSearch SEARCHER =
struct
type to do Graph.node Queue.t
end

module BreadthFirstSearch SEARCHER =
struct
type to do Graph.node Stack.t

end

Still repeated
code!

Breadth-first
and
depth-first
search code
is the same!

Just use
different
containers!

Need
parameterized
modules!

~

FUNCTORS

Matrices

* Suppose | ask you to write a generic package for matrices.
— e.g., matrix addition, matrix multiplication

 The package should be parameterized by the element type.

— We may want to use ints or floats or complex numbers or binary
values or ... for the elements.

— And the elements still have a collection of operations on them:
* addition, multiplication, zero element, etc.

e What we'll see:

— RING: a signature to describe the type (and necessary
operations) for matix elements

— MATRIX: a signature to describe the available operations on
matrices

— DenseMatrix: a functor that will generate a MATRIX with a
specific RING as an element type

57

Ring Signhature

module type RING
sig
type t
val zero
val one
val add
val mul
end

-> t >t
-> t >t

58

Some Rings

module IntRing =
struct
type t = int
let zero = 0
let one =1 module FloatRing =
let add x y= x + vy struct
let mul x v = x * vy type t = float
end let zero = 0.0
let one = 1.0
let add = (+.
module BoolRing = let mul = E *{)
struct
end
type t = bool
let zero = false
let one = true

let add x y= x || vy
let mul x y = x && y
end

Matrix Signature

module type MATRIX =
sig
type elt

type matrix
val matrix of list : elt list list -> matrix

val add : matrix -> matrix -> matrix

val mul : matrix -> matrix -> matrix

end

60

[

The DenseMatrix Functor

module DenseMatrix
struct

end

(R:RING)

(MATRIX with type elt

61

The DenseMatrix Functor

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct

Argument R must be
a RING

Specify
Result.elt = R.t

Result must be a
MATRIX

end

62

[

The DenseMatrix Functor

module
struct

end

DenseMatrix (R:RING) : (MATRIX with type elt

Use DenseMatrix like
it is a function from
modules to modules

module IntMatrix = DenseMatrix (IntRing)
module FloatMatrix = DenseMatrix (FloatRing)

module BoolMatrix = DenseMatrix (BoolRing)

63

[

The DenseMatrix Functor

module DenseMatrix (R:RING) : (MATRIX H&ﬁh-ﬁig::ff%--a-i)
struct

end

redacted

module type MATRIX =
abstract =

sig 4/,,/«~/-”””*/”
type elt unknown!

type matrix

val matrix_of_list

////////47 elt list list -> matrix

val add : matrix -> matrix -> matrix
val mul : matrix -> matrix -> matrix
end

non-existant

module IntMatrix = DenseMatrix (IntRing)
module FloatMatrix = DenseMatrix (FloatRing)

module BoolMatrix = DenseMatrix (BoolRing)

64

[The DenseMatrix Functor

module DenseMatrix (R:RING) : (MATRIX H&ﬁh-ﬁig::ff%--a-i) =
struct

redacted
If the "with" clause is
redacted then
IntMatrix.elt is abstract module type MATRIX = N

-- we could never build
a matrix because we
could never generate
an elt

sig PRS-
type elt unknown!

type matrix

val matrix_of_list

////////47 elt list list -> matrix

val add : matrix -> matrix -> matrix
val mul : matrix -> matrix -> matrix
end

non-existant

end

module IntMatrix = DenseMatrix (IntRing)
module FloatMatrix = DenseMatrix (FloatRing)

module BoolMatrix = DenseMatrix (BoolRing)

65

[

The DenseMatrix Functor

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t)

struct

end

module IntMatrix

\

sharing constraint

module type MATRIX =
sig known to be
type elt = int — int when
type matrix R.t = int like
val matrix of list : when R = IntRing
/ elt list list -> matrix
list of list of val add : matrix -> matrix -> matrix
) val mul : matrix -> matrix -> matrix
Ints end
.

= DenseMatrix (IntRing)

module FloatMatrix = DenseMatrix (FloatRing)

module BoolMatrix = DenseMatrix (BoolRing)

66

[The DenseMatrix Functor]

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct

sharing constraint

The "with" clause

]
. module type MATRIX =
equal to int -- we can type elt = int int when
build a matrix from any type matrix Rt =int like
int list list ' :
val matrix of list : when R = IntRing
elt list list -> matrix
list of list of val add : matr::Lx -> matr%x -> matr::LX
) val mul : matrix -> matrix -> matrix
end Ints end

module IntMatrix = DenseMatrix (IntRing)
module FloatMatrix = DenseMatrix (FloatRing)

module BoolMatrix = DenseMatrix (BoolRing)

[

Matrix Functor

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t)
struct
type elt = R.t Satisfies the sharing

type matrix = (elt list) list
let matrix of list rows = rows
let add ml m2 =

List.map (fun (rl,r2) ->

constraint

List.map (fun (el,e2) -> R.add el e2))

(List.combine rl r2))
(List.combine ml m2)

let mul ml m2 = (* good exercise *)

end

module IntMatrix = DenseMatrix (IntRing)
module FloatMatrix = DenseMatrix (FloatRing)

module BoolMatrix = DenseMatrix (BoolRing)

68

ANONYMOUS STRUCTURES

Another Example

module type UNSIGNED BIGNUM =

sig

type ubignum

val
val
val
val
val

end

fromInt
tolnt
plus
minus

times

int -> ubignum
ubignum -> int
ubignum -> ubignum -> ubignum
ubignum —-> ubignum -> ubignum

ubignum -> ubignum -> ubignum

70

An Implementation

module My UBignum 1000 : UNSIGNED BIGNUM =

struct
let base = 1000

What if we want
to change the
base? Binary?

Hex? 27327 27647

type ublignum = int list

let toInt(b:ubignum) :1nt = ..

let plus (bl:ubignum) (b2:ubignum) :ubignum = ..

let minus (bl:ubignum) (b2:ubignum) :ubignum = ..

let times (bl:ubignum) (b2:ubignum) :ubignum = ..

end

Another Functor Example]

module type BASE =

sig
val base : int
end
module UbignumGenerator (Base:BASE) : UNSIGNED BIGNUM =
struct

type ubignum = int list
let toInt (b:ubignum) :int =
List.fold left (fun a ¢ -> c*Base.base + a) 0 b

end
Anonymous

structures
module Ubignum 10 =

UbilgnumGenerator (struct let base = 10 end) ;;

module Ubignum 2 =

UbignumGenerator (struct let base = 2 end) ;;

SIGNATURE SUBTYPING

Subtyping

A module matches any interface as long as it provides at least
the definitions (of the right type) specified in the interface.

e But as we saw earlier, the module can have more stuff.
— e.g., the deqg function in the Queue modules

* Basic principle of subtyping for modules:

— wherever you are expecting a module with signature S, you can

use a module with signature S’, as long as all of the stuffin S
appearsin§’.

— Thatis, S’ is a bigger interface.

74

Groups versus Rings

module type GROUP =
sig
type t
val zero : t
val add : t -> t -> t
end
module type RING =
sig
type t
val zero
val one
val add
val mul
end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

-> t >t
-> t >t

t ct f ¢t

Groups versus Rings

module type GROUP =

sig
type t
val zero : t

val add : ¢t -> t -> t
end
module type RING =
sig
type t
val zero t
val one : t
T
T

RING is a sub-type
of GROUP.

val add
val mul
end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

-> t >t
-> t >t

Groups versus Rings

module type GROUP =
sig
type t
val zero : t
val add : t -> t -> t
end
module type RING =
sig
type t
val zero t
val one : t
t
t

There are more
modules matching
the GROUP
interface than the
RING one.

val add
val mul
end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

-> t >t
-> t >t

Groups versus Rings

module type GROUP =
sig
type t
val zero : t
val add : t -> t -> t
end
module type RING =
sig
type t
val zero t
val one : t
t
t

Any module
expecting a
GROUP can be
passed a RING.

val add
val mul
end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

-> t >t
-> t >t

Groups versus Rings

module type GROUP =

sig
type t
val zero : t

val add : £t -—> t -> t
end
module type RING =

The include primitive
is like cutting-and-
pasting the signature’s
content here.

sig

include GROUP

val one : t

val mul : t -> t -> ¢
end

module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

Groups versus Rings

module type GROUP =

sig
type t
val zero : t

val add : £t -—> t -> t
end
module type RING =

That ensures we
will be a sub-type
of the included

S1g signature.
include GROUP
val one : t
val mul : t -> t -> t

end

module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

SUMMARY

Wrap up and Summary

It is often tempting to break the abstraction barrier.

— e.g., during development, you want to print out a set, so you
just call a convenient function you have lying around for
iterating over lists and printing them out.

But the whole point of the barrier is to support future change
in implementation.

— e.g., moving from unsorted invariant to sorted invariant.

— or from lists to balanced trees.

Many languages provide ways to leak information through
the abstraction barrier.

— “good” clients should not take advantage of this.

— but they always end up doing it.

— so you end up having to support these leaks when you upgrade,
else you’ll break the clients.

Wrap up and Summary

It is often tempting to break the abstraction barrier.

— e.g., during development, you want to print out ’t, SO you
just call a convenient function you have lvis nd for
iterating over lists and printing them r‘%§§'

But the whole point of the barris Q\Q‘Apport future change
in implementation. %

— e.g., moving from ur- Q .1ant to sorted invariant.
— or from lists to ' \ _es.

Many langi* % = ways to leak information through
the ab¢’ Q Ler.

\ > should not take advantage of this.

QQ _always end up doing it.
;ou end up having to support these leaks when you upgrade,

else you’ll break the clients.

83

[Key Points

OCaml’s linguistic mechanisms include:
— signatures (interfaces)
— structures (implementations)
— functors (functions from modules to modules)

We can use the module system
— provides support for name-spaces
— hiding information (types, local value definitions)
— code reuse (via functors, reuseable interfaces, reuseable modules)

Information hiding allows design in terms of abstract types and algorithms.
— think “sets” not “lists” or “arrays” or “trees”
— think “document” not “strings”
— the less you reveal, the easier it is to replace an implementation
— use linguistic mechanisms to implement information hiding
* invariants written down as comments are easy to violate
* use the type checker to guarantee you have strong protections in place

84

END

