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Space

Understanding the space complexity of functional programs

— At |least two interesting components:
* the amount of /ive space at any instant in time
* the rate of allocation

— a function call may not change the amount of live space by
much but may allocate at a substantial rate

— because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot

» OCaml garbage collector is optimized with this in mind

» interesting fact: at the assembly level, the number of
writes by a function program is roughly the same as the
number of writes by an imperative program
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Understanding the space complexity of functional programs

— At |least two interesting components:
* the amount of /ive space at any instant in time
* the rate of allocation

— a function call may not change the amount of live space by
much but may allocate at a substantial rate

— because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot

» OCaml garbage collector is optimized with this in mind

» interesting fact: at the assembly level, the number of
writes by a function program is roughly the same as the
number of writes by an imperative program

— What takes up space?
» conventional first-order data: tuples, lists, strings, datatypes
* function representations (closures)
* the call stack



CONVENTIONAL DATA



Blackboard!

Numbers

Tuples

Data types

Lists



Space Model

Data type representations:

Leaf:

type tree = Leaf | Node of int * tree * tree

Node(i, left, right):

Node \

left

right




Allocating space

In C, you allocate when you call “malloc”

In Java, you allocate when you call “new”

What about ML?



Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if i <= j then
Node (Jj, insert left i, right)
else
Node (3, left, insert right 1)
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Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1i)
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Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)
else

Node (3, left, insert right 1)

Total space allocated is
proportional to the
height of the tree.

~ log n, if tree with n
nodes is balanced
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Compare

let check option
match o with
Some -> 0

| None - failwith

(o:int option)

“found none”

int option

let check option
match o with
Some j

(o:int option)

-> Some 7
| None -> failwith

“found none”

int option




Compare

let check option (o:int option)

match o with
some  -> O
| None -> failwith

int option =

“found none”

let check option (o:int option)

match o with
Some j —-> Some j
| None -> failwith

int option =

“found none”

allocates nothing
when arg is Some i

allocates an option
when arg is Some |



Compare

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int)

int*int =

let double (cl:int*int) int*int =
let ¢2 = ¢l in
cadd cl c2

let double (cl:int*int) int*int =
cadd cl cl

let double (cl:int*int) int*int =

let (x1,yl) = cl in
cadd (x1,yl) (x1,vy1l)
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let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int) : int*int =

let double (cl:int*int)
let ¢2 = ¢l in
cadd cl c?2

int*int =

cl

c?

let double (cl:int*int)
cadd cl cl

int*int =

let double (cl:int*int)
let (x1,yl) = cl in
cadd (x1,yl) (x1,vy1l)

int*int =




Compare

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int) : int*int =

let double (cl:int*int)
let ¢2 = ¢l in
cadd cl c?2

int*int =

let double (cl:int*int)
cadd cl cl

int*int =

let double (cl:int*int)
let (x1,yl) = cl in
cadd (x1,yl) (x1,vy1l)

int*int =




Compare

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int)

int*int =

let double (cl:int*int) int*int =
let ¢2 = ¢l in
cadd cl c2

let double (cl:int*int) int*int =
cadd cl cl

let double (cl:int*int) int*int =

let (x1,yl) = cl in
cadd (x1,yl) (x1,vy1l)

]
Q

]
Q

|_\

'_\




Compare

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int)

int*int =

let double (cl:int*int) int*int =
let ¢2 = ¢l in
cadd cl c2

let double (cl:int*int) int*int =
cadd cl cl

let double (cl:int*int) int*int =

let (x1,yl) = cl in
cadd (x1,yl) (x1,vy1l)

_ no allocation

_ no allocation

_ allocates 2 pairs




Compare

let cadd (cl:int*int) (c2:int*int) : int*int =
let (x1,yl) = cl in
let (x2,y2) = c2 in

(x1+x2, yl+y2)

let double (cl:int*int) : int*int =
let (x1,yl) = cl in

cadd cl1 cl R\\\

extracts components:

it is a read

_ double does not
allocate




FUNCTION CLOSURES



Closures

Consider the following program:

let choose (arg:bool * int * int)

let (b, x, y) = arg in
if b then

(fun n -> n + X)
else

(fun n -> n + vy)

o o
r s

choose (true, 1, 2);:

: int —-> int
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Closures

Consider the following program:

let choose (arg:bool * int * int) : int -> int =
let (b, x, y) = arg in
if b then
(fun n -> n + X)
else

(fun n -> n + vy)

o o
r s

choose (true, 1, 2);:

It’s execution behavior according to the substitution model:

choose (true, 1, 2)
——>
let (b, x, y) = (true, 1, 2) in
if b then (fun n -> n + X)
else (fun n -> n + vy)

if true then (fun n -> n + 1)
else (fun n -> n + 2)

(fun n -=> n + 1)




Substitution and Compiled Code

let choose arg =
let (b, %, V)
if b then
(fun n -=> n + Xx)
else
(fun n -> n + y)

Il
Q
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choose (true, 1, 2);:;




Substitution and Compi

ed Code

let choose arg =

let (b, x, y) = arg in
if b then

(fun n -=> n + Xx)
else

(fun n -> n + y)

o o
r s

choose (true, 1, 2);:;

compile

v

choose:
mov rb r argl[O]
mov rx r arqg([4]
mov ry r argl[8]
compare rb 0
Jmp ret

main:

Jmp choose
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parameters replaced by arguments




Substitution and Compiled Code

let choose arg = choose:
let (b, x, y) = arg in mov rb r argl[O]
if b then mov rx r argl[4]
(fun n -> n + X) mov ry r argl[8]
else ] compare rb 0
(fun n -> n + V) compile > ..
I Jmp ret
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substitution
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let (b, x, y) = (true, 1, 2) in ==
if b then generate new code block with
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else v
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ARy IEY mov rx OxF8[4] 5
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Jmp e compare rb 0

mailn: jmp ret
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Substitution and Compi

ed Code

let choose arg =

let (b, x, y) = arg in
if b then

(fun n -=> n + Xx)
else

compile

choose:

mov rb r argl[O]
mov rx r arqg([4]
mov ry r argl[8]
compare rb 0

(fun n -> n + vy) > oo c
I Jmp ret
choose (true, 1, 2);; main:
execute with jmp choose
substitution
/ execute with substitution
let (b, x, y) = (true, 1, 2) in ==
if b then generate new code block with
(fun n -> n + x) parameters replaced by arguments
else v
(fun n -> n + V) choose:
|
execute with MoVE TG choose subst: 0xF8: 0
substitution MoV Xl mov rb 0xF8[0] :
mov ry no 1
_ choose subst2:
if true then _ mo compgre 1 0
(fun n -> n + 1) Jmp- e co
else . fﬁé o
(fun n -=> n + 2) Mmaln: Jm J
Jjmp choose I




What we aren’t going to do

The substitution model of evaluation is just a model. It says that
we generate new code at each step of a computation. We don’t
do that in reality. Too expensive!

The substitution model is a faithful model for reasoning about
program correctness but it doesn’t help us understand what is
going on at the machine-code level

— that’s a good thing! abstraction!!

— you should almost never think about machine code when writing
a program. We invented high-level programming languages so
you don’t have to.

Still, we need to have a more faithful space model in order to
understand how to write efficient algorithms.



Some functions are easy to implement

# argument in rl
# return address in r0

let add (x:int*int) : int =
let (y,z) = x in add:
y + z 14 r2, ri[o] # vy in r2
;7 1d r3, rl[4] # z in r3
add r4, r2, r3 # sum in r4
jmp r0

If no functions in ML were nested then compiling ML would be
just like compiling C. (Take COS 320 to find out how to do
that...)



How do we implement functions?

Let’s remove the nesting and compile them like we compile C.

let choose arg =
let (b, x, y) = arg in
if b then
? £1
else
let choose arg = £2
let (b, x, y) = arg in i
if b then
(fun n -=> n + Xx)
else

let f1 n = n + x;;

(fun n -> n + vy)

let f2 n =n + y;;




How do we implement functions?

Let’s remove the nesting and compile them like we compile C.

let choose arg =
let (b, x, y) = arg 1in
if b then
? £1
else
let choose arg = £2
let (b, x, y) = arg in i
if b then
(fun n -=> n + Xx)

else
(fun n -> n + vy)

let f1 n = n + x;;

let f2 n =/n + y;;

Darn! Doesn’t work naively. Nested functions contain free variables.
Simple unnesting leaves them undefined.



How do we implement functions?

We can’t define a function like the following using code alone:

let f2 n =n + y;;

A closure is a pair of some code and an environment:

/

let £f2 (n,env) = {y = 1}
n + env.y

code - environment

closure



Closure Conversion

Closure conversion (also called lambda lifting) converts open,
nested functions in to closed, top-level functions.

let choose arg =

let (b, x, y) = arg 1in
if b then

(fun n -=> n + x + V)
else

(fun n -> n + vy)




Closure Conversion

Closure conversion (also called lambda lifting) converts open,

nested functions in to closed, top-level functions.

let choose arg

let (b, x, y) = arg in
if b then

(fun n -=> n + x + V)
else

(fun n -> n + vy)

\\

add environment

parameter
let choose (arg,env) =
let (b, x, y) = arg in
if b then
(£f1l, {xe=x; ye=y})<$\\
else —___ create
(£2, {ye=y})<— | closures
let f1 (n,env) =
n + env.xe + env.ye |
.. use
- environment
variables
let f2 (n,eﬂzg/i>////// instead of
n + env.ye

° o
r s

free variables
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Closure conversion (also called lambda lifting) converts open,

add environment

nested functions in to closed, top-level functions.
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let choose arg = let choose (arg,env) =
let (b, x, y) = arg in let (b, x, y) = arg in
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(fun n -> n + x + V) (f1, {xe=x; ye:y})&
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let £f1 (n,env) =
n + env.xe + env.ye e
o o use
. environment
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(choose (true,1,2)) 3 ”n *oenv.ye free variables
\'4
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let (f code, f env) = f closure in (* extract code, env ¥*)
(*

f code (3, £ env) call £ code *)

o o
rrs
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One Extra Note: Typing

Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the

environments are different

let choose (arg,env) =

let (b, x, y) = arg in
if b then

(fl, Fl1 {xe=x; ye=y}) —_
else

(f2, F2 {ye=y})

let

fl (n,env) =
+ env.xe + env.ye

f2 (n,env) =
+ env.ye

N
type fl env = {xl:int; yl:int}

type f2 env {y2:1int}

type fl clos

type f2 clos =

(int * f1 env -> int)

(int * £2 env -> int)

* fl_env

* f2_env




One Extra Note: Typing

Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the
environments are different

let choose
let (b, x,
if b then

(arg,env) =

y) = arg 1in

let f1

(n,env) =
match env with
Fl e -=> n + e.x1 + e.y2

.
/4

(fl, Fl1 {x1l=x; y2=y}) \\\\\\\\\ | F2  -> failwith "bad env!"
else i
(£2, F2 {y2=y})
let £2 (n,env) =
match env with
Fl -> failwith "bad env!"

| F2 e ->n + e.y2

.
/4

pe fl1 env

type f2 env

{x1l:int; yl:int}

{y2:int}

type fl clos =

type f2 clos =

(int * f1 env -> int) * fl env

(int * £2 env -> int) * f2 env

fix I:

type env = Fl1 of fl env | F2 of f2 env
(int * env =-> 1int)
(int * env -> 1int)

type fl clos =
type f2 clos =

* env
* env




[ One Extra Note: Typing

Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the
environments are different

let choose (arg,env) = let f1 (n,env) =
let (b, x, y) = arg in n + env.xe + env.ye
if b then
(fl, {xe=x; ye=y}) =
else let £2 (n,env) =
(£2, {ye=y}) n + env.ye

type fl env = {xe:int; ye:int} type fl clos = (int * fl1 env -> int) * fl env
\
type f2 env = {xe:int} type f2 clos = (int * f2 env -> int) * f2 env

type fl env
fix I type f2 env {xe:int}

type fl clos = exists env. (int * env -> int) * env
type f2 clos = exists env. (int * env -> int) * env

{xe:int; ye:int}




[ One Extra Note: Typing ]

Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the
environments are different

let choose (arg,env) = let f1 (n,env) =
let (b, x, y) = arg in n + env.xe + env.ye
if b then
(fl, {xe=x; ye=y}) =
else let £2 (n,env) =
(£2, {ye=y}) n + env.ye

)

“From System F to Typed Assembly Language,”
-- Morrisett, Walker et al.

type fl env = {xe:int; ye:int} type fl clos =
\
type f2 env = {xe:int} type f2 clos =

type fl env = {xe:int; ye:int}
fix I type f2 env = {xe:int}
) type fl clos = exists env. (int * env -> int) * env

type f2 clos

exists env. (int * env -> int) * env




Aside: Existential Types

map has a universal polymorphic type:

map : (‘a -> 'b) -> 'a list -> 'b list "for all types 'a and for all types 'b, ..."

when we closure-convert a function that has type int -> int, we get a function
with existential polymorphic type:

exists 'a. ((int * 'a) -> int) * 'a "there exists some type 'a such that, ...

In OCaml, we can approximate existential types using datatypes (a data type
allows you to say "there exists a type 'a drawn from one of the following
finite number of options." In Haskell, you've got the real thing.



Closure Conversion: Summary

(before)

(after)

All function definitions equipped with extra env parameter:

let £ arg = ...

let £ code (arg, env)

All free variables obtained from parameters or environment:

env.cx

All functions values paired with environment:

i

(f code, {cxl=vl; ..

., CcxXn=vn})

All function calls extract code and environment and call code:

let (f code, f env)
f code (e, f env)

f in




The Space Cost of Closures

The space cost of a closure
= the cost of the pair of code and environment pointers
+ the cost of the data referred to by function free variables



Assignment #4 ]

An environment-based interpreter:

* Instead of substitution, build up environment.
* just a list of variable-value pairs

* When you reach a free variable, look in environment for its value.

 To evaluate a recursive function, create a closure data structure
* pair current environment with recursive code

 To evaluate a function call, extract environment and code from
closure, pass environment and argument to code



TAIL CALLS AND CONTINUATIONS



Some Innocuous Code

Let’s try it.

(Go to tail.ml)

(* sum of 0..n *)

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else 0

°
rs

let big int = 1000000; ;

sum big int;;




Some Other Code

Four functions: Green works on big inputs; Red doesn’t.

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int) : int =
if n > 0 then
aux (n-1) (a+n)
else a
in
S let rec sum2 (l:int list) : int =
P match 1 with
[] => 0
| hd::tail -> hd + sum2 tail
let rec sum to (n:int) : int = 1y

if n > 0 then
n + sum to (n-1)

else 0
ry let sum (l:int list) : int =
let rec aux (l:int list) (a:int) : int =
match 1 with
[] -> a

| hd::tail -> aux tail (a+hd)
in
aux 1 O

o o
r s




Some Other Code

Four functions: Green works on big inputs; Red doesn’t.

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
if n > 0 then
aux (n-1) (a+n)
else a
in
aux n O
let rec sum to (n:int) : int

if n > 0 then
n + sum to (n-1)
else O

°
r s

let rec sum2 (l:int list) : int
match 1 with
[] => 0
| hd::tail -> hd + sum2 tail

code that works:
no computation after
recursive function call

let sum (l:int list) : int =
let rec aux (l:int list) (a:int)
match 1 with
[] -> a
| hd::tail -> aux tail (a+hd)
in
aux 1 0

o o
r s




Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:

sum to 1000000

(* sum of O0..n

let rec sum to

*)

(n:int)

if n > 0 then

n + sum to
else 0

let big int =

sum big int;;

(n-1)

10000005 ;

: int




Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:

—-=>

sum to 1000000

1000000 + sum to 99999

(* sum of O0..n

let rec sum to

*)

(n:int)

if n > 0 then

n + sum to
else 0

let big int =

sum big int;;

(n-1)

10000005 ;

: int




Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:

—-=>

—=>

sum to 1000000
1000000 + sum to 99999

1000000 + 99999 + sum to 99998

(* sum of O0..n *)

let rec sum to (n:int) : int
if n > 0 then
n + sum to (n-1)
else O

let big int = 1000000;;

sum big int;;

expression size grows
at every recursive call ...

lots of adding to do after
the call returns”




Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:

—-=>

—=>

-=>

——>

sum to 1000000
1000000 + sum to 99999

1000000 + 99999 + sum to 99998

1000000 + 99999 + 99998 + ...

+ sum to 0

(* sum of O0..n

let rec sum to

*)

(n:int)

if n > 0 then

n + sum to
else 0

let big int =

sum big int;;

(n-1)

10000005 ;

: int




Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:

—-=>

sum to 1000000
1000000 + sum to 99999

1000000 + 99999 + sum to 99998

1000000 + 99999 + 99998 + ...

1000000 + 99999 + 99998 + ...

+ sum to 0

_|_

0

(* sum of 0..n *)
let rec sum to (n:int)
if n > 0 then

n + sum to
else O

(n—-1)
let big int = 1000000;;

sum big int;;

: int

-

recursion
finally bottoms out




Tail Recursion

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:

sum to 1000000

1000000 + sum to 99999

1000000 + 99999 + sum to 99998

1000000 + 99999 + 99998 + ...
1000000 + 99999 + 99998 + ...

. add it all back up ...

+ sum to 0

let rec sum to
if n > 0 then
n + sum to
else O

o o
r s

let big int

(* sum of O0..n *)

(n:int)

(n-1)

= 1000000; ;

+ 0 sum big int;;

: int

do a long series
of additions to get
back an int




Non-tail recursive

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

stack

sum to 10000




Non-tail recursive

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

stack

sum to 9999

10000 +




Non-tail recursive

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

stack sum_ to 9998
9999 +

10000 +




Non-tail recursive

let rec sum to (n:int)
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

: int

sum _to 0

stack 9998 +
9999 +

10000 +




Non-tail recursive

let rec sum to (n:int)
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

: int

stack 9998 +
9999 +

10000 +




Non-tail recursive

let rec sum to (n:int)
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

: int

stack n

9999 +

10000 +




Non-tail recursive

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

stack

m

10000 +




Non-tail recursive

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 100

stack

result




Data Needed on Return Saved on Stack

sum to 10000

10000 + 9999 + 9998 + 9997 + ...

/

_|_

—

9996
9997
9998
2999
10000

the stack

!

not much space left!
will run out soon!

every non-tail call puts the data from the calling context on the stack



Memory is partitioned: Stack and Heap

heap space (big!)

stack space
(smallt!)




Tail Recursion

A tail-recursive function is a function that does no work after it

calls itself recursively.

Tail-recursive:

sum to2 1000000

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
0 AimE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0

o o
r s




Tail Recursion

A tail-recursive function is a function that does no work after it

calls itself recursively.

Tail-recursive:

sum to2 1000000
===
aux 1000000 O

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
0 AimE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0

o o
r s




Tail Recursion

A tail-recursive function is a function that does no work after it

calls itself recursively.

Tail-recursive:

sum to2 1000000
===

aux 1000000 O
-—>

aux 99999 1000000

(* sum of O0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
0 AimE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0

o o
r s




Tail Recursion

A tail-recursive function is a function that does no work after it

calls itself recursively.

Tail-recursive:

sum to2 1000000
__> o

aux 1000000 O
-=>

aux 99999 1000000
—=>

aux 99998 1999999

(* sum of O0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
0 AimE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0

o o
r s




Tail Recursion

A tail-recursive function is a function that does no work after it
calls itself recursively.

Tail-recursive:

sum to2 1000000

aux

aux

aux

aux

1000000 O

99999 1000000

99998 1999999

-363189984

(* sum of O0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
0 AimE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0

o o
r s

363189984vLiiiiiiiiiiiiiiiiii\\\\

(addmon overflow occurred
at some point)

constant size expression
in the substitution model




Tail Recursion

A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
2 AmiE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0O

o
rs

stack

aux 10000 O




Tail Recursion

A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
2 AmiE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0O

o
rs

stack

aux 9999 10000




Tail Recursion

A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
2 AmiE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0O

o
rs

stack

aux 9998 19999




Tail Recursion

A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
2 AmiE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0O

o
rs

stack

aux 9997 29998




Tail Recursion

A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
2 AmiE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0O

o
rs

stack

aux 0 BigNum




[ Question ]

We used human ingenuity to do the tail-call transform.

Is there a mechanical procedure to transform any recursive
function in to a tail-recursive one?

let rec sum to (n: int) : int =
if n > 0 then

not only is sum?2 n + sum to (n-1)
tail-recursive else

. 0
but it reimplements »
an algorithm that human
took linear space Ingenuity
(On the StaCk) let sum to2 (n: int) : int =
using an algorithm let rec aux (n:int) (a:int) : int =
that executes in E T e

| aux (n-1) (a+n)

constant space! clse a

in
aux n O

o o
r7s




CONTINUATION-PASSING STYLE
CPS!



CPS

CPS:
— Short for Continuation-Passing Style
— Every function takes a continuation (a function) as an argument
that expresses "what to do next"
— CPS functions only call other functions as the last thing they do
— All CPS functions are tail-recursive
Goal:

— Find a mechanical way to translate any function in to CPS



Serial Killer or PL Researcher?




Serial Killer or PL Researcher?

Gordon Plotkin Robert Garrow
Programming languages researcher Serial Killer
Invented CPS conversion.

Killed a teenager at a campsite
Call-by-Name, Call-by Value in the Adirondacks in 1974.
and the Lambda Calculus. TCS, 1975. Confessed to 3 other killings.



Serial Killer or PL Researcher?

Gordon Plotkin Robert Garrow
Programming languages researcher Serial Killer
Invented CPS conversion.

Killed a teenager at a campsite
Call-by-Name, Call-by Value in the Adirondacks in 1974.
and the Lambda Calculus. TCS, 1975. Confessed to 3 other killings.



SUMMARY



Overall Summary

We developed techniques for reasoning about the space costs of
functional programs

— the cost of manipulating data types like tuples and trees
— the cost of allocating and using function closures
— the cost of tail-recursive and non-tail-recursive functions

We also talked about an important program transformation:

— closure conversion makes nested functions with free variables in to
pairs of closed code and environment

— next time: continuation-passing style transformation



