Continuation-Passing Style

COS 326
David Walker
Princeton University

TAIL CALLS AND CONTINUATIONS

Tail Recursion

let rec sum
match 1 with

(l:int list)

int =

[] -> O
| hd::tail -> hd + sum tail
rr '
let sum tail (l:int list) int =
let rec aux (l:int list) (a:int) int =

match 1 with
[] > a

| hd::talil -> aux tail

in
aux 1 O

(a + hd)

1]

'\

work to
do after
the
function
call

no work
to do after
the
function
call

Question]

We used human ingenuity to do the tail-call transform.

Is there a mechanical procedure to transform any recursive
function in to a tail-recursive one?

let rec sum to (n: int) : int =
if n > 0 then
n + sum to (n-1)

else
0
human
ingenuity
let sum toZ2 (n: int) : iInt =
let rec aux (n:int) (a:int) : int =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n O

[Question]

We used human ingenuity to do the tail-call transform.

Is there a mechanical procedure to transform any recursive
function in to a tail-recursive one?

let rec sum to (n: int) : int =

if n > 0 then

not only is sum?2 = D
. . else

tail-recursive 0
but it reimplements human
an algorithm that ingenuity
took linear space let sum to2 (n: int) : int =
(on the stack) let rec aux (n:int) (a:int) : int =
using an algorithm if n > 0 then
that executes in aux (n-1) (a+n)
constant space! else a

in

aux n O

CONTINUATION-PASSING STYLE
CPS!

CPS

CPS:
— Short for Continuation-Passing Style
— Every function takes a continuation (a function) as an argument
that expresses "what to do next"
— CPS functions only call other functions as the last thing they do
— All CPS functions are tail-recursive
Goal:

— Find a mechanical way to translate any function in to CPS

Question

Key idea: capture the differential between a tail-recursive
function and a non-tail-recursive one.

let rec sum (l:int list) : int =
match 1 with
[] -—> 0

| hd::tail -> hd + sum tail

Focus on what happens after the recursive call.

Question

Key idea: capture the differential between a tail-recursive
function and a non-tail-recursive one.

let rec sum (l:int list) : 1int =
match 1 with
[] -=> 0
| hd::tail -> hd + sum tail
_‘T’
\ what happens
Focus on what happens after the recursive call. next

Extracting that piece:

hd +

\\‘\\\\\\\\\\\ result of recursive

call gets plugged in
here

How do we capture it?

Question

How do we capture that computation?

hd + < resultofrecursive

call gets plugged in

\ here

fun s —-> hd +| s

Question

How do we capture that computation?

hd +

\

fun s -> hd +

let rec sum (l:int list) : int

match 1 with
[] -=> O
| hd::tail -> hd +

sum tail

Question

How do we capture that computation?

hd +

\

fun s —-> hd +| s

let rec sum (l:int list)

match 1 with
[] -> 0

| hd::tail -> hd +

int

sum tail

result of non-tail call final result l
type cont = 1nt -> 1int;;
let rec sum cont (l:int 1list) (k:cont): int =

match 1 with
[] —> ..
| hd::tail ->

Question

How do we capture that computation?

hd +

\

fun s —-> hd +| s

result of non-tail call

let rec sum (l:int list) : int
match 1 with
[] -=> O

| hd::tail -> hd +|sum tail

N

final result l

/

£

type cont = int -> int;;

let rec sum cont (l:int 1list) (k:cont): int =

match 1 with
[] ->

| hd::tail -> sum cont tail (fun s -> hd + s)

Question

How do we capture that computation?

hd +

\

fun s —-> hd +| s

result of non-tail call

let rec sum (l:int list) : int
match 1 with
[] -=> O

| hd::tail -> hd +|sum tail

N

final result l

/

£

type cont = int -> int;;

let rec sum cont (l:int 1list) (k:cont): int =

match 1 with
[] -> k O

| hd::tail -> sum cont tail (fun s -> hd + s)

Question

How do we capture that computation?

hd +

let rec sum (l:int list) : int =

match 1 with
[] -=> O

fun s —> hd I3 | hd::tail -> hd + sum tail

result of non-tail call final result l

AW —

&
type cont = int -> 1int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] -=> k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

Question

How do we capture that computation?

let rec sum (l:int list) : 1int =
hd + .
match 1 with
[] => 0
| hd::tail -> hd +|sum tail
fun s -> hd +|s
type cont = int -> 1int;;
let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] => k O

| hd::tail -> sum cont tail (fun s -> k (hd + s))

let sum (l:int list) : int = sum cont 1 (...)

Question

How do we capture that computation?

let rec sum (l:int list) : 1int =
hd + .
match 1 with
[] => 0
| hd::tail -> hd +|sum tail
fun s -> hd +|s
type cont = int -> 1int;;
let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] => k O

| hd::tail -> sum cont tail (fun s -> k (hd + s))

let sum (l:int list) : iInt = sum cont 1 (fun x -> X)

Execution

type cont = int -> int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)

sum [1;2]

Execution

type cont = int -> int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)

sum [1;2]
-=>
sum cont [1;2] (fun s -> s)

Execution

type cont = int -> int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)

sum [1;2]
——>
sum cont [1;2] (fun s -> s)
__> -
sum cont [2] (fun s -> (fun s -> s) (1 + s));;

Execution

type cont = int -> int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)
sum [1;2]

——>
sum cont [1;2] (fun s -> s)

——>

sum_cont [2] (fun s -> (fun s -> s) (1 + s8));;

sum _cont [] (fun s -> (fun s -> (fun s -> s) (1

|

S))

(2 + s))

Execution

type cont = int -> int;;

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)
sum [1;2]
-—>
sum cont [1;2] (fun s -> s)
__> -
sum cont [2] (fun s -> (fun s -> s) (1 + s));;
-—>

sum cont [] (fun s -> (fun s -> (fun s -> s)

(L + s))

(fun s -=> (fun s -> (fun s -> s) (1 + s)) (2 + s)) O

(2 + s))

Execution

type cont = int -> int;;

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)

sum [1;2]

- sum cont [1;2] (fun s -> s)

__> sum cont [2] (fun s -> (fun s -> s) (1 + s));;

__> sum _cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
__> (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) O

==

(fun s -> (fun s -> s) (1 + s)) (2 + 0))

Execution

type cont = int -> int;;

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)

sum [1;2]

- sum cont [1;2] (fun s -> s)

__> sum cont [2] (fun s -> (fun s -> s) (1 + s));;

__> sum _cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
__> (fun s => (fun s -> (fun s -> s) (1 + s)) (2 + s)) O

__> (fun s -> (fun s -> s) (1 + s)) (2 + 0))

==>

(fun s -> s) (1 + (2 + 0))

Execution

type cont = int -> int;;

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)

sum [1;2]

- sum cont [1;2] (fun s -> s)

__> sum cont [2] (fun s -> (fun s -> s) (1 + s));;

- sum _cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
__> (fun s => (fun s -> (fun s -> s) (1 + s)) (2 + s)) O

__> (fun s -> (fun s -> s) (1 + s)) (2 + 0))

__> (fun s -> s) (1 + (2 + 0))

==

1+ (2 +0) —-—> 3

Question

type cont = int -> int;;

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)

sum [1;2]
sum cont [1;2] (fun s -> s)

sum_cont [2] (fun s -> (fun s -> s) (1 + s8));;

sum _cont [] (fun s -> (fun s -> (fun s -> s) (1 + s))

3

(2 + s))

Where did the stack space go?

Question

type cont = int -> int;;

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] —> k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;
let sum (l:int list) : int = sum cont 1 (fun s -> s)

sum [1;2]
-=>
sum cont [1;2] (fun s -> s)

free variables stored

in closure

/N

——
sum cont [2] (fun s -> (fun s -> s) (1 + s));
-—>
sum cont [] (fun sl -> (fun s2 -> (fun s3 -> s3) (1l+s2))
==
-=> 3

(2+s1))

Where did the stack space go? I

there are 3 closures here.
each contains an environment

type cont = int -> int;;
let rec sum cont (l:int 1list) (k:cont): int
match 1 with
[] —> k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;
let sum (l:int list) : int = sum cont 1 (fun s -> s)

sum [1;2]

——>

sum cont [1;2] (fun s -> s)
__> -

sum cont [2] (fun s -> (fun s -> s)
——>

sum cont [] (fun sl -> (fun s2 ->
__> -
——>

3

free variables stored

in closure
(1 + s) / \
(fun s3 -> s3) (1+s2)) (2+s3))

.7

is/was variable hd
stored in closure

every time you call a function
you allocate a continuation to do what’s next!
the stack shows up on the heap!!!

there are 3 closures here.
each contains an environment

function inside sum_cont []

. . . (fun s3 ->
function inside a stack of (fun s2 ->

function inside :> closures on (fun s1 -> s1) (hdl + s2)
.) (hd2 + s3)
expression the heap |
1 2
stack
sum_cont k3 o
fun s env -> hd2 = 2
env.k (env.h2 + s)
k= N\
| ~— heap
fun s env -> hdl = 1

env.k (env.hdl + s)

fun s env -> s

Continuation-passing style

let rec sum cont
match 1 with
[] —> k O
| hd::tail ->

(l:int list)

sum cont tail

(k:cont): int =

(fun s -> k

(hd + s))

o o
r s

stack
sum_ to cont k

fun s env -> s

heap

heap

Continuation-passing style

stack
sum to cont k2
fun s env -> n = 100
env.k (env.n + s)
k = \
— heap

fun s env }ézltlt]

Continuation-passing style

let rec sum to cont (n:int) (k:int->int) : int =
if n > 0 then
sum to cont (n-1) (fun s -> k (n+s))
else
k0 ;;
sum to cont 100 (fun s -> s)

stack ‘{

sum_to cont 100 k

A

heap

fun s env -> s

Continuation-passing style

let rec sum to cont (n:int) (k:int->int) : int =
if n > 0 then
sum to cont (n-1) (fun s -> k (n+s))
else
k0 ;;
sum to cont 100 (fun s -> s)

stack
sum to cont k2

o \

fun s env -> n = 100
env.k (env.n + s)

k:
N\ — heap

fun s env -> s

Continuation-passing style]

let rec sum to cont (n:int) (k:int->int) : int =
if n > 0 then
sum to cont (n-1) (fun s -> k (n+s))
else
k0 ;;
sum to 100 (fun s -> s)

stack
sum_to cont 98 k3

fun s env -> n = 99
env.k (env.n + s)

~— heap

fun s env —> n = 100
env.k (env.n + 3s)

fun s env -> s

Back to stacks

stack

sum_ to 98

99 +

100 +

function
that called
sum to

let rec sum to (n:int)
if n > 0 then
n + sum to (n-1)
else
0

o o
r s

sum to 100

: int

Back to stacks

stack

sum_ to 98

99 + 4

100 +

function
that called
sum to

let rec sum to (n:int)
if n > 0 then
n + sum to (n-1)
else
0

o o
r s

sum to 100

int =

but how do you really implement that?

[Back to stacks

let rec sum to (n:int) : int
if n > 0 then
n + sum to (n-1)
else
0

o o
r s

sum to 100

but how do you really implement that?

sum_to 98

99 + £

100 + S

———— thereis two bits of information here:
function (1) some state (n=100) we had to remember
that called
(2) some code we have to run later

sum to

stack

Back to stacks

stack

with reality added

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else
0

o o
r s

sum to 100

sum_ to 98

99 +

100 +

function
that called
sum to

stack

sum_ to 98

\

code we have to
run next

return address

n = 99

return address

AN fun s stack —>

n = 100

\\\ return (stack.n + s)

N

return address
state

fun s stack —>
return (stack.n + s)

sum_to 98

stack

sum_to cont 98 k3

v

return address ~.

n = 99 \\\\\\\A

return address ~J | fun s stack ->

return (stack.n+s)

n = 100 ———
return address fun s stack ->
state return (stack.n+s)

fun s env ->

env.k (env.n + s8)

fun s env ->
env.k (env.n + 3)

with the heap

with the stack

n = 100

fun s env -> s

with the stack

with the heap

stack

sum cont

k3

Sum

v

return address

hd = 2

.

return address

fun s stack —>
stack.hd+s

T~

return address
state

fun s stack —>
stack.hd+s

fun s env ->

env.k (env.hd + s)

fun s env ->
env.k (env.hd + s)

fun s env -> s

Why CPS?

Continuation-passing style is inevitable.

It does not matter whether you program in Java or C or OCaml --
there’s code around that tells you “what to do next”

— If you explicitly CPS-convert your code, “what to do next” is
stored on the heap

— If you don’t, it’s stored on the stack

If you take a conventional compilers class, the continuation will
be called a return address (but you’ll know what it really is!)

The idea of a continuation is much more general!

Standard ML of New Jersey

Your compiler can put all the continuations in
the heap so you don’t have to (and you don’t
run out of stack space)!

Other pros:
Compiling with
Continuations * light-weight concurrent threads
Andrew W. Appel Some cons:

* linked list of closures can be less space-
efficient than stack

* hardware architectures optimized to use a
stack

* see
Empirical and Analytic Study of Stack versus
Heap Cost for Languages with
Closures. Shao & Appel

Call-backs: Another use of continuations

Call-backs:

request url : url -> (html -> 'a) -> 'a

request url http://www.stuff.com/i.html

(fun html -> process html)
[N

continuation

Summary

CPS is interesting and important:
* unavoidable

e assembly language is continuation-passing
* theoretical ramifications

* fixes evaluation order

e call-by-value evaluation == call-by-name evaluation
* work by Gordon Plotkin

* efficiency
e generic way to create tail-recursive functions

* Appel's SML/NJ compiler based on this style
e continuation-based programming

e call-backs
* programming with "what to do next"

* implementation-technique for concurrency

ANOTHER EXAMPLE

Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf
| Node (j,left,right) ->
Node (i+j, 1incr left 1, incr right 1)

Hint: Itis a little easier to put the continuations
in the order in which they are called.

Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (1i:1int) : tree =
match t with
Leaf -> Leaf
| Node (j,left,right) ->
let tl = incr left 1 in
let £t2 = incr right i in
Node (i+3j, tl, t2)

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> Leatf
| Node (3j,left,right) ->
let t1 = incr left 1 in
let £t2 = incr right 1 in
Node (i+3j, tl, t2)

Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (1i:1int) : tree =
match t with
Leaf -> Leaf
| Node (j,left,right) ->
let tl = incr left 1 in
let £t2 = incr right i in
Node (i+3, tl, t2)

Hint: There are 2 function calls and so you need 2
continuations. Go.

Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (1i:1int) : tree =
match t with
Leaf -> Leaf
| Node (j,left,right) ->
let tl = incr left 1 in
let £t2 = incr right i in
Node (i+3j, tl, t2)

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> Leatf
| Node (3j,left,right) ->
let t1l = incr left 1 in
let £t2 = incr right 1 in
Node (i+j, tl, t2))

Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (1i:1int) : tree =
match t with
Leaf -> Leaf
| Node (j,left,right) ->
let tl = incr left 1 in
let £t2 = incr right i in
Node (i+3j, tl, t2)

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> k Leaf
| Node (3j,left,right) ->
let t1l = incr left 1 in
let £t2 = incr right 1 in
Node (i+j, tl, t2))

Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:1int) : tree =
match t with
Leaf -> Leaf
| Node (j,left,right) ->
let tl = incr left 1 in
let t2 = incr right 1 in
Node (i+3, tl, t2)

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> k Leaf
| Node (j,left,right) ->
incr left 1 (fun resultl ->
let tl = resultl in
let t2 = incr right 1 in
Node (1+3, tl, t2))

Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (1i:1int) : tree =
match t with
Leaf -> Leaf
| Node (j,left,right) ->
let tl = incr left 1 in
let t2 = incr right 1 in
Node (i+3, tl, t2)

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> k Leaf
| Node (j,left,right) ->
incr left i (fun resultl ->
let tl = resultl in
incr right 1 (fun result2 -> let t2 = result2 in
Node (1+3, tl1, t2))

Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (1i:1int) : tree =
match t with
Leaf -> Leaf
| Node (j,left,right) ->
let tl = incr left 1 in
let t2 = incr right 1 in
Node (i+3, tl, t2)

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
match t with
Leaf -> k Leaf
| Node (j,left,right) ->
incr left i (fun resultl ->
let tl = resultl in
incr right 1 (fun result2 -> let t2 = result2 in
k (Node (i+3j, tl, t2)))

CORRECTNESS OF A CPS
TRANSFORM

[Are the two functions the same?

type cont = 1nt -> int;;

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] => k O

| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum2 (l:int list) : int = sum cont 1 (fun s -> s)

let rec sum (l:int list)
match 1 with
[] -> O

int

| hd::tail -> hd + sum tail

Here, it is really pretty tricky to be sure you've done it right if

you don't prove it. Let's try to prove this theorem and see what

happens:

for all 1l:int 1list,
sum _cont 1 (fun x -> x) == sum 1

[Attempting a Proof

for all 1l:int list, sum cont 1 (fun s -> s) == sum 1
Proof: By induction on the structure of the list 1.

case 1 = []

case: hd::tail

IH: sum cont tail (fun s -> s) == sum tail
let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] —> k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

[Attempting a Proof

for all 1l:int list, sum cont 1 (fun s -> s) == sum 1
Proof: By induction on the structure of the list 1.

case 1 = []

case: hd::tail

IH: sum cont tail (fun s -> s) == sum tail
sum cont (hd::tail) (fun s -> s)
let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] => k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

[Attempting a Proof

for all 1l:int list, sum cont 1 (fun s -> s) == sum 1
Proof: By induction on the structure of the list 1.

case 1 = []

case: hd::tail

IH: sum cont tail (fun s -> s) == sum tail
sum cont (hd::tail) (fun s -> s)
== sum _cont tail (fun s' -> (fun s -> s) (hd + s')) (eval)
let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] => k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

[Attempting a Proof

for all 1l:int list, sum cont 1 (fun s -> s) == sum 1
Proof: By induction on the structure of the list 1.

case 1 = []

case: hd::tail

IH: sum cont tail (fun s -> s) == sum tail
sum cont (hd::tail) (fun s -> s)
== sum _cont tail (fun s' -> (fun s -> s) (hd + s')) (eval)
== sum cont tail (fun s' -> hd + s') (eval)
let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] -=> k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

[Need to Generalize the Theorem and IH

for all 1l:int list, sum cont 1 (fun‘g/f; s) == sum 1
Proof: By induction on the structure of the list 1.

case 1 = []

case: hd::tail

IH: sum cont tail (fun s -> s) == sum tail
sum cont (hd::tail) (fun s -> s)
== sum cont tail (fun s' -> (fun s -> s) (hd + s')) (eva

== sum cont tail (Fun s' -> hd + S'a
/

== darn! ~ \

we'd like to use the IH, but we can't!

we might like: not the identity continuation

(fun s -> s) like the IH requires

sum_cont tail (fun s' -> hd + s') == sum tail

... but that's not going to work either

Need to Generalize the Theorem and IH

Original theorem:

for all 1l:int list,
sum _cont 1 (fun s -> s) == sum 1

\

N

Specific continuation

Need to Generalize the Theorem and IH

Original theorem:

for all 1l:int list,
sum _cont 1 (fun s -> s) == sum 1

\

N

Specific continuation

New theorem:

for all 1l:int list,
for all k:int->int,
sum _cont 1 k == k (sum 1)

A

\ Prove it for all continuations. A more general theorem.
Sometimes more general theorems are easier to prove.

Need to Generalize the Theorem and IH

for all 1l:int list,

for all k:int->int, sum cont 1 k == (sum 1)

let rec sum cont (l:int list)

match 1 with
[] —> k O
| hd::tail -> sum_cont tail

(k:cont) :

(fun

s —> k

int =

(hd + s))

Need to Generalize the Theorem and IH

for all 1l:int list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = []

must prove: for all k:int->int, sum cont [] k == k (sum [])

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with

[] —> k O

| hd::tail -> sum cont tail (fun s -> k (hd + s))

Need to Generalize the Theorem and IH

for all 1l:int list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = []

must prove: for all k:int->int, sum cont [] k == k (sum [])

pick an arbitrary k:

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with

[] —> k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

Need to Generalize the Theorem and IH

for all 1l:int list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.

case 1 = []
must prove: for all k:int->int, sum cont [] k == k (sum [])
pick an arbitrary k:

sum _cont [] k

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with

[] —> k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

Need to Generalize the Theorem and IH

for all 1l:int list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = []
must prove: for all k:int->int, sum cont [] k == k (sum [])

pick an arbitrary k:

sum _cont [] k
== match [] with [] -> k O | hd::tail -> ... (eval)
== k O (eval)
let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] —> k O

| hd::tail -> sum cont tail (fun s -> k (hd + s))

Need to Generalize the Theorem and IH

for all 1l:int list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = []
must prove: for all k:int->int, sum cont [] k == k (sum [])

pick an arbitrary k:

sum _cont [] k
== match [] with [] -> k O | hd::tail -> ... (eval)
—— k 0 (eval)
== (sum [])
let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] > k O

| hd::tail -> sum cont tail (fun s -> k (hd + s))

Need to Generalize the Theorem and IH

for all 1l:int 1list,

for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.

case 1 = []
must prove: for all k:int->int, sum cont [] k == k (sum [])
pick an arbitrary k:
sum _cont [] k
== match [] with [] -> k 0 | hd::tail -> (eval)
== k 0 (eval)
—— k 0 (equals!)
== k (match [] with [] -> 0 | hd::tail -> .) (eval, reverse)
== k (sum [])
case done! let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] —> k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

Need to Generalize the Theorem and IH

for all 1:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = [] ===> done!

case 1 = hd::tail

IH: for all k':int->int, sum cont tail k' == k' (sum tail)
Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))
let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] —> k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

Need to Generalize the Theorem and IH

for all 1:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.

case 1 = [] ===> done!
case 1 = hd::tail
IH: for all k':int->int, sum cont tail k' == k' (sum tail)
Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum cont (hd::tail) k

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] —> k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

Need to Generalize the Theorem and IH

for all 1:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.

case 1 = [] ===> done!

case 1 = hd::tail
IH: for all k':int->int, sum cont tail k' == k' (sum tail)
Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))
Pick an arbitrary k,

sum cont (hd::tail) k

== sum cont tail (fun s -> k (hd + x)) (eval)
let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

Need to Generalize the Theorem and IH

for all 1:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.

case 1 = [] ===> done!

case 1 = hd::tail
IH: for all k':int->int, sum cont tail k' == k' (sum tail)
Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))
Pick an arbitrary k,

sum cont (hd::tail) k
== sum cont tail (fun s -> k (hd + x)) (eval)

== (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'
replaced with (fun x -> k (hd+x))

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] —> k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

Need to Generalize the Theorem and IH

for all 1:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.

case 1 = [] ===> done!

case 1 = hd::tail
IH: for all k':int->int, sum cont tail k' == k' (sum tail)
Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))
Pick an arbitrary k,

sum cont (hd::tail) k

== sum cont tail (fun s -> k (hd + x)) (eval)
== (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'

replaced with (fun x -> k (hd+x))
== k (hd + (sum tail)) (eval, since sum total and

and sum tail valuable)

Need to Generalize the Theorem and IH

for all 1:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.

case 1 = [] ===> done!

case 1 = hd::tail
IH: for all k':int->int, sum cont tail k' == k' (sum tail)
Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))
Pick an arbitrary k,

sum cont (hd::tail) k

== sum cont tail (fun s -> k (hd + x)) (eval)
== (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'
replaced with (fun x -> k (hd+x))
== k (hd + (sum tail)) (eval, since sum total and
and sum tail valuable)
== (sum (hd::tail)) (eval sum, reverse)

case done!
QED!

Finishing Up

Ok, now what we have is a proof of this theorem:

for all 1l:int 1list,

for all k:int->int, sum cont 1 k == (sum 1)
Recall:
let sum2 (l:int list) : int = sum cont 1 (fun s -> s)

We can use that general theorem to get what we really want:

for all 1l:int 1list,

sum”2 1
== sum cont 1 (fun s -> s) (by eval sumZ2)
== (fun s -> s) (sum 1) (by theorem,
instantiating k with (fun s -> s)
== sum 1

So, we've show that the function sum2, which is tail-recursive, is
functionally equivalent to the non-tail-recursive function sum.

SUMMARY

Summary of the CPS Proof

We tried to prove the specific theorem we wanted:

for all 1l:int list, sum cont 1 (fun s -> s) == sum 1

But it didn't work because in the middle of the proof, the IH didn't
apply -- inside our function we had the wrong kind of continuation
-- not (fun s -> s) like our IH required. So we had to prove a more
general theorem about all continuations.

for all 1l:int 1list,
for all k:int->int, sum cont 1 k == k (sum 1)

This is a common occurrence -- generalizing the induction
hypothesis -- and it requires human ingenuity. It's why proving
theorems is hard. It's also why writing programs is hard -- you
have to make the proofs and programs work more generally,
around every iteration of a loop.

END

