A Functional Evaluation Model

COS 326
David Walker
Princeton University

A Functional Evaluation Model

In order to be able to write a program, you have to have a solid grasp of how a programming language works.

We often call the definition of "how a programming language works" its *semantics*.

There are many kinds of programming language semantics.

In this class, we will look at O'Caml's call-by-value evaluation:

- First, informally, giving program rewrite rules by example
- Second, using code, by specifying an OCaml interpreter in OCaml
- Third, more formally, using logical inference rules

In each case, we are specifying what is known as OCaml's *operational* semantics

O'CAML BASICS: CORE EXPRESSION EVALUATION

Evaluation

- Execution of an OCaml expression
 - produces a value
 - and may have some effect (eg: it may raise an exception, print a string, read a file, or store a value in an array)
- A lot of OCaml expressions have no effect
 - they are pure
 - they produce a value and do nothing more
 - the pure expressions are the easiest kinds of expressions to reason about
- We will focus on evaluation of pure expressions

Given an expression e, we write:

to state that expression e evaluates to value v

 Note that "e --> v" is not itself a program -- it is some notation that we use talk about how programs work

Given an expression e, we write:

to state that expression e evaluates to value v

Some examples:

• Given an expression e, we write:

to state that expression e evaluates to value v

Some examples:

$$1 + 2$$

• Given an expression e, we write:

to state that expression e evaluates to value v

Some examples:

$$1 + 2 --> 3$$

Given an expression e, we write:

to state that expression e evaluates to value v

• Some examples:

$$1 + 2 --> 3$$

2

• Given an expression e, we write:

to state that expression e evaluates to value v

• Some examples:

$$1 + 2 --> 3$$

values step to values

Given an expression e, we write:

to state that expression e evaluates to value v

• Some examples:

$$1 + 2 --> 3$$

More generally, we say expression e (partly) evaluates to expression e':

e --> e'

More generally, we say expression e (partly) evaluates to expression e':

e --> e'

Evaluation is *complete* when e' is a value

- In general, I'll use the letter "v" to represent an arbitrary value
- The letter "e" represents an arbitrary expression
- Concrete numbers, strings, characters, etc. are all values, as are:
 - tuples, where the fields are values
 - records, where the fields are values
 - datatype constructors applied to a value
 - functions

 Some expressions (all the interesting ones!) take many steps to evaluate them:

$$(2 * 3) + (7 * 5)$$

 Some expressions (all the interesting ones!) take many steps to evaluate them:

• Some expressions (all the interesting ones!) take many steps to evaluate them:

• Some expressions (all the interesting ones!) take many steps to evaluate them:

 Some expressions do not compute a value and it is not obvious how to proceed:

- A strongly typed language rules out a lot of nonsensical expressions that compute no value, like the one above
- Other expressions compute no value but raise an exception:

Still others simply fail to terminate ...

Let Expressions: Evaluate using Substitution

let
$$y = 12 in$$

30 + y

To evaluate a function call "f a"

- first evaluate f until we get a function value (fun x -> e)
- then evaluate a until we get an argument value v
- then substitute v for x in e, the function body
- then evaluate the resulting expression.

this is why we say O'Caml is "call by value"

(let f = (fun x
$$\rightarrow$$
 x + 1) in f) (30+11) -->

(fun x \rightarrow x + 1) (30 + 11) -->

(fun x \rightarrow x + 1) 41 -->

41 + 1 --> 42

Another example:

```
let add x y = x+y in
let inc = add 1 in
let dec = add (-1) in
dec(inc 42)
```

Recall the syntactic sugar:

```
let add = fun x -> (fun y -> x+y) in
let inc = add 1 in
let dec = add (-1) in
dec(inc 42)
```

Then we use the let rule – we substitute the *value* for add:

```
let add = |fun x -> (fun y -> x+y)| in
let inc = add 1 in
let dec = add (-1) in
dec(inc 42)
                                     functions are values
let inc = |(\mathbf{fun} \times -) (\mathbf{fun} y -) \times +y)| 1 in
let dec = |(fun x -> (fun y -> x+y))| -1 in
dec(inc 42)
```

```
let inc = |(\mathbf{fun} \times -) (\mathbf{fun} y -) \times +y)| in
let dec = (fun x -> (fun y -> x+y))^{\uparrow} (-1) in
dec(inc 42)
                                    not a value; must reduce
-->
                                    before substituting for inc
let inc = fun y \rightarrow 1+y in
let dec = (fun x \rightarrow (fun y \rightarrow x+y)) (-1) in
dec(inc 42)
```

now a value

```
let inc = fun y -> 1+y in
let dec = (fun x \rightarrow (fun y \rightarrow x+y)) (-1) in
dec(inc 42)
-->
let dec = (fun \times -) (fun y -) x+y)) (-1) in
dec((fun y -> 1+y) | 42)
```

Next: simplify dec's definition using the function-call rule.

And we can use the let-rule now to substitute dec:

Now we can't yet apply the first function because the argument is not yet a value – it's a function call. So we need to use the function-call rule to simplify it to a value:

Variable Renaming

Consider the following OCaml code:

```
let x = 30 in
let y = 12 in
x+y;;
```

Does this evaluate any differently than the following?

```
let a = 30 in
let b = 12 in
a+b;;
```

Renaming

A basic principle of programs is that systematically changing the names of variables shouldn't cause the program to behave any differently – it should evaluate to the same thing.

```
let x = 30 in
let y = 12 in
x+y;;
```

But we do have to be careful about *systematic* change.

```
let a = 30 in
let a = 12 in
a+a;;
```

Systematic change of variable names is called *alpha-conversion*.

Substitution

Wait a minute, how do we evaluate this using the letrule? If we substitute 30 for "a" naively, then we get:

```
let a = 30 in
let a = 12 in
a+a
-->

let 30 = 12 in
30+30
```

Which makes no sense at all!
Besides, Ocaml returns 24 not 60.

What went wrong with our informal model?

Scope and Modularity

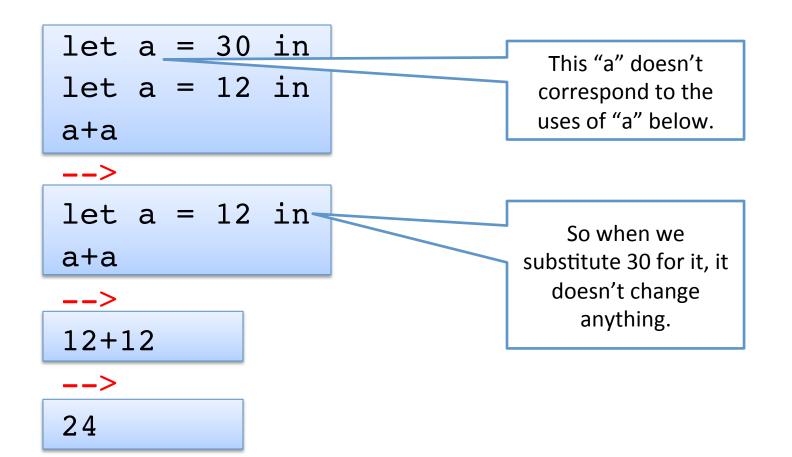
- Lexically scoped (a.k.a. statically scoped) variables have a simple rule: the nearest enclosing "let" in the code defines the variable.
- So when we write:

```
let a = 30 in
let a = 12 in
a+a;;
```

• we know that the "a+a" corresponds to "12+12" as opposed to "30+30" or even weirder "30+12".

A Revised Let-Rule:

- To evaluate "let $x = e_1$ in e_2 ":
 - First, evaluate e_1 to a value v.
 - Then substitute v for the corresponding uses of x in e_2 .
 - Then evaluate the resulting expression.



Scope and Modularity

- But what does "corresponding uses" mean?
- Consider:

```
let a = 30 in
let a = (let a = 3 in a*4) in
a+a;;
```

Abstract Syntax Trees

 We can view a program as a tree – the parentheses and precedence rules of the language help determine the structure of the tree.

```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```

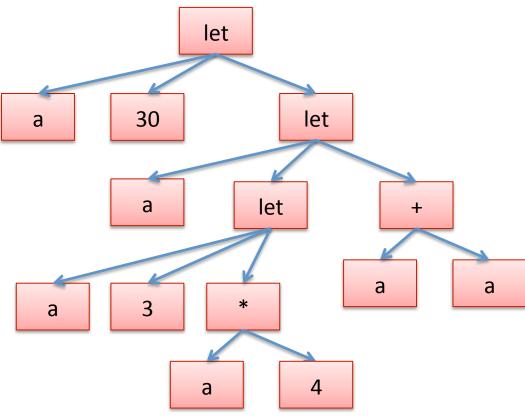
```
(let a = (30) in

(let a =

  (let a = (3) in (a*4))

  in

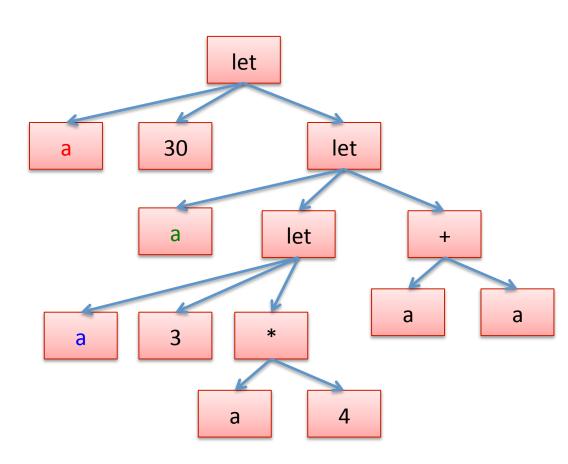
  (a+a)))
```



Binding Occurrences

An occurrence of a variable where we are defining it via let is said to be a *binding occurrence* of the variable.

```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```

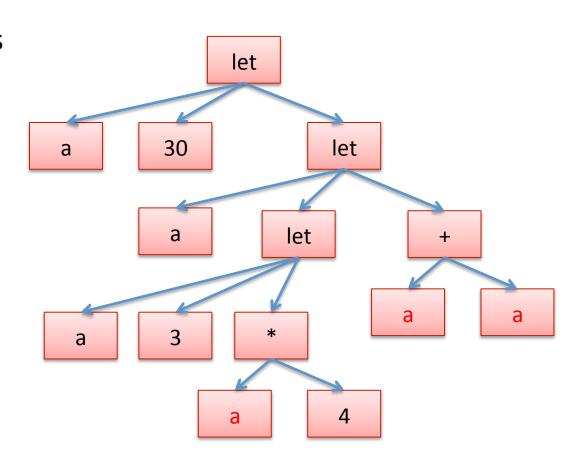


Free Occurrences

A non-binding occurrence of a variable is said to be a *free variable*.

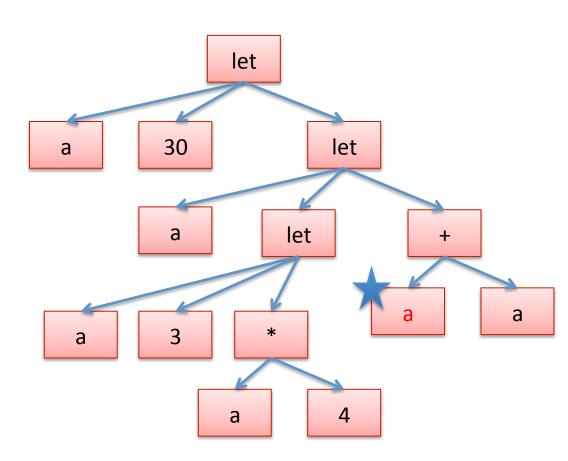
That is a *use* of a variable as opposed to a definition.

```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```



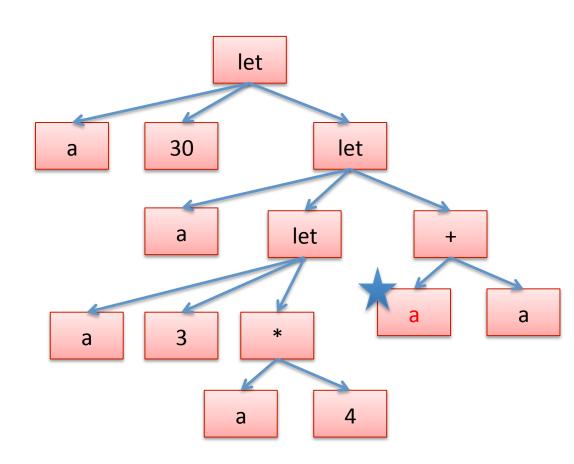
 Given a free variable occurrence, we can find where it is bound by ...

```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```



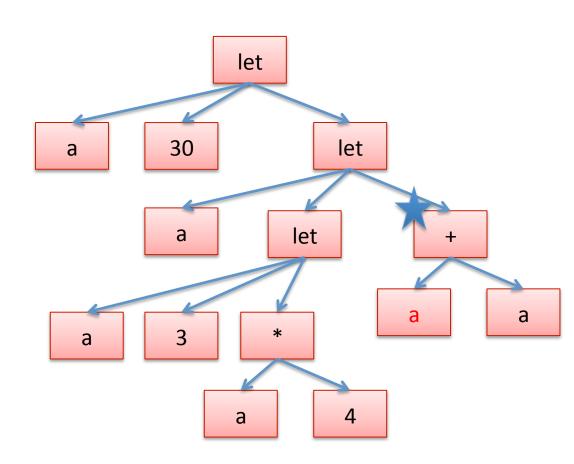
crawling up the tree to the nearest enclosing let...

```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```



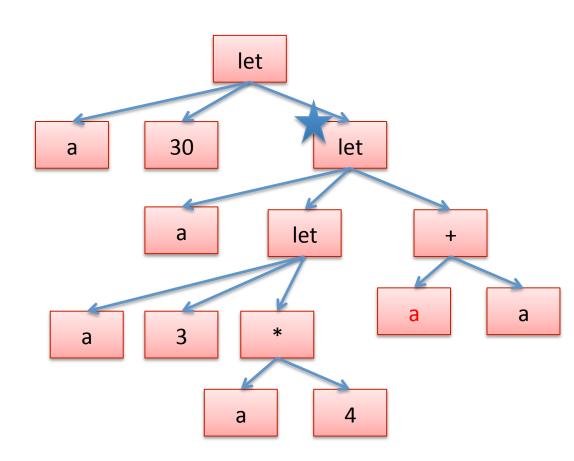
crawling up the tree to the nearest enclosing let...

```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```



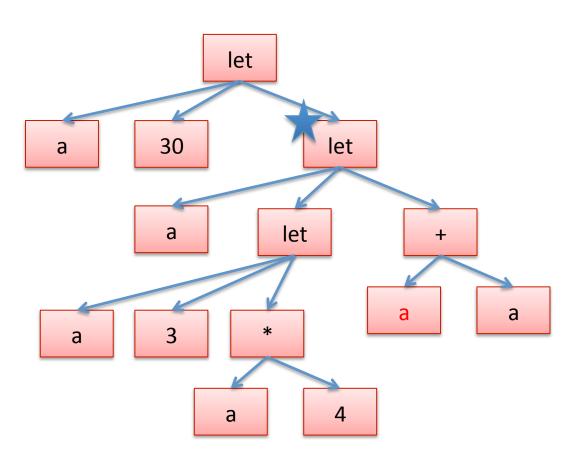
crawling up the tree to the nearest enclosing let...

```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```



 and see if the "let" binds the variable – if so, we've found the nearest enclosing definition. If not, we keep going up.

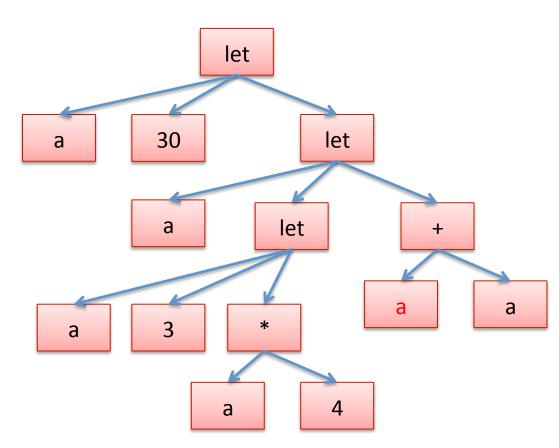
```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```



 Now we can also systematically rename the variables so that it's not so confusing. Systematic renaming is called alpha-

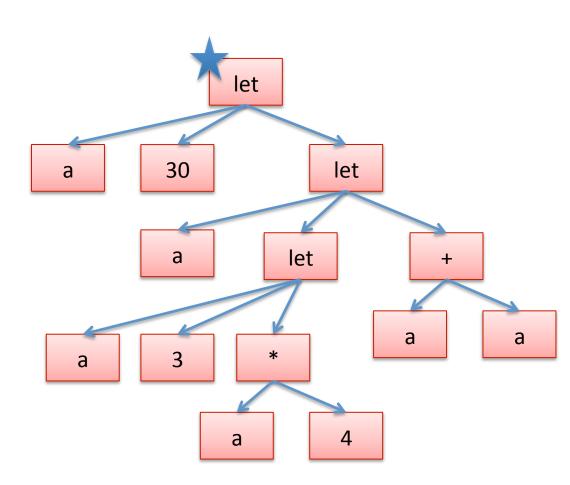
```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```

conversion



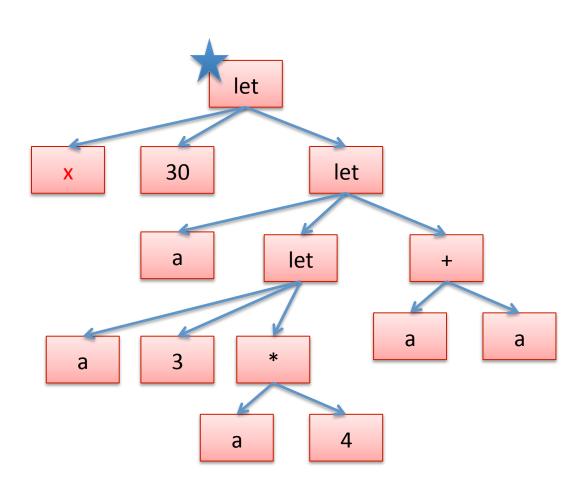
Start with a let, and pick a fresh variable name, say "x"

```
let a = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```



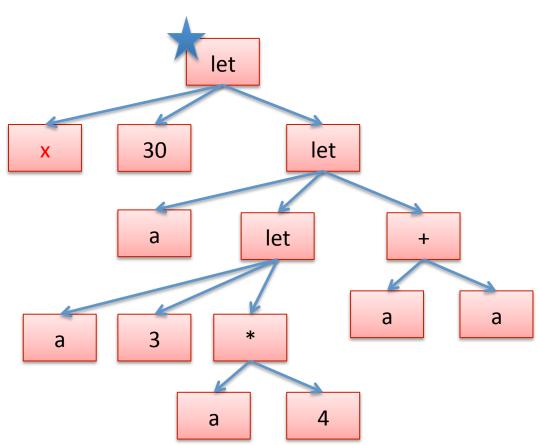
Rename the binding occurrence from "a" to "x".

```
let x = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```



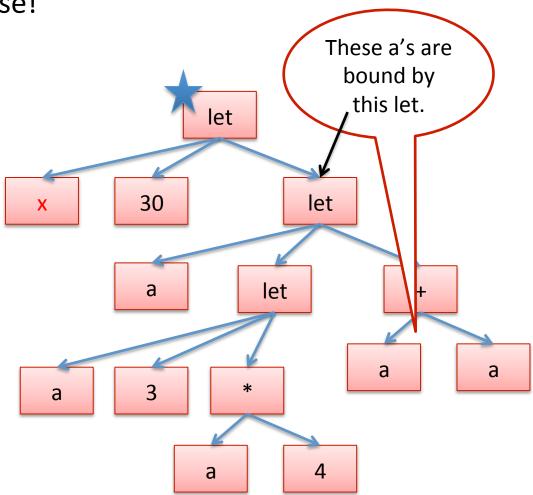
 Then rename all of the free occurrences of the variables that this let binds.

```
let x = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```



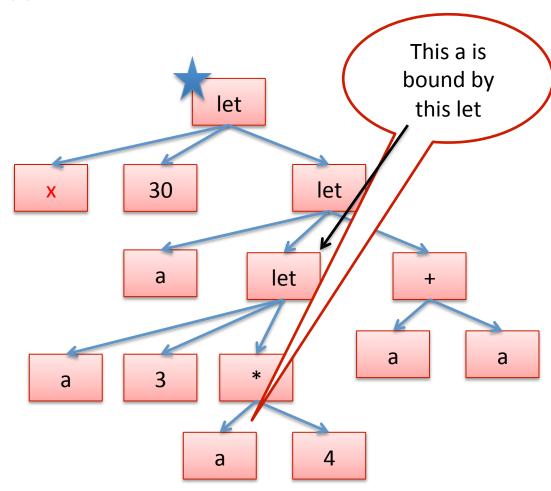
There are none in this case!

```
let x = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```



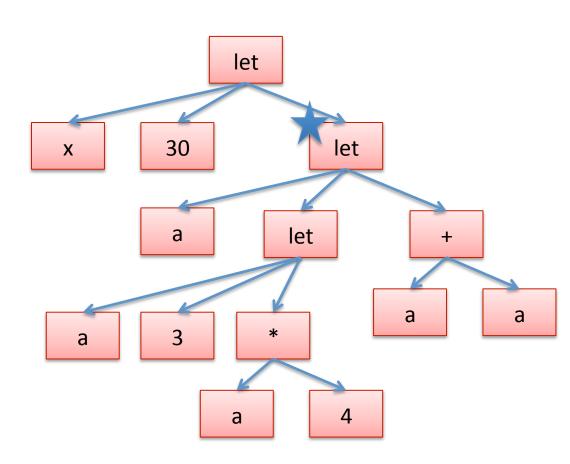
There are none in this case!

```
let x = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```



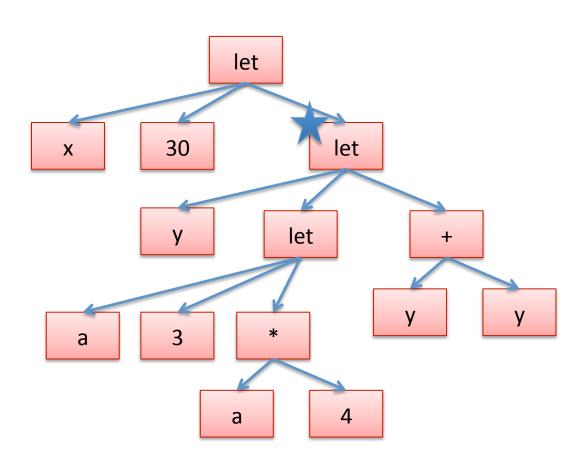
• Let's do another let, renaming "a" to "y".

```
let x = 30 in
let a =
  (let a = 3 in a*4)
in
a+a;;
```



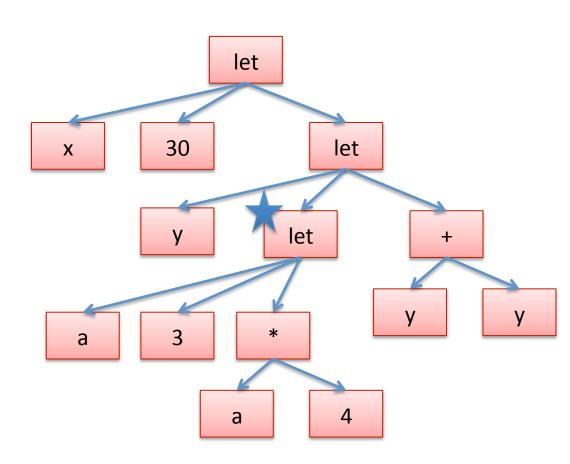
• Let's do another let, renaming "a" to "y".

```
let x = 30 in
let y =
  (let a = 3 in a*4)
in
y+y;;
```



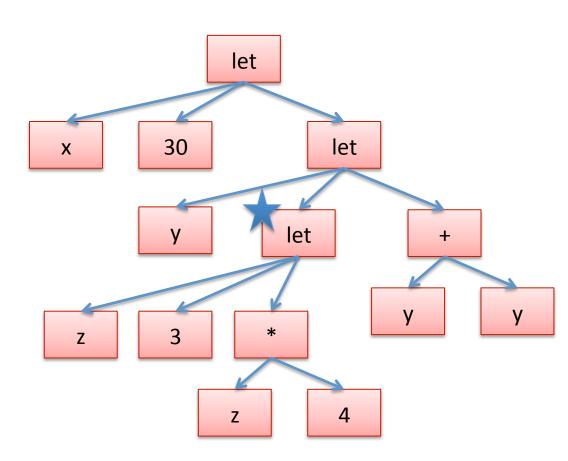
• And if we rename the other let to "z":

```
let x = 30 in
let y =
  (let z = 3 in z*4)
in
y+y;;
```



• And if we rename the other let to "z":

```
let x = 30 in
let y =
  (let z = 3 in z*4)
in
y+y;;
```



AN O'CAML DEFINITION OF O'CAML EVALUATION

Implementing an Interpreter

text file containing program

as a sequence of characters let x = 3 inX + Xdata structure representing program **Parsing** Let ("x", Num 3, Binop(Plus, Var "x", Var "x")) the data type data structure representing and evaluator result of evaluation tell us a lot **Evaluation** about program Num 6 semantics Pretty

6

Printing

text file/stdout containing with formatted output

We can define a datatype for simple OCaml expressions:

```
type variable = string ;;
type op = Plus | Minus | Times | ... ;;
type exp =
    | Int_e of int
    | Op_e of exp * op * exp
    | Var_e of variable
    | Let_e of variable * exp * exp ;;
```

We can define a datatype for simple OCaml expressions:

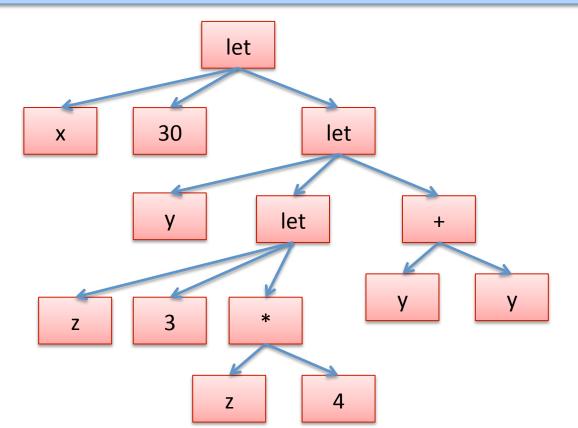
```
type variable = string ;;
type op = Plus | Minus | Times | ... ;;
type exp =
  | Int e of int
  | Op e of exp * op * exp
  | Var e of variable
  Let e of variable * exp * exp ;;
let three = Int e 3 ;;
let three plus one =
      Op e (Int e 1, Plus, Int e 3) ;;
```

We can represent the OCaml program:

```
let x = 30 in
let y =
   (let z = 3 in
     z*4)
in
y+y;;
```

as an exp value:

Notice how this reflects the "tree":



Free versus Bound Variables

Free versus Bound Variables

This is a binding occurrence of a variable

Implementing a Simple Evaluator

A Simple Evaluator

```
let is value (e:exp) : bool =
 match e with
    Int e -> true
  | (Op_e (_,_,_) | Let_e(_,_,_) | Var_e _) -> false
let eval op v1 op v2 = \dots
let substitute v x e = ...
let rec eval (e:exp) : exp =
 match e with
   Int e i -> Int e i
  Op e(e1,op,e2) ->
           let v1 = eval e1 in
           let v2 = eval e2 in
           eval op v1 op v2
  Let e(x,e1,e2) \rightarrow
           let v1 = eval e1 in
           let e = substitute v1 x e2 in
          eval e
```

Even Simpler

Oops! We Missed a Case:

We should never encounter a variable – they should have been substituted with a value! (This is a type-error.)

We Could Use Options:

But this isn't quite right – we need to match on the recursive calls to eval to make sure we get Some value!

Exceptions

Instead, we can throw an exception.

Exceptions

Note that an exception declaration is a lot like a datatype declaration. Really, we are extending one big datatype (exn) with a new constructor (UnboundVariable).

Exceptions

Later on, we'll see how to catch an exception.

Back to our Evaluator

Evaluating the Primitive Operations

```
let eval_op (v1:exp) (op:operand) (v2:exp) : exp =
  match v1, op, v2 with
  | Int_e i, Plus, Int_e j -> Int_e (i+j)
  | Int_e i, Minus, Int_e j -> Int_e (i-j)
  | Int_e i, Times, Int_e j -> Int_e (i*j)
  ...;
let substitute v x e = ...
```

Substitution

```
let substitute (v:exp) (x:variable) (e:exp) : exp =
 let rec subst (e:exp) : exp =
         match e with
         | Int e -> e
         Op e(e1,op,e2) \rightarrow Op e(subst e1,op,subst e2)
         Var e y -> if x = y then v else e
         Let e (y,e1,e2) ->
              Let e (y,
                     subst e1,
                     if x = y then e2 else subst e2)
  in
  subst e
;;
```

Substitution

We want to replace x (and only x) with v.

```
let substitute (v:exp) (x:variable) (e:exp) : exp =
  let rec subst (e:exp) : exp =
         match e with
         Inte -> e
         Op e(e1,op,e2) -> Op e(subst e1,op,subst e2)
         Var e y -> if x = y then v else e
           Let e(y,e1,e2) \rightarrow
              Let e (y,
                     subst e1,
                     if x = y then e2 else subst e2)
  in
  subst e
;;
```

Substitution

```
let substitute (v:exp) (x:variable) (e:exp) : exp =
 let rec subst (e:exp) : exp =
        match e with
         Int e -> e
         Op e(e1,op,e2) -> Op e(subst e1,op,subst e2)
         Var e y -> if x = y then v else e
         Let_e (y,e1,e2) ->
             Let e (y,
                    subst e1,
                    if x = y then e2 else subst e2)
 in
 subst e
;;
```

Substitution

```
let substitute (v:exp) (x:variable) (e:exp) : exp =
 let rec subst (e:exp) : exp =
        match e with
         Int e -> e
         Op e(e1,op,e2) -> Op e(subst e1,op,subst e2)
         \mid Var e y -> if x = y then v else e
         Let e (y,e1,e2) ->
              Let e (y,
                     subst e1,
                     if x = y then e2 else subst e2)
 in
 subst e
;;
```

If x and y are the same variable, then y shadows x.

```
type exp = Int_e of int | Op_e of exp * op * exp
| Var_e of variable | Let_e of variable * exp * exp
| Fun_e of variable * exp | FunCall_e of exp * exp ;;
```

(fun x -> e) is represented as Fun_e(x,e)

```
type exp = Int_e of int | Op_e of exp * op * exp
    Var_e of variable | Let_e of variable * exp * exp
   Fun_e of variable * exp | FunCall_e of exp * exp ;;
                                     A function call
                                       fact 3 ==>
                               FunCall_e (Var_e "fact", Int_e 3)
```

```
type exp = Int e of int | Op_e of exp * op * exp
  | Var_e of variable | Let_e of variable * exp * exp
  Fun e of variable * exp | FunCall e of exp * exp;;
let is_value (e:exp) : bool =
 match e with
                                   Functions are
                                     values!
  | Int e -> true
  Fun_e (_,_) -> true
  ( Op e ( , , )
     | Let e ( , , )
     Var_e _
     | FunCall_e (_,_) ) -> false ;;
```

```
type exp = Int e of int | Op_e of exp * op * exp
  | Var_e of variable | Let_e of variable * exp * exp
  Fun e of variable * exp | FunCall e of exp * exp;;
let is_value (e:exp) : bool =
 match e with
  | Int e -> true
  | Fun_e (_,_) -> true
  ( Op e ( , , )
     | Let e ( , , )
     Var_e _
     | FunCall_e (_,_) ) -> false ;;
```

Function calls are not values.

```
let rec eval (e:exp) : exp =
 match e with
  | Int e i -> Int e i
  Op e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
  Let e(x,e1,e2) -> eval (substitute (eval e1) x e2)
  | Var e x -> raise (UnboundVariable x)
   Fun_e (x,e) \rightarrow Fun e (x,e)
   FunCall e (e1,e2) ->
      (match eval e1, eval e2 with
       Fun e (x,e), v2 -> eval (substitute v2 x e)
       -> raise TypeError)
```

```
let rec eval (e:exp) : exp =
  match e with
  | Int e i -> Int e i
  Op e(e1,op,e2) -> eval op (eval e1) op (eval e2)
  Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
   Var e x -> raise (UnboundVariable x)
   Fun_e (x,e) \rightarrow Fun e (x,e)
   FunCall e (e1,e2) ->
      (match eval e1, eval e2 with
                                          itute v2 x e)
       | Fun e (x,e), v2 -> eval (sux)
        _ -> raise TypeError)
                                             values (including
                                             functions) always
                                               evaluate to
                                               themselves.
```

```
let rec eval (e:exp) : exp =
 match e with
  | Int e i -> Int e i
  Op e(e1,op,e2) -> eval op (eval e1) op (eval e2)
  Let e(x,e1,e2) -> eval (substitute (eval e1) x e2)
  Var e x -> raise (UnboundVariable x)
   Fun e (x,e) -> Fun e (x,e)
   FunCall e (e1,e2) ->
      (match eval e1, eval e2 with
       Fun e (x,e), v2 \rightarrow e^{-x} (substitute v2 \times e)
       -> raise TypeError)
                                       To evaluate a
```

82

function call, we

first evaluate

both e1 and e2 to

values.

```
let rec eval (e:exp) : exp =
 match e with
  | Int e i -> Int e i
  Op e(e1,op,e2) -> eval op (eval e1) op (eval e2)
  Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
   Var e x -> raise (UnboundVariable x)
   Fun_e (x,e) \rightarrow Fun e (x,e)
   FunCall e (e1,e2) ->
      (match eval e1, eval e2 with
       Fun e (x,e), v2 -> eval (substitute v2 x e)
        -> raise TypeError)
                                            e1 had better
                                            evaluate to a
                                           function value,
                                           else we have a
                                             type error.
```

```
let rec eval (e:exp) : exp =
 match e with
  | Int e i -> Int e i
  Op e(e1,op,e2) -> eval op (eval e1) op (eval e2)
  Let e(x,e1,e2) -> eval (substitute (eval e1) x e2)
   Var e x -> raise (UnboundVariable x)
   Fun_e (x,e) \rightarrow Fun e (x,e)
   FunCall e (e1,e2) ->
      (match eval e1, eval e2 with
       Fun e (x,e), v2 -> eval (substitute v2 x e)
       -> raise TypeError)
```

Then we substitute e2's value (v2) for x in e and evaluate the resulting expression.

Simplifying a little

```
let rec eval (e:exp) : exp =
 match e with
  | Int e i -> Int e i
  Op e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
  Let e(x,e1,e2) -> eval (substitute (eval e1) x e2)
   Var e x -> raise (UnboundVariable x)
   Fun_e (x,e) \rightarrow Fun e (x,e)
   FunCall e (e1,e2) ->
      (match eval e1
       Fun e (x,e) -> eval (substitute (eval e2) x e)
       -> raise TypeError)
```

We don't really need to pattern-match on e2.

Just evaluate here

Simplifying a little

```
let rec eval (e:exp) : exp =
 match e with
  | Int e i -> Int e i
  Op e(e1,op,e2) -> eval op (eval e1) op (eval e2)
  Let e(x,e1,e2) -> eval (substitute (eval e1) x e2)
   Var e x -> raise (UnboundVariable x)
   Fun_e (x,e) \rightarrow Fun e (x,e)
   FunCall e (ef,e1) ->
      (match eval ef with
       Fun e (x,e2) -> eval (substitute (eval e1) x e2)
       -> raise TypeError)
```

86

This looks like

the case for let!

Let and Lambda

```
let x = 1 in x+41
-->
1+41
-->
42
(fun x \rightarrow x+41) 1
-->
1+41
-->
42
```

So we could write:

```
let rec eval (e:exp) : exp =
 match e with
  | Int e i -> Int e i
  Op e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
  Let e(x,e1,e2) -> eval (FunCall (Fun e (x,e2), e1))
  | Var e x -> raise (UnboundVariable x)
   Fun_e (x,e) -> Fun e (x,e)
   FunCall e (ef,e2) ->
      (match eval ef with
       Fun e (x,e1) -> eval (substitute (eval e1) x e2)
       -> raise TypeError)
```

In programming-languages speak: "Let is syntactic sugar for a function call"

Syntactic sugar: A new feature defined by a simple, local transformation.

Recursive definitions

```
type exp = Int e of int | Op e of exp * op * exp
   | Var_e of variable | Let_e of variable * exp * exp |
   | Fun_e of variable * exp | FunCall e of exp * exp
   Rec e of variable * variable * exp ;;
                                                (rewrite)
let rec f x = f(x+1) in f 3
                                                (alpha-convert)
let f = rec f x \rightarrow f (x+1) in
f 3
                                                (implement)
let q = rec f x -> f (x+1)) in
q 3
```

```
Let_e ("g,
    Rec_e ("f", "x",
        FunCall_e (Var_e "f", Op_e (Var_e "x", Plus, Int_e 1))
    ),
    FunCall (Var_e "g", Int_e 3)
)
```

Recursive definitions

```
type exp = Int_e of int | Op_e of exp * op * exp
| Var_e of variable | Let_e of variable * exp * exp |
| Fun_e of variable * exp | FunCall_e of exp * exp
| Rec_e of variable * variable * exp;;
```

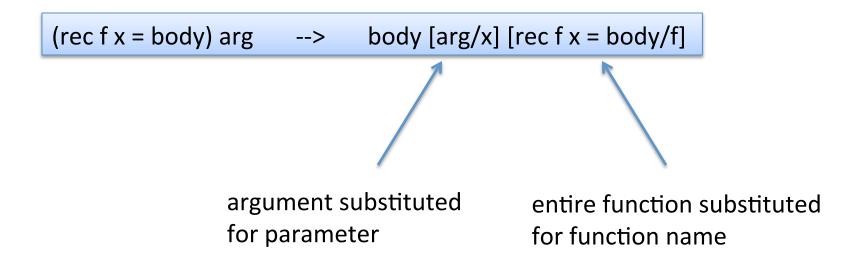
Before Evaluation: Notation for Substitution

"Substitute value v for variable x in expression e:" e[v/x]

examples of substitution:

$$(x + y) [7/y]$$
 is $(x + 7)$
 $(let x = 30 in let y = 40 in x + y) [7/y]$ is $(let x = 30 in let y = 40 in x + y)$
 $(let y = y in let y = y in y + y) [7/y]$ is $(let y = 7 in let y = y in y + y)$

Basic evaluation rule for recursive functions:



Start out with a let bound to a recursive function:

```
let g =
  rec f x ->
   if x <= 0 then x
   else x + f (x-1)
in g 3</pre>
```

The Substitution:

```
g 3 [rec f x ->
     if x <= 0 then x
     else x + f (x-1) / g]</pre>
```

The Result:

```
(rec f x \rightarrow if x \leq 0 then x else x + f (x-1)) 3
```

Recursive Function Call:

```
(rec f x ->
if x \le 0 then x = 0 x + f(x-1)) 3
```

The Substitution:

```
(if x <= 0 then x else x + f (x-1))
  [ rec f x ->
        if x <= 0 then x
        else x + f (x-1) / f ]
  [ 3 / x ]</pre>
```

Substitute argument for parameter

Substitute entire function for function name

The Result:

```
(if 3 <= 0 then 3 else 3 +
   (rec f x ->
        if x <= 0 then x
        else x + f (x-1)) (3-1))</pre>
```

```
let rec eval (e:exp) : exp =
 match e with
    Int e i -> Int e i
   Op e(e1,op,e2) -> eval op (eval e1) op (eval e2)
   Let e(x,e1,e2) -> eval (substitute (eval e1) x e2)
   Var e x -> raise (UnboundVariable x)
   Fun e (x,e) -> Fun e (x,e)
   FunCall e (e1,e2) ->
      (match eval el with
       Fun e (x,e) \rightarrow
           let v = eval e2 in
           substitute e x v
       | (Rec e (f,x,e)) as g \rightarrow
           let v = eval e2 in
           substitute (substitute e x v) f q
       -> raise TypeError)
```

More Evaluation

```
(rec fact n = if n \le 1 then 1 else n * fact(n-1)) 3
-->
if 3 < 1 then 1 else
  3 * (rec fact n = if ... then ... else ...) (3-1)
-->
3 * (rec fact n = if ...) (3-1)
-->
3 * (rec fact n = if ...) 2
-->
3 * (if 2 \le 1 then 1 else 2 * (rec fact n = ...)(2-1))
-->
3 * (2 * (rec fact n = ...)(2-1))
_->
3 * (2 * (rec fact n = ...)(1))
-->
3 * 2 * if 1 <= 1 then 1 else 1 * (rec fact ...)(1-1)
-->
3 * 2 * 1
```

A MATHEMATICAL DEFINITION* OF O'CAML EVALUATION

From Code to Abstract Specification

- OCaml code can give a language semantics
 - advantage: it can be executed, so we can try it out
 - advantage: it is amazingly concise
 - especially compared to what you would have written in Java
 - disadvantage: it is a little ugly to operate over concrete ML datatypes like "Op_e(e1,Plus,e2)" as opposed to "e1 + e2"
- PL researchers have developed their own, relatively standard notation for writing down how programs execute
 - it has a mathematical "feel" that makes PL researchers feel special and gives us goosebumps inside
 - it operates over abstract expression syntax like "e1 + e2"
 - it is useful to know this notation if you want to read specifications of programming language semantics
 - eg: Standard ML (of which OCaml is a descendent) has a formal definition given in this notation

Rules

- Our goal is to explain how an expression e evaluates to a value v.
- We are going to do so using a set of (inductive) rules
- A rule looks like this:

- You read a rule like this:
 - "if premise 1 can be proven and premise 2 can be proven and ...
 and premise n can be proven then conclusion can be proven"
- Some rules have no premises -- this means their conclusions are always true
 - we call such rules "axioms" or "base cases"

As a rule:

In English:

```
"If e1 evaluates to v1
and e2 evaluates to v2
and eval_op (v1, op, v2) is equal to v'
then
e1 op e2 evaluates to v'
```

As a rule: $\underbrace{ i \in Z } \qquad \text{an integer}$

In English:

"If the expression is an integer, it evaluates to itself."

```
let rec eval (e:exp) : exp =
  match e with
  | Int_e i -> Int_e i
  ...
```

As a rule:

In English:

```
"If e1 evaluates to v1
and e2 with v1 substituted for x evaluates to v2
then let x=e1 in e2 evaluates to v2."
```

```
let rec eval (e:exp) : exp =
  match e with
  ...
  | Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
  ...
```


"A function evaluates to itself."

```
let rec eval (e:exp) : exp =
  match e with
  ...
  | Fun_e (x,e) -> Fun_e (x,e)
  ...
```

As a rule:

```
e1 --> \lambda x.e e2 --> v2 e[v2/x] --> v e1 e2 --> v
```

In English:

```
"if e1 evaluates to a function with argument x and body e
and e2 evaluates to a value v2
and e with v2 substituted for x evaluates to v
then e1 applied to e2 evaluates to v"
```

As a rule:

```
e1--> rec f x = e e2 --> v e[rec f x = e/f][v/x] --> v2
e1 e2 --> v2
```

In English:

"uggh"

Comparison: Code vs. Rules

complete eval code:

complete set of rules:

```
let rec eval (e:exp) : exp =
 match e with
   Int e i -> Int e i
   Let e(x,e1,e2) -> eval (substitute (eval e1) x e2)
   Var e x -> raise (UnboundVariable x)
   Fun e (x,e) -> Fun e (x,e)
   FunCall e (e1,e2) ->
     (match eval e1
      Fun_e (x,e) \rightarrow eval (Let e (x,e2,e))
     -> raise TypeError)
   LetRec e (x,e1,e2) ->
   (Rec e (f,x,e)) as q \rightarrow
     let v = eval e2 in
     substitute (substitute e x v) f q
```

```
\frac{i \in \mathbb{Z}}{i > i}
                  e1 op e2 --> v
           e1 --> v1 e2 [v1/x] --> v2
                  let x = e1 in e2 --> v2
                   \lambda x.e \rightarrow \lambda x.e
       e1 --> λx.e e2 --> v2 e[v2/x] --> v
e1 e2 --> v3
```

Almost isomorphic:

- one rule per pattern-matching clause
- recursive call to eval whenever there is a --> premise in a rule
- what's the main difference?

Comparison: Code vs. Rules

complete eval code:

complete set of rules:

```
<u>i ∈ Z</u>
let rec eval (e:exp) : exp =
 match e with
   Int e i -> Int e i
                                                       e1 op e2 --> v
   Op e(e1,op,e2) -> eval op (eval e1) op (eval e2)
   Let e(x,e1,e2) -> eval (substitute (eval e1) x e2)
   Var e x -> raise (UnboundVariable x)
   Fun e (x,e) -> Fun e (x,e)
   FunCall e (e1,e2) ->
                                                                      λx.e --> λx.e
      (match eval e1
       | Fun_e (x,e) -> eval (Let_e (x,e2,e))

| _ -> raise TypeError)
                                                            e1 --> \lambda x.e e2 --> v2 e[v2/x] --> v e1 e2 --> v
   LetRec e (x,e1,e2) ->
    (Rec e (f,x,e)) as g \rightarrow
      let v = eval e2 in
      substitute (substitute e x v) f q
                                                         e1 e2 --> v3
```

- There's no formal rule for handling free variables
- No rule for evaluating function calls when a non-function in the caller position
- In general, no rule when further evaluation is impossible
 - the rules express the legal evaluations and say nothing about what to do in error situations
 - the code handles the error situations by raising exceptions

Summary

- We can reason about OCaml programs using a <u>substitution model</u>.
 - integers, bools, strings, chars, and functions are values
 - value rule: values evaluate to themselves
 - let rule: "let x = e1 in e2" : substitute e1's value for x into e2
 - fun call rule: "(fun x -> e2) e1": substitute e1's value for x into e2
 - rec call rule: "(rec x = e1) e2": like fun call rule, but also substitute recursive function for name of function
 - To unwind: substitute (rec x = e1) for x in e1
- We can make the evaluation model precise by building an interpreter and using that interpreter as a specification of the language semantics.
- We can also specify the evaluation model using a set of inference rules
 - more on this in COS 441

Some Final Words

- The substitution model is only a model.
 - it does not accurately model all of OCaml's features
 - I/O, exceptions, mutation, concurrency, ...
 - we can build models of these things, but they aren't as simple.
 - even substitution was tricky to formalize!
- It's useful for reasoning about higher-order functions, correctness of algorithms, and optimizations.
 - we can use it to formally prove that, for instance:
 - map f (map g xs) == map (comp f g) xs
 - proof: by induction on the length of the list xs, using the definitions of the substitution model.
 - we often model complicated systems (e.g., protocols) using a small functional language and substitution-based evaluation.
- It is not useful for reasoning about execution time or space

Some Exercises

Complete the following expressions so they evaluate to 42 or explain why this is impossible, appealing to the substitution model.

```
let x = ??? in
                                let x = \text{fun } x \rightarrow x*2 in
let x = 43 in
                                        let x = ??? 21 in
X ;;
                                                      X ;;
let x = ??? in
let y = (let x = 21 in x+x) in
x ;;
let x = ??? in
let y = [42] in
х у ;;
```

END