Did | get it right?

COS 326
David Walker
Princeton University

[

Did | get it right?

“Did | get it right?”
— Most fundamental question you can ask about a computer program

Techniques for answering:

Grading

* hand in program to TA
e check to see if you gotan A
* (does not apply after school is out)

Testing
* runt

* how

» create a set of sample inputs

he program on each input

* check the results

far does this get you?

has anyone ever tested a
homework and not received an A?
why did that happen?

Proving
e consider all legal inputs
* show every input yields correct result
 how far does this get you?
* has anyone ever proven a
homework correct and not received
an A?
* why did that happen?

Program proving

* The basic, overall mechanics of proving functional programs correct
is not particularly hard.

— You are already doing it to some degree.

— The real goal of this lecture to help you further organize your thoughts
and to give you a more systematic means of understanding your
programs.

— Of course, it can certainly be hard to prove some specific program has
some specific property -- just like it can be hard to write a program
that solves some hard problem

 We are going to focus on proving the correctness of pure
expressions

— their meaning is determined exclusively by the value they return
— don’t print, don’t mutate global variables, don’t raise exceptions
— always terminate

— another word for “pure expression” is “valuable expression”

Example Theorems

We'll prove properties of O'Caml
expressions, starting with equivalence
properties:

Theorem: easy 12030==50

Theorem:
for all natural numbers n,
exp n == 2"n

Theorem:
for all lists xs, ys,
length (cat xs ys) == length xs + length ys

let easy xy z =
X *(y+2)

let exp n =
match n with
|0->1
| n->2 *exp (n-1)

let length xs =
match xs with
| [1=>0
| x::xs =>1 + length xs

let cat xs1 xs2 =
match xs with
| [] -> xs2
| hd::tl -> hd :: cat tl xs2

[Things to Watch For

* The types are going to guide us in our theorem proving, just like
they guided us in our programming

[Things to Watch For

* The types are going to guide us in our theorem proving, just like
they guided us in our programming

— when programming with lists, functions (often) have 2 cases:
* []
e hd::tl
— when proving with lists, proofs (often) have 2 cases:
* []
e hd::tl

Things to Watch For

The types are going to guide us in our theorem proving, just like
they guided us in our programming

— when programming with lists, functions (often) have 2 cases:
* []
 hd::tl

— when proving with lists, proofs (often) have 2 cases:
* []
e hd::tl

— when programming with natural numbers, functions have 2 cases:
0
e k+1

— when proving with natural numbers, proofs have 2 cases:
0
e k+1

This is not a fluke! Proofs usually follow the structure of programs.

[Things to Watch For

* More structure:
— when programming with lists:

* []is often easy
* hd :: tl often requires a recursive function call on tl
— we assume our recursive function behaves correctly on tl
— when proving with lists:
e []is often easy
* hd :: tl often requires appeal to an induction hypothesis for tl
— we assume our proof holds for tl

Things to Watch For

More structure:
— when programming with lists:

* []is often easy
* hd :: tl often requires a recursive function call on tl
— we assume our recursive function behaves correctly on tl
— when proving with lists:
e []is often easy
* hd :: tl often requires appeal to an induction hypothesis for tl
— we assume our property of interest holds for tl
— when programming with natural numbers:
* Ois often easy
* k+ 1 often requires a recursive call on k
— when proving with natural numbers:
* 0is often easy
* k+ 1 often requires appeal to an induction hypothesis for k

Key ldeas

Idea 1: The fundamental definition of when programs are equal.

two expressions are equal if and only if:
* they both evaluate to the same value, or
* they both raise the same exception, or

* they both infinite loop \

we will use
what we learned
about O'Caml
evaluation

[Key Ideas]

Idea 1: The fundamental definition of when programs are equal.

two expressions are equal if and only if:
* they both evaluate to the same value, or
* they both raise the same exception, or

* they both infinite loop this is th
is is the

principle of
"substitution of
ldea 2: A fundamental proof principle. equals for equals”

if two expressions el and e2 are equal
and we have a third complicated expression FOO (x)
then FOO(el) is equal to FOO (e2)

super useful since we can do a small, local proof
and then use it in a big program: modularity!

[The Workhorse: Substitution of Equals for Equals]

if two expressions el and e2 are equal
and we have a third complicated expression FOO (x)
then FOO(el) is equal to FOO (e2)

An example: | know 2+2 == 4,

| have a complicated expression: bar (foo() * 34

So | also know that bar (foo (2+2)) * 34 == bar (foo (4)) * 34.

If expressions contain things like mutable references, this proof principle
breaks down. That’s a big reason why | like functional programming and
a big reason we are working primarily with pure expressions.

Important Properties of Expression Equality

Other important properties:

(reflexivity) every expression e is equal to itself: e ==e

(symmetry) if el == e2 then e2 == el

(transitivity) if el == e2 and e2 == e3 then el == €3

(evaluation) if el --> e2 then el == e2.

(congruence, aka substitution of equals for equals) if two
expressions are equal, you can substitute one for the other inside
any other expression:

— if el == e2 then e[el/x] == e[e2/x]

EASY EXAMPLES

Easy Examples

Most of our proofs will use what we know about the substitution
model of evaluation. Eg:

Given:

let easy xyz=x* (y + 2)

/ a function definition

Easy Examples

Most of our proofs will use what we know about the substitution
model of evaluation. Eg:

Given: |leteasyxyz=x*(y+2z)

Theorem: easy12030==50

Easy Examples

Most of our proofs will use what we know about the substitution
model of evaluation. Eg:

Given: |leteasyxyz=x*(y+2z)

Theorem: easy12030==50

Proof:
easy 1 20 30 (left-hand side of equation)

Easy Examples

Most of our proofs will use what we know about the substitution
model of evaluation. Eg:

Given: |leteasyxyz=x*(y+2z)

Theorem: easy12030==50

Proof:
easy 1 20 30 (left-hand side of equation)

== 1 * (20 + 30) (by evaluating easy 1 step)

Easy Examples

Most of our proofs will use what we know about the substitution
model of evaluation. Eg:

Given: |leteasyxyz=x*(y+2z)

Theorem: easy12030==50

Proof:

easy 1 20 30 (left-hand side of equation)
== 1* (20 + 30) (by evaluating easy 1 step)
==50 (by math)

QED.

Easy Examples

Most of our proofs will use what we know about the substitution

model of evaluation. Eg:

Given: |leteasyxyz=x*(y+2z)

facts go on

Theorem: easy12030==50

an

the left

justifications on the right

notice the
. 2-column
proof style

Proof:

easy 1 20 30 (left-hand side of equation)
== 1* (20 + 30) (by evaluating easy 1 step)
==50 (by math) |

QED.

Easy Examples

We can use symbolic values in in our proofs too. Eg:

Given: |leteasyxyz=x*(y+2)

Theorem: forallintegersnandm,easylnm==n+m

Proof:

easy 1 nm (left-hand side of equation)

Easy Examples

We can use symbolic values in in our proofs too. Eg:

Given: |leteasyxyz=x*(y+2)

Theorem: forallintegersnandm,easylnm==n+m

Proof:

easy 1 nm (left-hand side of equation)
== 1*(n+m) (by evaluating easy)

Easy Examples

We can use symbolic values in in our proofs too. Eg:

Given: |leteasyxyz=x*(y+2)

Theorem: forallintegersnandm,easylnm==n+m

Proof:

easy 1 nm (left-hand side of equation)
== 1*(n+m) (by evaluating easy)
==n+m (by math)

QED.

Easy Examples

We can use symbolic values in in our proofs too. Eg:

Given: |leteasyxyz=x*(y+2)

Theorem: for all integersn, m, k, easykn m==easykmn

Proof:

easy k nm (left-hand side of equation)

Easy Examples

We can use symbolic values in in our proofs too. Eg:

Given: |leteasyxyz=x*(y+2)

Theorem: for all integersn, m, k, easykn m==easykmn

Proof:

easy k nm (left-hand side of equation)
==k *(n+m) (by evaluating easy)

Easy Examples

We can use symbolic values in in our proofs too. Eg:

Given: |leteasyxyz=x*(y+2)

Theorem: for all integersn, m, k, easykn m==easykmn

Proof:
easy k nm (left-hand side of equation)
==k * (n + m) (by evaluating easy)
==k * (m + n) (by math, subst of equals for equals)

.

I'm not going to mention
this from now on

Easy Examples

We can use symbolic values in in our proofs too. Eg:

Given: |leteasyxyz=x*(y+2)

Theorem: for all integersn, m, k, easykn m==easykmn

Proof:
easy k nm (left-hand side of equation)
==k * (n+ m) (by evaluating easy)
==k * (m + n) (by math)
==easy kmn (by evaluating easy)

QED.

Easy Examples

We can use symbolic values in in our proofs too. Eg:

substitution/
evaluating/
“unfolding”
a definition

the reverse:

Given: |leteasyxyz=x*(y+2)
Theorem: for all integersn, m, k, easykn m==easykmn
Proof:
easy k nm (left-hand side ow
==k *(n+m) (by def of easy)
==k * (m + n) (by math)
==easykmn (by def of easy) /
QED.

back up

“folding” a definition

[

An Aside: Symbolic Evaluation

One last thing: we sometimes find ourselves with a function, like
easy, that has a symbolic argument like k+1 for some k and we would
like to evaluate it in our proof. eg:

easy x y (k+1)
==x * (y + (k+1)) (by evaluation of easy | hope)

However, that is not how O’Caml evaluation works. O’Caml
evaluates it’s arguments to a value first, and then calls the function.

Don’t worry: if you know that the expression will evaluate to a value
(and will not infinite loop or raise an exception) then you can
substitute the symbolic expression for the parameter of the function

To be rigorous, you should prove it will evaluate to a value, not just
guess ... we aren’t going to pay too much attention to that ...

An Aside: Symbolic Evaluation

An interesting example:

let const x =7

const (exp) == (By evaluation of const?)

does this work for any expression?

An Aside: Symbolic Evaluation

An interesting example:

let const x =7

const(n/0) == (By careless, wrong! evaluation of const)

An Aside: Symbolic Evaluation

An interesting example:

let constx =7

const(n/0) == (By careless, wrong! evaluation of const)

 n/0raises an exception

* soconst (n/0)raises an exception

 but7isjust 7and doesn’t raise an exception

* an expression that raises an exception is not equal to one that returns a value!

An Aside: Symbolic Evaluation

An interesting example:

let const x =7

const(n/0) == (By careless, wrong! evaluation of const)

what to remember:
f(e) == body_of f with_e substituted for f parameter

whenever e evaluates to a value (not an exception or infinite loop)

[Summary so far: Proof by simple calculation

 Some proofs are very easy and can be done by:

— unfolding definitions (ie: using forwards evaluation)

— using lemmas or facts we already know (eg: math)

— folding definitions back up (ie: using reverse evaluation)
* Eg:

Definition: Theorem: easyabc==easyach
let easy xyz=x*(y +2)

Proof:

/ easyabc
given this / == a*(b+c) (bydefof easy)

we do this proof ==a*(c+b) (bymath)

== easyach (by def of easy)

INDUCTIVE PROOFS

A problem

Theorem: For all natural numbers n,

exp(n) == 2"n.

let exp n =
match n with
|0->1
| n->2 *exp (n-1)

36

A problem

Theorem: For all natural numbers n,

exp(n) == 2"n.

Recall: Every natural number nis
either O or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do

our proof in two cases.

let exp n =
match n with
|0->1
| n->2 *exp (n-1)

37

A problem

Theorem: For all natural numbers n,
exp(n) == 2"n.

Recall: Every natural number nis
either O or it is k+1 (where k is also a natural number).

Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: n=0:
exp O

let exp n =
match n with
|0->1
| n->2 *exp (n-1)

38

A problem

Theorem: For all natural numbers n, let exp n = ,
match n with
exp(n) == 27n. |0->1
| n->2 *exp (n-1)

Recall: Every natural number nis
either O or it is k+1 (where k is also a natural number).

Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: n=0:
exp O
== match Owith0->1 | n->2 *exp (n-1) (by unfolding exp)

A problem

Theorem: For all natural numbers n, let exp n = ,
match n with
exp(n) == 27n. |0->1

| n->2 *exp (n-1)

Recall: Every natural number nis

either O or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: n=0:
exp O
==matchOwith0->1| n->2*exp(n-1) (byunfolding exp)
== (by evaluating match)
== 2/0 (by math)

A problem

Theorem: For all natural numbers n,

exp(n) == 2"n.

Recall: Every natural number nis

either O or it is k+1 (where k is also a natural number).

Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: n ==k+1:
exp (k+1)

let exp n =
match n with
|0->1
| n->2 *exp (n-1)

41

A problem

Theorem: For all natural numbers n,

exp(n) == 2"n.

Recall: Every natural number nis

let exp n =
match n with
|0->1
| n->2 *exp (n-1)

either O or it is k+1 (where k is also a natural number).

Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: n ==k+1:
exp (k+1)
== match (k+1) with0->1 | n->2 * exp (n -1)

(by unfolding exp)

42

A problem

Theorem: For all natural numbers n,

exp(n) == 2"n.

Recall: Every natural number nis

let exp n =
match n with
|0->1
| n->2 *exp (n-1)

either O or it is k+1 (where k is also a natural number).

Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: n ==k+1:

exp (k+1)
== match (k+1) with0->1 | n->2 * exp (n -1)
==2 * exp (k+1- 1)

(by unfolding exp)
(by evaluating case)

43

A problem

Theorem: For all natural numbers n,

exp(n) == 2"n.

Recall: Every natural number nis

let exp n =
match n with
|0->1
| n->2 *exp (n-1)

either O or it is k+1 (where k is also a natural number).

Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: n == k+1:
exp (k+1)
== match (k+1) with0->1 | n->2 * exp (n -1)
==2 * exp (k+1- 1)
== 77?

(by unfolding exp)
(by evaluating case)

44

A problem

Theorem: For all natural numbers n, let exp n = ,
match n with
exp(n) == 27n. |0->1
| n->2 *exp (n-1)

Recall: Every natural number nis
either O or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do

our proof in two cases.

Proof:

Case: n==k+1:

exp (k+1)
== match (k+1) with0->1 | n->2 * exp (n -1) (by unfolding exp)
==2 * exp (k+1 - 1) (by evaluating case)

== 2 * (match (k+1-1) with0->1 | n->2 * exp (n -1)) (by unfolding exp)

45

A problem

Theorem: For all natural numbers n, let exp n = ,
match n with
exp(n) == 27n. |0->1
| n->2 *exp (n-1)

Recall: Every natural number nis
either O or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do

our proof in two cases.

Proof:

Case: n==k+1:

exp (k+1)
== match (k+1) with0->1 | n->2 * exp (n -1) (by unfolding exp)
==2 * exp (k+1 - 1) (by evaluating case)

== 2 * (match (k+1-1) with0->1 | n->2 * exp (n -1)) (by unfolding exp)
==2*(2*exp ((k+1)-1-1)) (by evaluating case)

46

A problem

Theorem: For all natural numbers n, let exp n = ,
match n with
exp(n) == 27n. |0->1

| n->2 *exp (n-1)

Recall: Every natural number nis

either O or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: n==k+1:

exp (k+1)
== match(k+1) with0->1 | n->2 * exp (n -1) (by unfolding exp)
==2 *exp (k+1 - 1) (by evaluating case)
==2 * (match (k+1-1)of 0->1 | n->2 *exp (n-1)) (by unfolding exp)
==2*(2*exp ((k+1)-1-1)) (by evaluating case)

== ... we aren’t making progress ... just unrolling the loop forever ...

47

Induction

 When proving theorems about recursive functions, we usually
need to use induction.
— In inductive proofs, in a case for object X, we assume that the
theorem holds for all objects smaller than X
* this assumption is called the inductive hypothesis (IH for short)

— Eg: When proving a theorem about natural numbers by
induction, and considering the case for natural number k+1, we
get to assume our theorem is true for natural number k
(because k is smaller than k+1)

— Eg: When proving a theorem about lists by induction, and

considering the case for a list x::xs, we get to assume our
theorem is true for the list xs (which is a shorter list than x::xs)

Back to the Proof

Theorem: For all natural numbers n,

exp(n) == 2"n.

Recall: Every natural number nis

let exp n =
match n with
|0->1
| n->2 *exp (n-1)

either O or it is k+1 (where k is also a natural number).

Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: n ==k+1:

exp (k+1)
== match (k+1) with0->1 | n->2 * exp (n -1)
==2 * exp (k+1- 1)

(by unfolding exp)
(by evaluating case)

49

Back to the Proof

Theorem: For all natural numbers n, let exp n = ,
match n with
exp(n) == 27n. |0->1
| n->2 *exp (n-1)

Recall: Every natural number nis
either O or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do

our proof in two cases.

Proof:

Case: n==k+1:

exp (k+1)
== match (k+1) with0->1 | n->2 * exp (n -1) (by unfolding exp)
==2 * exp (k+1 - 1) (by evaluating case)

==2 * exp (k) (by math)

50

Back to the Proof

Theorem: For all natural numbers n, let exp n = ,
match n with
exp(n) == 27n. |0->1

| n->2 *exp (n-1)

Recall: Every natural number nis

either O or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: n ==k+1:

exp (k+1)
== match (k+1) with0->1 | n->2 * exp (n -1) (by unfolding exp)
==2 *exp (k+1- 1) (by evaluating case)
== 2 * exp (k) (by math)

== * DAk (byIH!)

Back to the Proof

Theorem: For all natural numbers n, let exp n = ,
match n with
exp(n) == 27n. |0->1

| n->2 *exp (n-1)

Recall: Every natural number nis

either O or it is k+2 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

Proof:

Case: n ==k+1:

exp (k+1)
== match (k+1) with0->1 | n->2 * exp (n -1) (by unfolding exp)
==2 *exp (k+1- 1) (by evaluating case)
== 2 * exp (k) (by math)
==2 * 27k (by IH!)
== 27(k+1) (by math)

QED!

Another example

Theorem: For all natural numbers n, let even n =
even(2*n) == true. match n with
| 0 ->true
| 1->false

Recall: Every natural number nis

either 0 or k+1, where k is also a h g2

natural number.

Case: n==0: Case: n == k+1:

Another example

Theorem: For all natural numbers n,

even(2*n) == true.

Recall: Every natural number nis
either O or k+1, where k is also a

let even n =
match n with
| 0 ->true
| 1->false
| n->even (n-2)

natural number.

Case: n==0:
even (2*0)

Another example

Theorem: For all natural numbers n,
even(2*n) == true.

Recall: Every natural number nis
either O or k+1, where k is also a

let even n =
match n with
| 0 ->true
| 1->false
| n->even (n-2)

natural number.

Case: n==0:
even (2*0)
== even (0)

(by math)

Another example

Theorem: For all natural numbers n, let even n =
even(2*n) == true. match n with
| 0 ->true

| 1->false

Recall: Every natural number nis
| n->even (n-2)

either O or k+1, where k is also a

natural number.

Case: n==0:
even (2*0)
== even (0) (by math)
== case 0 of (0 =>true | 1 =>false | n => even (n-2)) (by def of even)

== true (by evaluation)

Another example

Theorem: For all natural numbers n,

even(2*n) == true.

Recall: Every natural number nis
either O or k+1, where k is also a

let even n =
match n with
| 0 ->true
| 1->false
| n->even (n-2)

natural number.

Case: n == k+1:
even (2*(k+1))

Another example

Theorem: For all natural numbers n,
even(2*n) == true.

Recall: Every natural number nis
either O or k+1, where k is also a

let even n =
match n with
| 0 ->true
| 1->false
| n->even (n-2)

natural number.

Case: n == k+1:
even (2*(k+1))
== even (2*k+2)

(by math)

Another example

Theorem: For all natural numbers n, let even n =

even(2*n) == true. match n with
| 0 ->true
| 1->false

Recall: Every natural number nis
| n->even (n-2)

either O or k+1, where k is also a

natural number.

Case: n == k+1:
even (2*(k+1))

== even (2*k+2) (by math)
== case 2*k+2 of (0 =>true | 1 => false | n => even (n-2)) (by def of even)
== even ((2*k+2)-2) (by evaluation)

== even (2*k) (by math)

Another example

Theorem: For all natural numbers n,
even(2*n) == true.

Recall: Every natural number nis
either O or k+1, where k is also a

let even n =
match n with
| 0 ->true
| 1->false
| n->even (n-2)

natural number.

Case: n == k+1:
even (2*(k+1))

== even (2*k+2) (by math)

== case 2*k+2 of (0 =>true | 1 => false | n => even (n-2)) (by def of even)
== even ((2*k+2)-2) (by evaluation)
== even (2*k) (by math)

== true (by IH)

QED.

[Template for Inductive Proofs on Natural Numbers]

Theorem: For all natural numbers n, property of n.

Proof: By induction on natural numbers n. \

Case: n == 0 proof methodology.
write this down.

Case: n==k+1: justifications to use:
e simple math

* evaluation, reverse evaluation
e |H

cases must
cover all
natural
numbers

[Template for Inductive Proofs on Natural Numbers]

Theorem: For all natural numbers n, property of n.

Proof: By induction on natural numbers n.

Case: n==0:

Case: n==k+1:

cases must > Note there are other ways to cover all natural numbers:
cover all « eg: case for 0, case for 1, case for k+2
natural

numbers

PROOFS ABOUT LIST-PROCESSORS

A Couple of Useful Functions

let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| []=>0 | []->xs2
| x::xs =>1 + length xs | hd::tl -> hd :: cat tl xs2

Proofs About Lists

Theorem: For all lists xs and ys,

length(cat xs ys) = length xs + length ys

Proof strategy:

* Proof by induction on the list xs? or on the list ys?
— answering that question, may be the hardest part of the proof!

— it tells you how to split up your cases

— sometimes you just need to do some trial and error

a clue:
pattern matching
~_— onfirst argument.

let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| [1=>0 | [] -> xs2
| x::xs =>1 + length xs | hd::tl -> hd :: cat tl xs2

In the theorem:
cat xs ys

Hence induction
on xs. Case split
the same way
as the program

Proofs About Lists

Theorem: For all lists xs and ys,
length(cat xs ys) = length xs + length ys

Proof strategy:
* Proof by induction on the list xs

— recall, a list may be of these two things:
e] (the empty list)
e hd::tl (a non-empty list, where tl is shorter)

— a proof must cover both cases: [| and hd :: il

— in the second case, you will often use the inductive hypothesis
on the smaller list tl
— otherwise as before:
 use folding/unfolding of O’Caml definitions
» use your knowledge of O’Caml evaluation
* use lemmas/properties you know of basic operations like :: and +

Proofs About Lists

Theorem: For all lists xs and ys,
length(cat xs ys) = length xs + length ys
Proof: By induction on xs.

case xs =[]:

let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| []=>0 | []->xs2
| x::xs => 1 + length xs | hd::tl -> hd :: cat tl xs2

Proofs About Lists

Theorem: For all lists xs and ys,
length(cat xs ys) = length xs + length ys
Proof: By induction on xs.

case xs =[]:
length (cat [] ys) (LHS of theorem)

let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| []=>0 | []->xs2
| x::xs => 1 + length xs | hd::tl -> hd :: cat tl xs2

Proofs About Lists

Theorem: For all lists xs and ys,
length(cat xs ys) = length xs + length ys
Proof: By induction on xs.

case xs =[]:
length (cat [] ys) (LHS of theorem)
= length ys (evaluate cat)

let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| []=>0 | []->xs2
| x::xs => 1 + length xs | hd::tl -> hd :: cat tl xs2

Proofs About Lists

Theorem: For all lists xs and ys,

length(cat xs ys) = length xs + length ys

Proof: By induction on xs.

case xs =[]:
length (cat [] ys) (LHS of theorem)
= length ys (evaluate cat)
=0+ (length ys) (arithmetic)
let length xs = let cat xs1 xs2 =
match xs with match xs1 with

| [1=>0

| [] > xs2

| x::xs => 1 + length xs | hd::tl -> hd :: cat tl xs2

Proofs About Lists

Theorem: For all lists xs and ys,
length(cat xs ys) = length xs + length ys
Proof: By induction on xs.

case xs =[]:

length (cat [] ys) (LHS of theorem)
= length ys (evaluate cat)
=0+ (length ys) (arithmetic)
= (length []) + (length ys) (fold length)
case done!

let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| []=>0 | []->xs2
| x::xs => 1 + length xs | hd::tl -> hd :: cat tl xs2

Proofs About Lists

Theorem: For all lists xs and ys,
length(cat xs ys) = length xs + length ys
Proof: By induction on xs.

case xs = hd::tl

let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| []=>0 | []->xs2
| x::xs => 1 + length xs | hd::tl -> hd :: cat tl xs2

Proofs About Lists

Theorem: For all lists xs and ys,
length(cat xs ys) = length xs + length ys
Proof: By induction on xs.

case xs = hd::tl
IH: length (cat tl ys) = length tl + length ys

let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| []=>0 | []->xs2
| x::xs => 1 + length xs | hd::tl -> hd :: cat tl xs2

Proofs About Lists

Theorem: For all lists xs and ys,
length(cat xs ys) = length xs + length ys
Proof: By induction on xs.

case xs = hd::tl
IH: length (cat tl ys) = length tl + length ys

length (cat (hd::tl) ys) (LHS of theorem)
let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| []=>0 | []->xs2
| x::xs => 1 + length xs | hd::tl -> hd :: cat tl xs2

Proofs About Lists

Theorem: For all lists xs and ys,
length(cat xs ys) = length xs + length ys
Proof: By induction on xs.

case xs = hd::tl
IH: length (cat tl ys) = length tl + length ys

length (cat (hd::tl) ys) (LHS of theorem)
== length (hd :: (cat tl ys)) (evaluate cat, take 2"9 branch)

let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| []=>0 | []->xs2
| x::xs => 1 + length xs | hd::tl -> hd :: cat tl xs2

Proofs About Lists

Theorem: For all lists xs and ys,
length(cat xs ys) = length xs + length ys
Proof: By induction on xs.

case xs = hd::tl
IH: length (cat tl ys) = length tl + length ys

length (cat (hd::tl) ys) (LHS of theorem)
== length (hd :: (cat tl ys)) (evaluate cat, take 2"9 branch)
== 1 + length (cat tl ys) (evaluate length, take 2" branch)
let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| [1=>0 | []-> xs2
| x::xs => 1 + length xs | hd::tl -> hd :: cat tl xs2

Proofs About Lists

Theorem: For all lists xs and ys,
length(cat xs ys) = length xs + length ys
Proof: By induction on xs.

case xs = hd::tl
IH: length (cat tl ys) = length tl + length ys

length (cat (hd::tl) ys) (LHS of theorem)
== length (hd :: (cat tl ys)) (evaluate cat, take 2"9 branch)
== 1 + length (cat tl ys) (evaluate length, take 2" branch)
== 1 + (length tl + length ys) (by IH)

let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| []=>0 | []->xs2
| x::xs => 1 + length xs | hd::tl -> hd :: cat tl xs2

Proofs About Lists]

Theorem: For all lists xs and ys,

length(cat xs ys) = length xs + length ys

Proof: By induction on xs.

case xs = hd::tl

IH: length (cat tl ys) = length tl + length ys

length (cat (hd::tl) ys) (LHS of theorem)
== length (hd :: (cat tl ys)) (evaluate cat, take 2"9 branch)
== 1 + length (cat tl ys) (evaluate length, take 2" branch)
== 1 + (length tl + length ys) (by IH)
== length (hd::tl) + length ys (reparenthesizing and evaling length in reverse

case done!

we have RHS with hd::tl for xs)

let length xs = let cat xs1 xs2 =
match xs with match xs1 with
| []=>0 | []->xs2
| x::xs => 1 + length xs | hd::tl -> hd :: cat tl xs2

Another List example

Theorem: For all lists xs,
add_all (add_all xs a) b == add_all xs (a+b)
Proof: By induction on xs.

case xs =[]:

add_all (add_all[]a) b (LHS of theorem)

let add_all xs c =
match xs with
[[1=>1]
| hd::tl => (hd+c)::add_all tl ¢

Another List example

Theorem: For all lists xs,
add_all (add_all xs a) b == add_all xs (a+b)
Proof: By induction on xs.

case xs =[]:
add_all (add_all[]a) b (LHS of theorem)
==add all[]b (by evaluation of add_all)

let add_all xs c =
match xs with
[[1=>1]
| hd::tl => (hd+c)::add_all tl ¢

Another List example

Theorem: For all lists xs,
add_all (add_all xs a) b == add_all xs (a+b)
Proof: By induction on xs.

case xs =[]:

add_all (add_all[]a) b (LHS of theorem)
==add_all[] b (by evaluation of add_all)
==[] (by evaluation of add_all)

let add_all xs c =
match xs with
| [1=>1[]
| hd::tl => (hd+c)::add_all tl ¢

Another List example

Theorem: For all lists xs,
add_all (add_all xs a) b == add_all xs (a+b)
Proof: By induction on xs.

case xs =[]:

add_all (add_all[]a) b (LHS of theorem)
==add_all[] b (by evaluation of add_all)
==[] (by evaluation of add_all)
==add all[] (a +b) (by evaluation of add_all)

let add_all xs c =
match xs with
| [1=>1[]
| hd::tl => (hd+c)::add_all tl ¢

Another List example

Theorem: For all lists xs,
add_all (add_all xs a) b == add_all xs (a+b)
Proof: By induction on xs.

case xs = hd :: tl:

add_all (add_all (hd :: tl)a) b (LHS of theorem)

let add_all xs c =
match xs with
[[1=>1]
| hd::tl => (hd+c)::add_all tl ¢

Another List example

Theorem: For all lists xs,
add_all (add_all xs a) b == add_all xs (a+b)
Proof: By induction on xs.

case xs = hd :: tl:

add_all (add_all (hd :: tl)a) b (LHS of theorem)
== add_all ((hd+a) ::add _alltla) b (by eval inner add_all)

let add_all xs c =
match xs with
[[1=>1]
| hd::tl => (hd+c)::add_all tl ¢

Another List example

Theorem: For all lists xs,
add_all (add_all xs a) b == add_all xs (a+b)
Proof: By induction on xs.

case xs = hd :: tl:

add_all (add_all (hd :: tl)a) b (LHS of theorem)
==add_all ((hd+a) :: add_all tla) b (by eval inner add_all)
== (hd+a+b) :: (add_all (add_all tl a) b) (by eval outer add_all)

let add_all xs c =
match xs with
| [1=>1[]
| hd::tl => (hd+c)::add_all tl ¢

Another List example

Theorem: For all lists xs,
add_all (add_all xs a) b == add_all xs (a+b)
Proof: By induction on xs.

case xs = hd :: tl:

add_all (add_all (hd :: tl)a) b (LHS of theorem)
== add_all ((hd+a) ::add _alltla) b (by eval inner add_all)
== (hd+a+b) :: (add_all (add_all tl a) b) (by eval outer add_all)
== (hd+(a+b)) :: add_all tl (a+b) (by IH)

let add_all xs c =
match xs with
| [1=>1[]
| hd::tl => (hd+c)::add_all tl ¢

Another List example

Theorem: For all lists xs,
add_all (add_all xs a) b == add_all xs (a+b)
Proof: By induction on xs.

case xs = hd :: tl:

add_all (add_all (hd :: tl)a) b (LHS of theorem)
== add_all ((hd+a) ::add _alltla) b (by eval inner add_all)
== (hd+a+b) :: (add_all (add_all tl a) b) (by eval outer add_all)
== (hd+(a+b)) :: add_all tl (a+b) (by IH)
== add_all (hd::tl) (a+b) (by (reverse) eval of add_all)

let add_all xs c =
match xs with
| [1=>1[]
| hd::tl => (hd+c)::add_all tl ¢

Template for Inductive Proofs on Lists

Theorem: For all lists xs, property of xs.

Proof: By induction on lists xs.

Case: xs==[1]:

Case: xs == hd :: tl:

cases must > Note there are other ways to cover all lists:
cover all * eg: case for [], case for x1::[], case for x1::x2::tl
natural

numbers

SUMMARY

Summary

* Proofs about programs are structured similarly to the
programs themselves:

— types tell you what kinds of values your proofs/programs
operate over

— types suggest how to break down proofs/programs in to cases

— when programs that use recursion on smaller values, their
proofs appeal to the inductive hypothesis on smaller values

* Key proof ideas:

— two expressions that evaluate to the same value are equal
— substitute equals for equals

— use proof by induction to prove correctness of recursive
functions

END

