A Functional
Evaluation Model

COS 326
David Walker
Princeton University

A Functional Evaluation Model

In order to be able to write a program, you have to have a solid grasp
of how a programming language works.

We often call the definition of “how a programming language works”
its semantics.

There are many kinds of programming language semantics.

In this class, we will look at O’Caml’s call-by-value evaluation:
— First, informally, giving program rewrite rules by example
— Second, using code, by specifying an OCaml interpreter in OCaml

— Third, more formally, using logical inference rules

In each case, we are specifying what is known as OCaml's operational
semantics

O’CAML BASICS:
CORE EXPRESSION EVALUATION

Evaluation

* Execution of an OCaml expression
— produces a value

— and may have some effect (eg: it may raise an exception, print a
string, read a file, or store a value in an array)

* Alot of OCaml expressions have no effect
— they are pure
— they produce a value and do nothing more

— the pure expressions are the easiest kinds of expressions to
reason about

 We will focus on evaluation of pure expressions

Evaluation of Pure Expressions

Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

Note that "e --> v" is not itself a program -- it is some notation
that we use talk about how programs work

Evaluation of Pure Expressions

* @Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

* Some examples:

Evaluation of Pure Expressions

* @Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

* Some examples:

1+2

Evaluation of Pure Expressions

* @Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

* Some examples:

1+2-->3

Evaluation of Pure Expressions

* @Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

* Some examples:

1+2-->3

Evaluation of Pure Expressions

* @Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

* Some examples:

1+2-->3

2-->2 \

values step to values

Evaluation of Pure Expressions

* @Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

* Some examples:

1+2-->3

2 -->2

int_to_string 5 -->"5"

Evaluation of Pure Expressions

More generally, we say expression e (partly) evaluates to
expression e’:

Evaluation of Pure Expressions

More generally, we say expression e (partly) evaluates to
expression e’:

’

e-->e

Evaluation is complete when €’ is a value

— In general, I'll use the letter “v” to represent an arbitrary value
— The letter “e” represents an arbitrary expression
— Concrete numbers, strings, characters, etc. are all values, as are:
* tuples, where the fields are values
* records, where the fields are values
* datatype constructors applied to a value
* functions

Evaluation of Pure Expressions

* Some expressions (all the interesting ones!) take many steps
to evaluate them:

(2*3)+(7*5)

Evaluation of Pure Expressions

* Some expressions (all the interesting ones!) take many steps
to evaluate them:

(2*3)+(7*5)
->6+ (7 *5)

Evaluation of Pure Expressions

* Some expressions (all the interesting ones!) take many steps
to evaluate them:

(2*3)+(7*5)
->6+ (7 *5)
-->6+ 35

Evaluation of Pure Expressions

* Some expressions (all the interesting ones!) take many steps
to evaluate them:

(2*3)+(7*5)
->6+ (7 *5)
-->6+ 35
-->41

Evaluation of Pure Expressions

Some expressions do not compute a value and it is not
obvious how to proceed:

"hello" +1 --> ??7?

A strongly typed language rules out a lot of nonsensical
expressions that compute no value, like the one above

Other expressions compute no value but raise an exception:

7 / 0 --> raise Divide_by zero

Still others simply fail to terminate ...

Let Expressions: Evaluate using Substitution

let x = 30 1in
let y = 12 1in -->

let Yy = 12 in >

19

Informal Evaluation Model

To evaluate a function call “£ a”

first evaluate f until we get a function value (fun x -> e)

then evaluate a until we get an argument value v

then substitute v for x in e, the function body

then evaluate the resulting expression.

this is why we say
O’Caml is “call by value”

(let £ = (fun x -> x + 1) in f) (30+11) >
(fun x -=> x + 1) (30 + 11)

(fun x -> x + 1) 41

41 + 1 --> 42

Informal Evaluation Model

Another example:

let add x vy
let inc = add 1 in
let dec = add (-1) in
dec (1nc 42)

X+y 1in

Informal Evaluation Model

Recall the syntactic sugar:

let add = fun x -> (fun y -> x+y) in
let inc = add 1 in

let dec = add (-1) in

dec (1nc 42)

Informal Evaluation Model

Then we use the let rule — we substitute the value for add:

let add
let inc
let dec

dec (1nc

-->

let inc

let dec

dec (1nc

functions are values

= |fun x -> (fun y -> x+y) [in

= add 1 in

= add (-1) in “\\\\\\\\\\

42)

= |(fun x -> (fun y -> x+y))| 1 in
= |(fun x -> (fun y -> x+y))| -1 1in

427

23

Informal Evaluation Model

let inc
let dec

dec (1nc

let inc
let dec

dec (1nc

= (fun x -> (fun y -> x+y)) 1 |in
= (fun x -> (fun y -> x+vy))" (-1) 1in
42)
not a value; must reduce
before substituting for inc
= fun v -> 1+y| in
= (fun x -> (fun y -> x+y)) (-1) in

42)

24

Informal Evaluation Model

/

now a value

&=

let inc = |[fun y -> 1+vy |in

let dec = (fun x ->
dec (inc 42)

let dec = (fun x ->
dec((fun y -> 1+y)

(fun v -> x+vy))

(fun v -> x+vy))

42)

(-1)

(=1)

in

in

25

Informal Evaluation Model

Next: simplify dec’s definition using the function-call rule.

let dec = |(fun x -> (fun y -> x+y))

(-1)

—=>

let dec = |[fun y > -1+y

dec((fun v -> 1+y) 42)

in

dec((fun y -> l+y) 42) “\\\\\\\\\

now a value

in

26

Informal Evaluation Model

And we can use the let-rule now to substitute dec:

let dec = fun v -> -1+y in
dec((fun v -> 1+y) 42) ——>

(fun v -> -1+y) ((fun y -> 1+y) 42)

27

Informal Evaluation Model

Now we can’t yet apply the first function because the argument
is not yet a value —it’s a function call. So we need to use the
function-call rule to simplify it to a value:

(fun v -> -1+y) ((fun y -> 1+y) 42) ——>

(fun y -> -1+y) (1+42) -->

(fun vy -> -1+y) 43 —-->

-1+43 -->

42

Variable Renaming

Consider the following OCaml code:

let x = 30 in
let v = 12 1in
XtVy;;

Does this evaluate any differently than the following?

let a = 30 in
let b = 12 in
at+b; ;

Renaming

A basic principle of programs is that systematically changing the
names of variables shouldn’t cause the program to behave
any differently — it should evaluate to the same thing.

let x = 30 in
let vy = 12 in
XtVy;;

But we do have to be careful about systematic change.

let a = 30 in
let a = 12 in
ata;;

Systematic change of variable names is called alpha-conversion.

30

Substitution

Wait a minute, how do we evaluate this using the let-
rule? If we substitute 30 for “a” naively, then we get:

let a = 30 in
let a = 12 1in
ata -_—>

let 30 = 12 in
30430

Which makes no sense at all!
Besides, Ocaml returns 24 not 60.
What went wrong with our informal model?

31

Scope and Modularity

* Lexically scoped (a.k.a. statically scoped) variables have a
simple rule: the nearest enclosing “let” in the code defines

the variable.
 So when we write:
let a = 30 1n
let a = 12 1in

ata, ;
 we know that the “a+a” corresponds to “12+12” as opposed
to “304+30” or even weirder “30+12”.

32

A Revised Let-Rule:

* Toevaluate “let x = e; in e,
— First, evaluate e; to avaluev.
— Then substitute v for the corresponding uses of x in e,.
— Then evaluate the resulting expression.

let a = 30 in I o ;

—— : This “a” doesn’t
let a = 12 1in correspond to the
a+a uses of “a” below.
-_>
let a = 12 in

\ So when we
ata substitute 30 for it, it
> doesn’t change
anything.

12+12
-_>
24

Scope and Modularity

* But what does “corresponding uses” mean?

e Consider:

let a = 30 1in
let a = (let a

ata,;

3 in a*4) in

[Abstract Syntax Trees

* We can view a program as a tree — the parentheses and
precedence rules of the language help determine the
structure of the tree.

/Iet a = 30 in \\ =
let a =
J.n(let a = 3 in a*4) B 30 let
a+a,, %\
- /
== C let
(/1et a = (30) in N /%)
(let a = a 3 -
(let a = (3) in (a*4))
i /\
(a+a))) ’ ’

)

[Binding Occurrences

An occurrence of a variable where we are defining it via let is said to
be a binding occurrence of the variable.

let

) a 30 let
let a = 30 1in
. (let a = 3 1n a*4) 5 let +
in
ata; ; ‘/% L N
a a
a 3 *

36

Free Occurrences

A non-binding occurrence of a variable is said to be a free variable.

That is a use of a variable as
opposed to a definition.

let a
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

37

Abstract Syntax Trees

* Given a free variable occurrence, we can find where it is
bound by ...

let

let a

30 in
]_et a %\

(let a = 3 in a*4)

in
d d

Abstract Syntax Trees

e crawling up the tree to the nearest enclosing let...

let a
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

39

Abstract Syntax Trees

e crawling up the tree to the nearest enclosing let...

let a
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

let

let

40

Abstract Syntax Trees

e crawling up the tree to the nearest enclosing let...

let a
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

let

let

41

Abstract Syntax Trees

 and see if the “let” binds the variable — if so, we’ve found the
nearest enclosing definition. If not, we keep going up.

let

: a 30 let
let a = 30 1in
let a =
. (let a = 3 1n a*4) = let +
in
ataj;; /% /\
a
a 3 *

Abstract Syntax Trees

* Now we can also systematically rename the variables so that
it’s not so confusing. Systematic renaming is called alpha-

conversion
let
: a 30 let
let a = 30 1in
. (let a = 3 1n a*4) = let +
in
ataj;; /% /\
a
a 3 *

Abstract Syntax Trees

e Start with a let, and pick a fresh variable name, say “x”

let

let a

30 in
]_et a %\

(let a = 3 in a*4)

in
d

Abstract Syntax Trees

 Rename the binding occurrence from

o_n

a to "x".

“u .7

let x
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

let

let

45

Abstract Syntax Trees

e Then rename all of the free occurrences of the variables that
this let binds.

let

X 30 let
let x = 30 in
let a = %\
in(let a = 3 1n a*4) B let +
at+a;; /% /\
a
a 3 *

Abstract Syntax Trees

* There are none in this case!

These a’s are
bound by
this let.

let

let x = 30 in :
let a =
(let a = 3 in a*4)
in
ataj;;
a a

47

Abstract Syntax Trees]

* There are none in this case!

This a is
bound by
let this let

30 in

X 30 let
let x //
let a

(let a = 3 in a*4) = let ; +

in
ata;; z/r\\\\s

48

Abstract Syntax Trees

* Let’s do another let, renaming

ou_n

a” to “y”.

o, .’

let x
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

let

let

49

Abstract Syntax Trees

* Let’s do another let, renaming

ou_n

a” to “y”.

o, .’

let x
let vy

(let a

in
ytyii

30 in

= 3 in a*4)

30

let

let

let

50

Abstract Syntax Trees

“u_n,
Z .

* And if we rename the other let to

let

X 30 let
let x = 30 in
let v =
.n(let z = 3 1n z*4) y lot
i
ytyii
a 3 *

Abstract Syntax Trees

“u_n,
Z .

* And if we rename the other let to

let

X 30 let
let x = 30 in
let v =
.n(let z = 3 1n z*4) y lot
i
ytyii
Z 3 *

AN O’'CAML DEFINITION
OF O'CAML EVALUATION

Implementing an Interpreter]

text file containing program
as a sequence of characters

let x =3 in
X + X

N\

Parsing

data structure representing program

data structure representing

result of evaluation

Num

Let (”X”,
Num 3,

Binop(Plus, Var “x”, Var “x”))

the data type
//and evaluator
/ Evaluation tell us a lot
6 \

about program
semantics

Pretty [

Printing

text file/stdout
containing with formatted output

Making These Ideas Precise

We can define a datatype for simple OCaml expressions:

type variable = string ;;
type op = Plus | Minus | Times | .. ;;
type exp =

| Int e of int

| Op e of exp * op * exp

| Var e of variable

| Let e of variable * exp * exp ;;

55

Making These Ideas Precise

We can define a datatype for simple OCaml expressions:

type variable = string ;;
type op = Plus | Minus | Times | .. ;;
type exp =

| Int e of int

| Op e of exp * op * exp

| Var e of variable

| Let e of variable * exp * exp ;;

let three = Int e 3 ;;
let three plus one =
Op e (Int e 1, Plus, Int e 3) ;;

Making These Ideas Precise

We can represent the OCaml program:

let x
let vy

in
YtYis

= 30 in

(let z = 3 1in
7z *4)

as an exp value:

Let e ("x”
Let
Let e(Vz”,

144

4
e(\\y ,
(

Op e (Var e

Op e(Var e “y”,

\\

Int e 30,

Int e 3,

144

z'”, Times,

Plus,

Var_e

Int e 4)),
\\y//)

57

Making These Ideas Precise

Notice how this reflects the “tree”:

Let e(“x”,Int e 30,

Let e(Vy”,Let e

Op e (Var e

Op e(Var e “y”, Plus,

(“z”,Int e 3,

\\ 144

27

Var e

Times,

\\ 7

Y

)

Int e 4)),

let

58

Free versus Bound Variables]

type exp =
Int e of int This is a free occurrence of

Op e of exp * op * exp a variable

Var e of variable
Let e of variable * exp * exp

59

Free versus Bound Variables]

type exp =
Int e of int This is a free occurrence of

Op e of exp * op * exp a variable

Var e of variable
Let e of variable * exp * exp

S

This is a binding occurrence
of a variable

60

Implementing a Simple Evaluator

A Simple Evaluator

let is value (e:exp) : bool =
match e with
| Int e -> true
| (Op.e (., ,) | Let e(_, ,) | var_ e

let eval op vl op v2 = .
let substitute v x e = ..

let rec eval (e:exp) : exp =

match e with

| Int e i -=> Int e i

| Op e(el,op,e2) ->
let vl = eval el in
let v2 = eval e2 in
eval op vl op v2

| Let e(x,el,e2) ->
let vl = eval el in
let e = substitute vl x e2 in
eval e

_)

-> false

Even Simpler

let eval op vl op v2
let substitute v x e = ..

let rec eval (e:exp) : exp =
match e with
| Int e i -> Int e i
| Op_e(el,op,e2) -> eval op (eval el) op (eval e2)
| Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Oops! We Missed a Case:

let eval op vl op v2
let substitute v x e = ..

let rec eval (e:exp) : exp =
match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Var e x => 2?27

We should never encounter a variable — they should have
been substituted with a value! (This is a type-error.)

64

We Could Use Options:

let eval op vl op v2
let substitute v x e = ..

let rec eval (e:exp) : exp option =
match e with
Int e 1 -> Some(Int e 1)
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Var e x -> None

But this isn’t quite right — we need to match on the recursive calls
to eval to make sure we get Some value!

65

Exceptions

exception UnboundVariable of variable ;;

let rec eval (e:exp) : exp =
match e with
Int e 1 -> Int e 1
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)

vVar e x -> raise (UnboundVariable x)

Instead, we can throw an exception.

66

Exceptions

exception UnboundVariable of variable ;;

let rec eval (e:exp) : exp =
match e with
Int e 1 -> Int e 1
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)

vVar e x -> raise (UnboundVariable x)

Note that an exception declaration is a lot like a datatype
declaration. Really, we are extending one big datatype (exn) with a

new constructor (UnboundVariable).

67

Exceptions

exception UnboundVariable of variable ;;

let rec eval (e:exp) : exp =
match e with
Int e 1 -> Int e 1
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)

vVar e x -> raise (UnboundVariable x)

Later on, we’ll see how to catch an exception.

68

Back to our Evaluator

let eval op vl op v2
let substitute v x e = ..

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x) ;;

69

Evaluating the Primitive Operations

let eval op (vl:exp) (op:operand) (v2:exp) : exp =
match v1l, op, v2 with
| Int e i, Plus, Int e j -> Int e (i+])
| Int e i, Minus, Int e j -> Int e (i-3J)
| Int e i, Times, Int e j -> Int e (i*jJ)

LAY A 4

let substitute v x e = ..

let rec eval (e:exp) : exp =

match e with
Int e 1 -> Int e 1
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x) ;;

Substitution

let substitute (v:exp) (x:variable) (e:exp)

exp =

let rec subst (e:exp) : exp =
match e with

in
subst e

o o
rrs

Int e -> e

Op e(el,op,e2) -> Op e(subst el,op,subst e2)
Var e y -> if x = y then v else e

Let e (y,el,e2) ->

Let e (y,
subst el,
if x = y then e2 else subst e2)

71

Substitution

We want to
replace x (and
only x) with v.

let substitute (v:exp) (x:variable) (e:exp) : exp =

let rec subst (e:exp) : exp =
match e with

in
subst e

o o
rrs

Int e -> e

Op e(el,op,e2) -> Op e(subst el,op,subst e2)
Var e y -> if x = y then v else e

Let e (y,el,e2) ->
Let e (y,
subst el,
if x = y then e2 else subst e2)

72

Substitution

let substitute (v:exp) (x:variable) (e:exp)

exp =

let rec subst (e:exp) : exp =
match e with

in
subst e

e
e

Int e -> e

Op e(el,op,e2) -> Op e(subst el,op,subst e2)
Var e y -> if x = y then v else e
Let e (y,el,e2) ->

Let e (y,
subst el,
if x = y then e2 else subst e2)

73

Substitution

let substitute (v:exp) (x:variable) (e:exp) : exp =
let rec subst (e:exp) : exp =
match e with
Int e -> e

Op e(el,op,e2) -> Op e(subst el,op,subst e2)
Var e y -> if x = y then v else e

Let e (y,el,e2) ->
Let e (y,
subst el,
if x = y then e2 else subst e2)

in
subst e

e
e

If xand y are
the same
variable, theny
shadows x.

74

Let us Scale up the Language

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp

| Fun e of variable * exp | FunCall e of exp * exp ;;

75

Let us Scale up the Language

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp

| Fun e of variable * exp | FunCall e of exp * exp ;;

\

(fun x ->e) is
represented as
Fun_e(x,e)

76

Let us Scale up the Language

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp
| Fun e of variable * exp | FunCall e of exp * exp ;;

A function call

fact 3 ==>
FunCall_e (Var_e “fact”, Int_e 3)

Let us Scale up the Language:

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp

| Fun_e of variable * exp | FunCall e of exp * exp;;

let is value (e:exp) : bool =

Functions are
values!

match e with

| Int e -> true
| Fun e (_,) -> true
| (Op_e (_,_r_)

| Let e (., ,)

| var e

| FunCall e (_,)) -> false ;;

78

Let us Scale up the Language:

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp

| Fun_e of variable * exp | FunCall e of exp * exp;;

let is value (e:exp) : bool =

match e with

| Int e -> true
| Fun e (_,) -> true
| (Op_e (_,_r_)
| Let e (., ,)
| var e
| FunCall e (_,)) -> false ;;

Function calls are
not values.

Let us Scale up the Language:

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el, eval e2 with

| Fun e (x,e), v2 -> eval (substitute v2 x e)

| -> raise TypeError)

80

Let us Scale up the Language:]

let rec eval (e:exp) : exp =
match e with
Int e i -=> Int e i

Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->
(match eval el, eval e2 wit
| Fun e (x,e), v2 -> eval (s

| -> raise TypeError)

Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Var e x -> raise (UnboundVariable x)

values (including

functions) always
evaluate to
themselves.

81

Let us Scale up the Language:

let rec eval (e:exp) : exp =
match e with
Int e i -=> Int e i

Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Var e x -> raise (UnboundVariable x)

(match eval el, eval e2 with

| Fun e (x,e), v2 ->
| -> raise TypeError)

To evaluate a

function call, we
first evaluate
both el and e2 to

values.

1l (substitute v2 x e)

82

Let us Scale up the Language

let rec eval (e:exp) : exp =
match e with
Int e i -=> Int e i

Op e(el,op,e2) -> eval op (eval el) op (eval e2)

Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el, eval e2 with

| Fun e (x,e), v2 -> eval (substitute v2 x e)
| -> raise TypeError)
el had better

evaluate to a
function value,
else we have a
type error.

Let e(x,el,e2) -> eval (substitute (eval el) x e2)

83

Let us Scale up the Language

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el, eval e2 with

| Fun e (x,e), v2 -> eval (substitute v2 x e)

| _ -> raise Typiﬁiiii%:::::;;;;7¢/

Then we substitute e2’s
value (v2) for xin e and
evaluate the resulting
expression.

84

Simplifying a little

let rec eval (e:exp) : exp =
match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->
(match eval el

| Fun e (x,e) -> eval (substitute (eval e2) x e)

| -> raise TypeEriiil\\//////j:;;;7/

We don’t really need
to pattern-match on e2.
Just evaluate here

85

Simplifying a little

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (ef,el) ->

(match eval ef with

| Fun e (x,e2) -> eval (substitute (eval el) x e2)

| _ -> raise TypeError) \F\\

This looks like
the case for let!

86

Let and Lambda

let x = 1 in x+41
—>

1+41

——>

42

(fun x -> x+41) 1
——>
1+41
——>

42

87

So we could write:

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (FunCall (Fun e (x,e2), el))
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (ef,e2) ->

(match eval ef with

| Fun e (x,el) -> eval (substitute (eval el) x e2)

| _ -> raise TypeError)

In programming-languages speak: “Let is syntactic sugar for a function call”

Syntactic sugar: A new feature defined by a simple, local transformation.

Recursive definitions

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp |
| Fun e of variable * exp | FunCall e of exp * exp
| Rec_e of variable * variable * exp ;;

(rewrite)
let rec £f x = £ (x+1) in f 3
let £ = rec £ x -> £ (x+1)) in (alpha-convert)
f 3
let g = rec £ x -> £ (x+1)) in (implement)
g 3
Let e (“g,

Rec_e (llfll . IIXII .
FunCall e (Var_ e “f"”, Op_e (Var e “x", Plus, Int e 1))

) 1
FunCall (Var e “g”, Int e 3)

)

39

Recursive definitions

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp |
| Fun e of variable * exp | FunCall e of exp * exp
| Rec_e of variable * variable * exp ;;

let is value (e:exp) : bool =
match e with

Int e -> true

Fun e (_,) -> true

Rec e of (_, ,) -> true

(Op_e (_,_,_) | Let_e (_,_,_) |

Var e | FunCall e (_,)) -> false

e
e

90

Before Evaluation: Notation for Substitution

“Substitute value v for variable x in expression e:” e[v/x]

examples of substitution:
(x +vy) [7/y] is (x+7)
(letx=30inlety=40inx+vy) [7/y] s (letx=30inlety=40inx+y)

(lety=yinlety=yiny+y)[7/y] s (lety=7inlety=yiny+y)

Evaluating Recursive Functions

Basic evaluation rule for recursive functions:

(recfx=body)arg --> body [arg/x] [rec f x = body/f]

i

argument substituted
for parameter

N

entire function substituted

for function name

92

Evaluating Recursive Functions

Start out with let g =
a let bound to rec £ x ->
a recursive function: if x <= 0 then x
else x + £ (x-1)
in g 3

g 3 [rec £ x ->
The Substitution: if x <= 0 then x
else x + £ (x-1) / g]

The Result: (re<.: f x ->
1f x <= 0 then x else x + £ (x-1)) 3

93

Evaluating Recursive Functions

Recursive (rec £ x ->
Function Call: if x <= 0 then x else x + £ (x-1)) 3

(Lf x <= 0 then x else x + £ (x-1))
[rec £ x ->

The Substitution: if x <= 0 then x
else x + £ (x-1) / £]
[3/ x] .
Substitute argument Substitute entire function
for parameter for function name

(Lf 3 <= 0 then 3 else 3 +

The Result: (rec.f X —=>
if x <= 0 then x

else x + £ (x-1)) (3-1))

Evaluating Recursive Functions

let rec eval (e:exp) : exp =
match e with
| Int e i -=> Int e i
| Op e(el,op,e2) -> eval op (eval el) op (eval e2)
| Let e(x,el,e2) -> eval (substitute (eval el) x e2)
| Var e x -> raise (UnboundVariable x)
| Fun e (x,e) -> Fun e (x,e)
| FunCall e (el,e2) ->
(match eval el with
| Fun e (x,e) ->
let v = eval e2 in
substitute e x v

| (Rec_e (f,x,e)) as g ->
let v = eval e2 in
substitute (substitute e x v) f g

-> raise TypeError)

95

More Evaluation

(rec fact n = if n <= 1 then 1 else n * fact(n-1)) 3
——>
if 3 < 1 then 1 else

3 * (rec fact n = if ... then ... else ...) (3-1)
——>
3 * (rec fact n = if ..) (3-1)
——>

3 * (rec fact n
-—>

3 * (if 2 <=1 then 1 else 2 * (rec fact n = ...)(2-1))
-—>

3 * (2 * (rec fact n
-—>

3 * (2 * (rec fact n = ...)(1))

-—>

3 **2 * if 1 <=1 then 1 else 1 * (rec fact ...)(1-1)
-—>

3 * 2 %1

if ..) 2

...)(2-1))

96

A MATHEMATICAL DEFINITION*
OF O'CAML EVALUATION

*it’s a partial definition and this is a big topic; for more, see COS 441

From Code to Abstract Specification

* OCaml code can give a language semantics
— advantage: it can be executed, so we can try it out
— advantage: it is amazingly concise
* especially compared to what you would have written in Java

— disadvantage: it is a little ugly to operate over concrete ML
datatypes like “Op _e(el,Plus,e2)” as opposed to “el + e2”

* PLresearchers have developed their own, relatively standard
notation for writing down how programs execute
— it has a mathematical “feel” that makes PL researchers feel
special and gives us goosebumps inside
— it operates over abstract expression syntax like “el + e2”
— it is useful to know this notation if you want to read
specifications of programming language semantics

* eg: Standard ML (of which OCaml is a descendent) has a formal
definition given in this notation

Rules

Our goal is to explain how an expression e evaluates to a value v.

We are going to do so using a set of (inductive) rules
A rule looks like this:

premise 1 premise 2 premise 3
conclusion

You read a rule like this:

— “if premise 1 can be proven and premise 2 can be proven and ...
and premise n can be proven then conclusion can be proven”

Some rules have no premises -- this means their conclusions are
always true

— we call such rules “axioms” or “base cases”

An example rule concerning evaluation

As a rule:
el -->vl e2 -->v2 eval _op (v1, op, v2) ==V
elope2 --> V
In English:
“If el evaluates to vl
and e2 evaluates to v2
and eval _op (v1, op, v2) is equal to v’
then
el op e2 evaluates to Vv’
In code:

let rec eval (e:exp) : exp =
match e with

| Op e(el,op,e2) -> eval op (eval el) op (eval e2)

An example rule concerning evaluation

As a rule: / assertsiis
: an integer
K4 &
| -->

In English:

“If the expression is an integer, it evaluates to itself.”

In code:

let rec eval (e:exp) : exp =
match e with
| Int e i -=> Int e i

An example rule concerning evaluation

As a rule:
el-->vl e2 [vl/x] -->v2
letx=eline2 --> v2

In English:

“If el evaluates to v1
and e2 with v1 substituted for x evaluates to v2
then let x=el in e2 evaluates to v2.”

In code:

let rec eval (e:exp) : exp =
match e with

| Let e(x,el,e2) -> eval (substitute (eval el) x e2)

An example rule concerning evaluation

As a rule:

Ax.e --> Ax.e

In English:

“A function evaluates to itself.”

In code:

typical “lambda” notation
for a function with
argument x, body e

let rec eval (e:exp) : exp
match e with

| Fun e (x,e) -> Fun e (x,

e)

An example rule concerning evaluation

As a rule:
el --> Ax.e e2 -->v2 e[v2/x] -->v
ele2 -->v

In English:

“if el evaluates to a function with argument x and body e
and e2 evaluates to a value v2
and e with v2 substituted for x evaluates to v
then el applied to e2 evaluates to v”

In code:

let rec eval (e:exp) : exp =
match e with

| FunCall e (el,e2) ->
(match eval el with
| Fun e (x,e) -> eval (substitute e x (eval e2))

| ...)

An example rule concerning evaluation

As a rule:
el-->recfx=e e2 -->v e[rec f x = e/f][v/x] --> v2

ele2 --> v2

In English:

lluggh”

In code:

let rec eval (e:exp) : exp =
match e with

| (Rec_e (f,x,e)) as g ->
let v = eval e2 in
substitute (substitute e x v) f g

[Comparison: Code vs. Rules]

complete eval code: complete set of rules:
let rec eval (e:exp) : exp = ic7
match e with =

Int e 1 -=> Int e i

Op_e(el,op,e2) -> eval op (eval el) op (eval e2) el->vl e2 -->v2 eval_op (vl, op,Vv2)==v
elope2 -->v

Let e(x,el,e2) -> eval (substitute (eval el) x e2)

el-->vl e2 [vl/x] -->v2

Fun_e (x,e) -> Fun_e (x,e) letx=eline2 --> v2

FunCall e (el,e2) ->
(match eval el

|
|
|
| Var_e x -> raise (UnboundvVariable x)
|
|

| Fun_e (x,e) -> eval (Let_e (x,e2,e)) Ax.e --> Ax.e

| _ -> raise TypeError)
| LetRec e (x,el,e2) -> el --> Ax.e e2 -->v2 e[v2/x] -->v
(Rec_e (f,x,e)) as g -> ele2 ->v

let v = eval e2 in

substitute (substitute e x v) f g el-->recfx=e e2 -->v2 e[recfx=e/f][v2/x] -->v3

ele2 --> v3

Almost isomorphic:
— one rule per pattern-matching clause
— recursive call to eval whenever there is a --> premise in a rule
— what’s the main difference?

Comparison: Code vs. Rules

complete eval code: complete set of rules:
ie”Z
let rec eval (e:exp) : exp = i o>

match e with
| Int_ e i -> Int e i el-->vl e2 -->v2 eval op (vl, op,Vv2) ==v
elope2 -->v

| Op e(el,op,e2) -> eval op (eval el) op (eval e2)
| Let e(x,el,e2) -> eval (substitute (eval el) x e2)
;#| Var e x -> raise (UnboundVariable x) el->vl e2 [v1/x] -->v2
|
|

letx=eline2 --> v2
Fun e (x,e) -> Fun_e (x,e) X ! v

FunCall e (el,e2) ->
(match eval el

Ax.e --> Ax.e

| Fun_e (x,e) -> eval (Let_e (x,e2,e))
__ => raise TypeError) el -->Ax.e e2 -->v2 e[v2/x] -->v
| LetRec_e (x,el,e2) -> ele2 ->v

(Rec_e (f,x,e)) as g ->

let v = eval e2 in

substitute (substitute e x v) f g el-->recfx=e e2 -->v2 e[recfx=e/f][v2/x] -->v3

ele2 --> v3

 There’s no formal rule for handling free variables

* No rule for evaluating function calls when a non-function in the caller position

* In general, no rule when further evaluation is impossible
— the rules express the legal evaluations and say nothing about what to do in error situations
— the code handles the error situations by raising exceptions

Summary

 We can reason about OCaml programs using a substitution model.
— integers, bools, strings, chars, and functions are values
— value rule: values evaluate to themselves
— letrule: “letx=elin e2” : substitute el’s value for x into e2
— fun call rule: “(fun x -> e2) el”: substitute el’s value for x into e2

— rec call rule: “(rec x =el) e2” : like fun call rule, but also substitute
recursive function for name of function

* To unwind: substitute (rec x =el) for xin el

 We can make the evaluation model precise by building an interpreter
and using that interpreter as a specification of the language
semantics.

* We can also specify the evaluation model using a set of inference rules
— more on this in COS 441

108

Some Final Words

* The substitution model is only a model.

— it does not accurately model all of OCaml’s features
* |/O, exceptions, mutation, concurrency, ...
* we can build models of these things, but they aren’t as simple.
* even substitution was tricky to formalize!

* |t’s useful for reasoning about higher-order functions,
correctness of algorithms, and optimizations.
— we can use it to formally prove that, for instance:
* map f (map g xs) == map (comp f g) xs

* proof: by induction on the length of the list xs, using the
definitions of the substitution model.

— we often model complicated systems (e.g., protocols) using a
small functional language and substitution-based evaluation.

* Itis not useful for reasoning about execution time or space

Some Exercises

Complete the following expressions so they evaluate to 42 or explain
why this is impossible, appealing to the substitution model.

let x
let x

X 77

let x
let y

X 77

let x
let y

XY 17

??2? in let x = fun x -> x*2 1in
43 1in let x = ?2?2?2 21 in

X ;3
??2? in

(let x = 21 in x+x) in

??? in
[42] in

110

END

