COS 326
David Walker
Princeton University

TAIL CALLS AND CONTINUATIONS

Tail Recursion

```
let rec sum (l:int list) : int =
  match l with
    [] -> 0
  | hd::tail -> hd + sum tail
;;
```

```
let sum_tail (l:int list) : int =
  let rec aux (l:int list) (a:int) : int =
    match l with
    [] -> a
        | hd::tail -> aux tail (a + hd)
    in
    aux l 0
;;
```

work to do after the function call

no work to do after the function call

We used human ingenuity to do the tail-call transform.

Is there a mechanical procedure to transform *any* recursive function in to a tail-recursive one?

```
let rec sum_to (n: int) : int =
  if n > 0 then
    n + sum_to (n-1)
  else
    0
```

```
let sum_to2 (n: int) : int =
  let rec aux (n:int) (a:int) : int =
   if n > 0 then
      aux (n-1) (a+n)
   else a
  in
  aux n 0
```

human ingenuity

We used human ingenuity to do the tail-call transform.

Is there a mechanical procedure to transform *any* recursive function in to a tail-recursive one?

not only is sum2
tail-recursive
but it reimplements
an algorithm that
took *linear space*(on the stack)
using an algorithm
that executes in
constant space!

```
let rec sum_to (n: int) : int =
  if n > 0 then
    n + sum_to (n-1)
  else
  0
```

human

ingenuity

```
let sum_to2 (n: int) : int =
  let rec aux (n:int) (a:int) : int =
   if n > 0 then
      aux (n-1) (a+n)
   else a
  in
  aux n 0
```

CONTINUATION-PASSING STYLE CPS!

CPS

CPS:

- Short for Continuation-Passing Style
- Every function takes a continuation (a function) as an argument that expresses "what to do next"
- CPS functions only call other functions as the last thing they do
- All CPS functions are tail-recursive

Goal:

Find a mechanical way to translate any function in to CPS

Key idea: capture the *differential* between a tail-recursive function and a non-tail-recursive one.

```
let rec sum (l:int list) : int =
  match l with
  [] -> 0
  | hd::tail -> hd + sum tail
```

Focus on what happens after the recursive call.

Key idea: capture the *differential* between a tail-recursive function and a non-tail-recursive one.

```
let rec sum (l:int list) : int =
  match l with
  [] -> 0
  | hd::tail -> hd + sum tail
```

what happens next

Focus on what happens after the recursive call.

Extracting that piece:

How do we capture it?

How do we capture that computation?

result of recursive call gets plugged in here


```
let rec sum (l:int list) : int =
  match l with
  [] -> 0
  | hd::tail -> hd + sum tail
```

```
hd +
                        let rec sum (l:int list) : int =
                          match 1 with
                             [] -> 0
                          | hd::tail -> hd + sum tail
fun s \rightarrow hd + s
                                final result
    result of non-tail call
type cont = int -> int;;
let rec sum cont (l:int list) (k:cont): int =
  match 1 with
     [] -> ...
  | hd::tail -> ...
```

```
hd +
                       let rec sum (l:int list) : int =
                         match 1 with
                            [] -> 0
                          | hd::tail -> hd + sum tail
fun s \rightarrow hd + s
    result of non-tail call
                                final result
type cont = int -> int;;
let rec sum cont (l:int list) (k:cont): int =
  match 1 with
    [] -> ...
  | hd::tail -> sum cont tail (fun s -> hd + s)
```

```
hd +
                        let rec sum (l:int list) : int =
                          match 1 with
                             [] -> 0
                           | hd::tail -> hd + sum tail
fun s \rightarrow hd + s
    result of non-tail call
                                 final result
type cont = int -> int;;
let rec sum cont (l:int list) (k:cont): int =
  match 1 with
     [] \rightarrow k 0
  | hd::tail -> sum cont tail (fun s -> hd + s)
```

```
hd +
                         let rec sum (l:int list) : int =
                           match 1 with
                              [] -> 0
                            | hd::tail -> hd + sum tail
fun s \rightarrow hd + s
     result of non-tail call
                                 final result
type cont = int -> int;;
let rec sum cont (l:int list) (k:cont): int =
  match 1 with
     [] -> k 0
  | hd::tail \rightarrow sum cont tail (fun s \rightarrow k (hd + s))
```

```
let rec sum (l:int list) : int =
hd +
                          match 1 with
                             [] -> 0
                           | hd::tail -> hd + sum tail
fun s \rightarrow hd + s
type cont = int -> int;;
let rec sum cont (l:int list) (k:cont): int =
  match 1 with
    [] \rightarrow k 0
  | hd::tail \rightarrow sum cont tail (fun s \rightarrow k (hd + s))
let sum (l:int list) : int = sum cont l ( ... )
```

```
let rec sum (l:int list) : int =
hd +
                           match 1 with
                              [] -> 0
                           | hd::tail -> hd + sum tail
fun s \rightarrow hd + s
type cont = int -> int;;
let rec sum cont (l:int list) (k:cont): int =
  match 1 with
     [] \rightarrow k 0
  | hd::tail \rightarrow sum cont tail (fun s \rightarrow k (hd + s))
let sum (l:int list) : int = sum cont l (fun x \rightarrow x)
```

```
type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
  match l with
    [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
```

```
sum [1;2]
```

```
type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
  match l with
    [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
```

```
sum [1;2]
-->
sum_cont [1;2] (fun s -> s)
```

```
type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
  match l with
    [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
```

```
sum [1;2]
-->
sum_cont [1;2] (fun s -> s)
-->
sum_cont [2] (fun s -> s) (1 + s));;
```

```
type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
  match l with
    [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
```

```
sum [1;2]
-->
    sum_cont [1;2] (fun s -> s)
-->
    sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->
    sum_cont [] (fun s -> (fun s -> s) (1 + s)) (2 + s))
```

```
type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
  match l with
    [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
```

```
sum [1;2]
-->
    sum_cont [1;2] (fun s -> s)
-->
    sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->
    sum_cont [] (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->
    (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0
```

```
type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
  match l with
    [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
```

```
sum [1;2]
-->
    sum_cont [1;2] (fun s -> s)
-->
    sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->
    sum_cont [] (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->
    (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0
-->
    (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0
```

```
type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
  match l with
    [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
```

```
sum [1;2]
-->
      sum cont [1;2] (fun s -> s)
-->
      sum cont [2] (fun s \rightarrow (fun s \rightarrow s) (1 + s));;
-->
      sum cont [] (fun s \rightarrow (fun s \rightarrow s) (1 + s)) (2 + s))
-->
      (\text{fun s} \rightarrow (\text{fun s} \rightarrow (\text{fun s} \rightarrow \text{s}) (1 + \text{s})) (2 + \text{s})) 0
-->
      (\text{fun s} \rightarrow (\text{fun s} \rightarrow \text{s}) (1 + \text{s})) (2 + 0))
-->
      (fun s \rightarrow s) (1 + (2 + 0))
```

```
type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
  match l with
    [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
```

```
sum [1;2]
-->
      sum cont [1;2] (fun s -> s)
-->
      sum cont [2] (fun s \rightarrow (fun s \rightarrow s) (1 + s));;
-->
      sum cont [] (fun s \rightarrow (fun s \rightarrow s) (1 + s)) (2 + s))
-->
      (\text{fun s} \rightarrow (\text{fun s} \rightarrow (\text{fun s} \rightarrow \text{s}) (1 + \text{s})) (2 + \text{s})) 0
-->
      (\text{fun s} \rightarrow (\text{fun s} \rightarrow \text{s}) (1 + \text{s})) (2 + 0))
-->
      (fun s \rightarrow s) (1 + (2 + 0))
-->
     1 + (2 + 0) \longrightarrow 3
```

```
type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
  match l with
    [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
```

```
sum [1;2]
-->
    sum_cont [1;2] (fun s -> s)
-->
    sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->
    sum_cont [] (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->
    ...
-->
    3
```

Where did the stack space go?

```
type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
```

Where did the stack space go?

there are 3 closures here. each contains an environment

```
type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)
```

every time you call a function you allocate a continuation to do what's next! the stack shows up on the heap!!!

there are 3 closures here. each contains an environment

function inside function inside function inside expression


```
let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;
```



```
let rec sum_to_cont (n:int) (k:int->int) : int =
   if n > 0 then
      sum_to_cont (n-1) (fun s -> k (n+s))
   else
      k 0 ;;
sum_to_cont 100 (fun s -> s)
```

```
stack sum_to_cont 100 k

fun s env -> s

heap
```

```
let rec sum_to_cont (n:int) (k:int->int) : int =
   if n > 0 then
      sum_to_cont (n-1) (fun s -> k (n+s))
   else
      k 0 ;;
sum_to_cont 100 (fun s -> s)
```



```
let rec sum_to_cont (n:int) (k:int->int) : int =
   if n > 0 then
      sum_to_cont (n-1) (fun s -> k (n+s))
   else
      k 0 ;;
sum_to 100 (fun s -> s)
```


Back to stacks

```
let rec sum_to (n:int) : int =
  if n > 0 then
    n + sum_to (n-1)
  else
    0
;;
sum_to 100
```

```
sum_to 98

99 +

100 +

function
that called
sum_to
```

Back to stacks

```
let rec sum_to (n:int) : int =
  if n > 0 then
    n + sum_to (n-1)
  else
    0
;;
sum_to 100
```

but how do you really implement that?

Back to stacks

```
let rec sum_to (n:int) : int =
  if n > 0 then
    n + sum_to (n-1)
  else
    0
;;
sum_to 100
```

but how do you really implement that?

sum_to 98

99 +

100 +

function
that called
sum_to

there is two bits of information here:

- (1) some state (n=100) we had to remember
- (2) some code we have to run later

Back to stacks

```
let rec sum to (n:int) : int =
                                                      if n > 0 then
                                                        n + sum to (n-1)
                                                      else
                                                    ;;
                                                    sum to 100
                    with reality added
                                                                     code we have to
                                                                     run next
                                       sum to 98
                                    return address
           sum to 98
                                    n = 99
             99 +
                                    return address
                                                           fun s stack ->
                           stack
                                                             return (stack.n + s)
             100 +
                                    n = 100
stack
           function
                                                           fun s stack ->
                                    return address
         that called
                                                             return (stack.n + s)
                                    state
            sum to
```


Why CPS?

Continuation-passing style is *inevitable*.

It does not matter whether you program in Java or C or OCaml -- there's code around that tells you "what to do next"

- If you explicitly CPS-convert your code, "what to do next" is stored on the heap
- If you don't, it's stored on the stack

If you take a conventional compilers class, the continuation will be called a *return address* (but you'll know what it really is!)

The idea of a *continuation* is much more general!

Standard ML of New Jersey

Your compiler can put all the continuations in the heap so you don't have to (and you don't run out of stack space)!

Other pros:

light-weight concurrent threads

Some cons:

- linked list of closures can be less spaceefficient than stack
- hardware architectures optimized to use a stack
- see
 <u>Empirical and Analytic Study of Stack versus</u>

 <u>Heap Cost for Languages with</u>
 <u>Closures</u>. Shao & Appel

Call-backs: Another use of continuations

Call-backs:

continuation

Summary

CPS is interesting and important:

- unavoidable
 - assembly language is continuation-passing
- theoretical ramifications
 - fixes evaluation order
 - call-by-value evaluation == call-by-name evaluation
 - work by Gordon Plotkin
- efficiency
 - generic way to create tail-recursive functions
 - Appel's SML/NJ compiler based on this style
- continuation-based programming
 - call-backs
 - programming with "what to do next"
- implementation-technique for concurrency

ANOTHER EXAMPLE

```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
  match t with
    Leaf -> Leaf
  | Node (j,left,right) ->
    Node (i+j, incr left i, incr right i)
;;
```

Hint: It is a little easier to put the continuations in the order in which they are called.

```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
  match t with
    Leaf -> Leaf
  | Node (j,left,right) ->
    let t1 = incr left i in
    let t2 = incr right i in
    Node (i+j, t1, t2)
;;
```

```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
  match t with
    Leaf -> Leaf
  | Node (j,left,right) ->
    let t1 = incr left i in
    let t2 = incr right i in
    Node (i+j, t1, t2)
```

```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
  match t with
    Leaf -> Leaf
  | Node (j,left,right) ->
    let t1 = incr left i in
    let t2 = incr right i in
    Node (i+j, t1, t2)
;;
```

.

Hint: There are 2 function calls and so you need 2 continuations. Go.

```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
  match t with
    Leaf -> Leaf
  | Node (j,left,right) ->
    let t1 = incr left i in
    let t2 = incr right i in
    Node (i+j, t1, t2)
;;
```

```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
  match t with
    Leaf -> Leaf
  | Node (j,left,right) ->
    let t1 = incr left i in
    let t2 = incr right i in
    Node (i+j, t1, t2))
```

```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
  match t with
    Leaf -> Leaf
  | Node (j,left,right) ->
    let t1 = incr left i in
    let t2 = incr right i in
    Node (i+j, t1, t2)
;;
```

```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
  match t with
    Leaf -> k Leaf
  | Node (j,left,right) ->
    let t1 = incr left i in
    let t2 = incr right i in
    Node (i+j, t1, t2))
```

```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
  match t with
    Leaf -> Leaf
  | Node (j,left,right) ->
    let t1 = incr left i in
    let t2 = incr right i in
    Node (i+j, t1, t2)
;;
```

```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
  match t with
  Leaf -> k Leaf
  | Node (j,left,right) ->
    incr left i (fun result1 ->
    let t1 = result1 in
    let t2 = incr right i in
    Node (i+j, t1, t2))
```

```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
  match t with
  Leaf -> Leaf
  | Node (j,left,right) ->
    let t1 = incr left i in
    let t2 = incr right i in
    Node (i+j, t1, t2)
;;
```

```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
  match t with
    Leaf -> Leaf
  | Node (j,left,right) ->
    let t1 = incr left i in
    let t2 = incr right i in
    Node (i+j, t1, t2)
;;
```

CORRECTNESS OF A CPS TRANSFORM

Are the two functions the same?

```
type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
  match l with
    [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s));;

let sum2 (l:int list): int = sum_cont l (fun s -> s)
```

```
let rec sum (l:int list) : int =
  match l with
  [] -> 0
  | hd::tail -> hd + sum tail
```

Here, it is really pretty tricky to be sure you've done it right if you don't prove it. Let's try to prove this theorem and see what happens:

```
for all l:int list,
  sum_cont l (fun x -> x) == sum l
```

```
for all 1:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
   ...

case: hd::tail
   IH: sum_cont tail (fun s -> s) == sum tail
```

```
let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s))
```

```
for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
   ...

case: hd::tail
   IH: sum_cont tail (fun s -> s) == sum tail

   sum_cont (hd::tail) (fun s -> s)
==
```

```
let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s))
```

```
for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
   ...

case: hd::tail
   IH: sum_cont tail (fun s -> s) == sum tail

   sum_cont (hd::tail) (fun s -> s)
== sum_cont tail (fun s' -> (fun s -> s) (hd + s')) (eval)
```

```
let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s))
```

```
for all 1:int list, sum cont 1 (fun s -> s) == sum 1
Proof: By induction on the structure of the list 1.
case l = []
  . . .
case: hd::tail
  IH: sum cont tail (fun s \rightarrow s) == sum tail
   sum cont (hd::tail) (fun s -> s)
== sum cont tail (fun s' \rightarrow (fun s \rightarrow s) (hd + s')) (eval)
== sum cont tail (fun s' -> hd + s')
                                                        (eval)
```

```
let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s))
```

```
for all l:int list, sum cont l (fun s -> s) == sum l
Proof: By induction on the structure of the list 1.
case l = []
case: hd::tail
  IH: sum cont tail (fun s \rightarrow s) == sum tail
   sum cont (hd::tail) (fun s -> s)
== sum cont tail (fun s' \rightarrow (fun s \rightarrow s) (hd + s')) (eva\checkmark)
                                                            (eval/)
== sum cont tail (fun s' -> hd + s')
== darn!
```

we'd like to use the IH, but we can't! we might like:

sum_cont tail (fun s' -> hd + s') == sum tail

... but that's not going to work either

not the identity continuation (fun s -> s) like the IH requires

Original theorem:

```
for all l:int list,
  sum_cont l (fun s -> s) == sum l
```

Specific continuation

Original theorem:

```
for all l:int list,
  sum_cont l (fun s -> s) == sum l
```

Specific continuation

New theorem:

```
for all l:int list,
  for all k:int->int,
    sum_cont l k == k (sum l)
```

Prove it for *all* continuations. A more general theorem. *Sometimes more general theorems are easier to prove.*

for all k:int->int, sum cont l k == k (sum l)

for all l:int list,

```
let rec sum cont (l:int list) (k:cont): int =
  match 1 with
    [] -> k 0
  | hd::tail -> sum cont tail (fun s -> k (hd + s))
```

```
for all l:int list,
  for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []
  must prove: for all k:int->int, sum_cont [] k == k (sum [])
```

```
let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s))
```

```
for all l:int list,
  for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

must prove: for all k:int->int, sum_cont [] k == k (sum [])

pick an arbitrary k:
```

```
let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s))
```

```
for all 1:int list,
  for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []
  must prove: for all k:int->int, sum_cont [] k == k (sum [])
  pick an arbitrary k:
    sum_cont [] k
```

```
let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s))
```

```
for all l:int list,
  for all k:int->int, sum cont l k == k (sum l)
Proof: By induction on the structure of the list 1.
case l = []
 must prove: for all k:int->int, sum cont [] k == k (sum [])
 pick an arbitrary k:
    sum cont [] k
  == match [] with [] -> k 0 | hd::tail -> ... (eval)
  == k 0
                                                     (eval)
```

```
let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s))
```

```
for all l:int list,
  for all k:int->int, sum cont l k == k (sum l)
Proof: By induction on the structure of the list 1.
case l = []
 must prove: for all k:int->int, sum cont [] k == k (sum [])
 pick an arbitrary k:
    sum cont [] k
  == match [] with [] -> k 0 | hd::tail -> ... (eval)
  == k 0
                                                     (eval)
  == k (sum [])
                 let rec sum cont (l:int list) (k:cont): int =
                   match 1 with
                     [] -> k 0
                   | hd::tail -> sum cont tail (fun s -> k (hd + s))
```

```
for all 1:int list,
  for all k:int->int, sum cont l k == k (sum l)
Proof: By induction on the structure of the list 1.
case l = []
 must prove: for all k:int->int, sum cont [] k == k (sum [])
 pick an arbitrary k:
    sum cont [] k
  == match [] with [] -> k 0 | hd::tail -> ...
                                                    (eval)
  == k 0
                                                     (eval)
  == k 0
                                                     (equals!)
  == k (match [] with [] -> 0 | hd::tail -> ...) (eval, reverse)
  == k (sum [])
                 let rec sum cont (l:int list) (k:cont): int =
case done!
                   match 1 with
                     [] -> k 0
                   | hd::tail -> sum cont tail (fun s -> k (hd + s))
```

```
for all l:int list,
  for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))
```

```
let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
  | hd::tail -> sum_cont tail (fun s -> k (hd + s))
```

```
for all 1:int list,
 for all k:int->int, sum cont l k == k (sum l)
Proof: By induction on the structure of the list 1.
case l = [] ===> done!
case l = hd::tail
 IH: for all k':int->int, sum cont tail k' == k' (sum tail)
 Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))
 Pick an arbitrary k,
    sum cont (hd::tail) k
                  let rec sum cont (l:int list) (k:cont): int =
                     match 1 with
                       [] -> k 0
                     | hd::tail -> sum cont tail (fun s -> k (hd + s))
```

```
for all 1:int list,
 for all k:int->int, sum cont l k == k (sum l)
Proof: By induction on the structure of the list 1.
case l = [] ===> done!
case l = hd::tail
 IH: for all k':int->int, sum cont tail k' == k' (sum tail)
 Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))
 Pick an arbitrary k,
    sum cont (hd::tail) k
  == sum cont tail (fun s \rightarrow k (hd + x)) (eval)
                   let rec sum cont (l:int list) (k:cont): int =
                     match 1 with
                       [] -> k 0
                     | hd::tail -> sum cont tail (fun s -> k (hd + s))
```

```
for all 1:int list,
 for all k:int->int, sum cont l k == k (sum l)
Proof: By induction on the structure of the list 1.
case l = [] ===> done!
case l = hd::tail
 IH: for all k':int->int, sum cont tail k' == k' (sum tail)
 Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))
 Pick an arbitrary k,
    sum cont (hd::tail) k
  == sum cont tail (fun s \rightarrow k (hd + x)) (eval)
  == (fun s \rightarrow k (hd + s)) (sum tail) (IH with IH quantifier k'
                                              replaced with (fun x \rightarrow k (hd+x))
                   let rec sum cont (l:int list) (k:cont): int =
                     match l with
                        [] -> k 0
                      | hd::tail -> sum cont tail (fun s -> k (hd + s))
```

```
for all 1:int list,
  for all k:int->int, sum cont l k == k (sum l)
Proof: By induction on the structure of the list 1.
case l = [] ===> done!
case l = hd::tail
  IH: for all k':int->int, sum cont tail k' == k' (sum tail)
  Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))
  Pick an arbitrary k,
     sum cont (hd::tail) k
  == sum cont tail (fun s \rightarrow k (hd + x)) (eval)
  == (fun s \rightarrow k (hd + s)) (sum tail) (IH with IH quantifier k'
                                               replaced with (fun x \rightarrow k (hd+x))
  == k (hd + (sum tail))
                                               (eval, since sum total and
                                                      and sum tail valuable)
```

```
for all 1:int list,
  for all k:int->int, sum cont l k == k (sum l)
Proof: By induction on the structure of the list 1.
case l = [] ===> done!
case l = hd::tail
  IH: for all k':int->int, sum cont tail k' == k' (sum tail)
  Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))
  Pick an arbitrary k,
     sum cont (hd::tail) k
  == sum cont tail (fun s \rightarrow k (hd + x)) (eval)
  == (fun s \rightarrow k (hd + s)) (sum tail) (IH with IH quantifier k'
                                                replaced with (fun x \rightarrow k (hd+x))
  == k (hd + (sum tail))
                                               (eval, since sum total and
                                                      and sum tail valuable)
  == k (sum (hd::tail))
                                               (eval sum, reverse)
case done!
OED!
```

Finishing Up

Ok, now what we have is a proof of this theorem:

```
for all l:int list,
  for all k:int->int, sum_cont l k == k (sum l)
```

Recall:

```
let sum2 (l:int list) : int = sum_cont l (fun s -> s)
```

We can use that general theorem to get what we really want:

So, we've show that the function sum2, which is tail-recursive, is functionally equivalent to the non-tail-recursive function sum.

SUMMARY

Summary of the CPS Proof

We tried to prove the *specific* theorem we wanted:

```
for all l:int list, sum_cont l (fun s -> s) == sum l
```

But it didn't work because in the middle of the proof, the IH didn't apply -- inside our function we had the wrong kind of continuation -- not (fun s -> s) like our IH required. So we had to prove a more general theorem about all continuations.

```
for all l:int list,
  for all k:int->int, sum_cont l k == k (sum l)
```

This is a common occurrence -- generalizing the induction hypothesis -- and it requires human ingenuity. It's why proving theorems is hard. It's also why writing programs is hard -- you have to make the proofs and programs work more generally, around every iteration of a loop.

END