Thinking Inductively

COS 326
David Walker
Princeton University

Administration

We’'ll announce on Piazza when you can start an assignment
— don’t start early as there may be changes!
— sign up for Piazza!
— Assignment 1 due at 11:59 tonight!

Program style guide:

— http://www.cs.princeton.edu/courses/archive/fall13/cos326/
stvle.php

Read notes:

— functional basics, type-checking, typed programming
— thinking recursively (today)

Extra precept?

Typed Functional Programming

Functional programs operate by:
— extracting information from their arguments and then

— producing new values

So far, we've defined non-recursive functions in this style to
analyze pairs and optional values

Why? Because recursive functions typically come from
recursive data

— Pairs are not recursive -- we need only do a small, (statically)
predictable amount of work to get at the information these

structures contain
— Lists and natural numbers can be viewed as recursive
* not surprisingly, you’ve defined recursive functions over numbers!

Inductive Programming and Proving

An inductive data type T is a datatype defined by:

— a collection of base cases
* thatdon’treferto T

— a collection of inductive cases that build new values of type T
from pre-existing data of type T

Programming principle:
— solve programming problem for base cases

— solve programming problem for inductive cases by calling
function recursively (inductively) on smaller data value

Proving principle:
— prove program satisfies property P for base cases

— prove inductive case satisfies property P assuming inductive call
on smaller data value satisfies property P

LISTS: AN INDUCTIVE DATA TYPE

Lists are Recursive Data

* |n O'Caml, a list value is:

- [] (the empty list)
— v:vs (avaluev followed

Inductive
Case

J -

Base Case

shorter list of values vs)

J

Lists are Inductive Data

* |n O'Caml, a list value is:
— [] (the empty list)
— V:IIVS (a value v followed by a shorter list of values vs)

* An example:
— 2::3::5::[] has typeint list
— isthesameas: 2::(3::(5::[]))

— "::"is called "cons"

* An alternative (better style) syntax:
— [2; 3; 5]
— But this is just a shorthand for 2 :: 3 :: 5 :: []. If you ever get
confused fall back on the 2 basic primitives: ::and []

Typing Lists

* Typing rules for lists:

(1) [] may have any list type t list

(2) ifel:tand e2:tlist
thenel::e2:tlist

Typing Lists

* Typing rules for lists:

(1) [] may have any list type t list

(2) ifel:tand e2:tlist
thenel::e2:tlist

* More examples:
(1+4+2)::(3+4)::[]:7??

(2D (56 =[] =[] :??

[[2]; [5; 6]] . ??

Typing Lists

* Typing rules for lists:

(1) [] may have any list type t list

(2) ifel:tand e2:tlist
thenel::e2:tlist

* More examples:
(1+2)::(3+4)::[]:intlist

(2] (56 =[] :[] :intlistlist

[[2]; [5; 6]] -int list list

(Remember that the 3@ example is an abbreviation for the 2"

Another Example

 What type does this have?

[2] 2 [3]

Another Example

 What type does this have?

[2] :[3]

N

int list int list

rule: el::e2:tlist if el:t and e2 :tlist

[2]

Error:

(3177

This expression has type int but an
expression was expected of type
int list

Another Example

 What type does this have?

[2] =2 [3]

N

int list int list

* Give me a simple fix that makes the expression type check?

Another Example

 What type does this have?

[2] =2 [3]

N

int list int list

* Give me a simple fix that makes the expression type check?
Either: 2 2 [3] . int list

Or: [2]:[[31] cint list list

Analyzing Lists

Just like options, there are two possibilities when
deconstructing lists. Hence we use a match with two branches

(* return Some v, 1f v 1s the first 1list element;
return None, 1f the list i1s empty *)

let head (xs : 1int list) : int option =

Analyzing Lists

Just like options, there are two possibilities when
deconstructing lists. Hence we use a match with two branches

(* return Some v, 1f v 1s the first 1list element;
return None, 1f the list i1s empty *)

let head (xs : 1int list) : int option =
match xs with
[l =>
| hd :: ->

Y \

we don't care about the contents of the
tail of the list so we use the underscore

Analyzing Lists

* Just like options, there are two possibilities when
deconstructing lists. Hence we use a match with two branches

(* return Some v, 1f v 1s the first 1list element;
return None, 1f the list i1s empty *)

let head (xs : int list) : int option =
match xs with
| [] —> None
| hd :: —-> Some hd

* This function isn't recursive -- we only extracted a small , fixed
amount of information from the list -- the first element

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

<)

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

<)

let rec prods (xs : (int * 1int) list) : 1nt list

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) list) : 1nt list =
match xs with
[l =>

| (x,y) :: £l ->

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) list) : 1nt list =
match xs with
[l => []

| (x,y) :: £l ->

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

<)

let rec prods (xs : (int * int) list) : 1nt list =
match xs with

] —> []
| (x,y) ::: tl -> 272 :: 727

r \\

the result type is int list, so we can speculate
that we should create a list

A more interesting example

(* Given a list of pairs of integers,

produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6;
*)
let rec prods (xs : (int * 1nt) list)
match xs with
| [l => [
| (x,y) :: tl -> (x * y) :: 27

r \

the first element is the product

28; 10]

int list

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)
let rec prods (xs : (int * int) list) : 1nt list =
match xs with
[=> T[]
| (x,y) ::: tl -> (x * y) :: 27

/

/

to complete the job, we must compute
the products for the rest of the list

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) list) : 1nt list =
match xs with
[=> []

| (x,y) :: tl -> (x * y) :: prods tl

Two Parts to Constructing a Function

Think about how to break down the i

let rec prods (xs
match xs with

This assumption is called the
Induction Hypothesis. You’'ll
use it to prove your program
correct.

Assume the recursive call is correct
(ie: its result satisfies the property you want).
Use its result to build correct answer.

let rec prods (xs : (int*int) list) : 1nt list =

| (x,y) :: t1l -> ... prods tl

Recap

Broad steps:
— break down the input based on its type in to a set of cases
* there can be more than one way to do this

— make the assumption (the induction hypothesis) that your
recursive function works correctly when called on a smaller list

e you might have to make 0,1,2 or more recursive calls

— build the output (guided by its type) from the results of
recursive calls

let rec prods (xs : (int * 1int) list) : 1int list =
match xs with

[l => [
| (x,y) :: tl -> (x * y) :: prods tl

Another example: zip

(* Given two lists of integers,

return None if the lists are different lengths
otherwise stitch the lists together to create
Some of a list of pairs

zip [2; 3] [4; 5] == Some [(2,4); (3,5)]
zip [5; 3] [4] == None
zip [4; 5; 6] [8; 9; 10, 11; 12] == None

(Give it a try.)

Another example: zip

let rec zip (xs : 1int 1list) (ys : int 1list)
(Int * int) list option =

Another example: zip

let rec zip (xs : 1nt list) (ys : 1nt list)
(int * int) list option =

match (xs, ys) with

| (L[], []) =-> Some []
(L], yriys') =>
| (x::xs', []) ->
| (x::xs', y::ys') —->

Another example: zip

let rec zip (xs : 1nt list) (ys : 1nt list)
(int * int) list option =

match (xs, ys) with

| ([1, []) —-> Some []
| ([], y::ys') —> None
| (x::xs', []) —-> None
| (x::xs', y::ys') —->

Another example: zip

let rec zip

(int * int)

match

(L1,

(xs,

[1)

[1, y::ys')

| (
| (x::xs',
| (x::xs',

int list) (ys :
list option =

(xs

ys) with

-> Some []

—> None
—> None
->

[1)

y:iys') (%, V) zip xs'

int list)

ys'

/

is this ok?

Another example:

ZIp

let rec zip (xs : 1nt 1list) (ys
(int * int) list option =

match (xs, ys) with

(L1, []) =-> Some []

| ([], y::ys') —-> None

| (x::xs', []) —-> None

| (x::xs', y:ir:ys') -> (x, V)

int list)

zlp xs'

ys'

No! zip returns a list option, not a list!

/

We need to match it and decide if it is Some or None.

Another example: zip

let rec zip (xs : int list) (ys : int list)
(int * int) list option =

match (xs, ys) with

| ([1, []) —-> Some []
| ([], y :ys') —-> None
| (x: , []) —> None
| (X: xs', y::iys') ->

(match zip xs' ys' with
None —-> None
| Some zs -> (X,y) :: zZs

rs A

/

Closer, but no cigar.

Another example: zip

let rec zip (xs : int list) (ys : int list)
(int * int) list option =

match (xs, ys) with

| ([1, []) —-> Some []
| ([], y::ys') —> None
| (x::xs', []) —-> None
| (x::xs', y::ys') —->

(match zip xs' ys' with
None —-> None
| Some zs —-> Some ((xX,y) :: zZs)

Another example: zip

let rec zip (xs : int list) (ys : int list)
(int * int) list option =

match (xs, ys) with
| (L], []) —-> Some []
| (x::xs', y::ys') ->
(match zip xs' ys' with
None —-> None
| Some zs —-> Some ((xX,y) :: zZs))
| (,) —> None

TN

Clean up.
Reorganize the cases.
Pattern matching proceeds in order.

A bad list example

let rec sum (xs : int list) : int =
match xs with
| hd::tl -> hd + sum tl

A bad list example

let rec sum (xs : int list) : int =
match xs with
| hd::tl -> hd + sum tl

Characters 39-78:
..match xs with
hd :: t1 -> hd + sum tl..
Warning 8: this pattern-matching i1s not exhaustive.
Here 1s an example of a value that i1s not matched: []

val sum : int list -> int = <fun>

INSERTION SORT

Recall Insertion Sort

* At any point during the insertion sort:
— some initial segment of the array will be sorted

— the rest of the array will be in the same (unsorted) order as it
was originally

EIEIEEIEI A
\ Y A Y J

sorted unsorted

Recall Insertion Sort

* At any point during the insertion sort:
— some initial segment of the array will be sorted

— the rest of the array will be in the same (unsorted) order as it
was originally

EIEIEEIEI KR
\ Y A Y J

sorted unsorted

* At each step, take the next item in the array and insert it in
order into the sorted portion of the list

ElIEIEIE IR
\ A J
| |

sorted unsorted

Insertion Sort With Lists

* The algorithm is similar, except instead of one array, we will
maintain two lists, a sorted list and an unsorted list

list 1: list 2:
406 |7
(J \ J
| |
sorted unsorted

 We'll factor the algorithm:
— a function to insert in to a sorted list
— a sorting function that repeatedly inserts

Insert

(* insert X 1n to sorted list xs *)

let rec insert (x : int) (xs : int list)

int list

Insert

(* insert X 1n to sorted list xs *)

let rec insert (x : int) (xs : int list)

int list

Insert

(* insert x 1n to

let rec insert (X
match xs with

[=>
| hd :: tl1l ->

sorted list xs *)

int) (xs

a familiar pattern:

int list)

int list

analyze the list by cases

Insert

(* insert X 1n to sorted list xs *)

let rec insert (x : 1int) (xs : int
match xs with

list) : int list

e
| hd :: tl1 ->

insert x in to the
empty list

Insert

(* insert X 1n to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
match xs with
L[] => [x]
| hd :: tl1 ->
if hd < x then
hd :: insert x tl

\ J
|

build a new list with:

* hd at the beginning

* theresult of inserting x in to
the tail of the list afterwards

Insert

(* insert X 1n to sorted list xs *)

let rec insert (x : int) (xs : int 1list) : int list =
match xs with
[-> [x]
| hd :: tl1 ->
if hd < x then

hd :: i1nsert x tl
else
X :: XS

rs '\

\

put x on the front of the list,
the rest of the list follows

Insertion Sort

type 11 = 1nt list

insert : int -> 11 -> 11

(* insertion sort *)

let rec insert sort (xs

11)

1l

Insertion Sort

type 11 = 1nt list

insert : int -> 11 -> 11

(* insertion sort *)
let rec insert sort(xs : 1l1) : 11 =

let rec aux (sorted : 1l1l) (unsorted

in

11)

1l

Insertion Sort

type 11 = 1nt list

insert : int -> 11 -> 11

(* insertion sort *)

let rec insert sort(xs : 1l1) : 11 =
let rec aux (sorted : 1l1l) (unsorted
in

aux [] xs

11)

1l

Insertion Sort

type 11 = 1nt list

insert : int -> 11 -> 11

(* insertion sort *)

let rec insert sort(xs : 1l1) : 11 =
let rec aux (sorted : 1i1l) (unsorted
match unsorted with
[=>
| hd :: tl1 ->
in

aux [] xs

11)

1l

Insertion Sort

type il = int list

insert : int -> 11 -> 11

(* insertion sort *)

let rec insert sort(xs : 1l1) : 11 =
let rec aux (sorted : 1il1l) (unsorted : 11) : 11 =
match unsorted with
| [] —-> sorted
| hd :: tl1 -> aux (insert hd sorted) tl
in

aux [] xs

A COUPLE MORE THOUGHTS ON
LISTS

The (Single) List Programming Paradigm

* Recall that alist is either:
— [] (the empty list)
— v:vs (avalue v followed by a previously constructed list vs)

 Some examples:

let 10 = [];; (* length is 0 *)
let 11 = 1::10;; (* length i1is 1 *)
let 12 = 2::11;; (* length is 2 *)
let 13 = 3::12;; (* length is 3 *)

[Consider This Picture

e Consider the following picture. How long is the linked structure?
e Can we build a value with type int list to represent it?

m [N

[Consider This Picture

* How longisit? Infinitely long?
e Can we build a value with type int list to represent it? No!

— all values with type int list have finite length

m [N

The List Type

* Is it agood thing that the type list does not contain any
infinitely long lists? Yes!

* Aterminating list-processing scheme:

let £ (xs : int list) : 1int =
match xs with
[] -> .. do something not recursive ..
| hd::tail -> ... £ tail ..

rs \\

terminates because f only called recursively on smaller lists

A Loopy Program

let loop (xs : int list) : int =
match xs with
[1] —> []
| hd::tail -> hd + loop (0::tail)

Does this program terminate?

A Loopy Program

let loop (xs : 1int list) : int =
match xs with
[1] —> []
| hd::tail -> hd + loop (0::tail)

Does this program terminate? No! Why not? We call loop recursively on
(O::tail). This list is the same size as the original list -- not smaller.

Take-home Message

ML has a strong type system
ML types say a lot about the set of values that inhabit them

In this case, the tail of the list is always shorter than the whole list

This makes it easy to write functions that terminate; it would be
harder if you had to consider more cases, such as the case that the
tail of a list might loop back on itself. Moreover OCaml hits you over
the head to tell you what the only 2 cases are!

Note: Just because the list type excludes cyclic structures does not
mean that an ML program can't build a cyclic data structure if it
wants to. (We'll do that later in the course.)

Rant #2: Imperative lists]

 One week from today, ask yourself: Which is easier:
— Programming with immutable lists in ML?

— Programming with pointer in C/Java

xkcd

IN YOUR BASEMENT?
BAD IDEA. NEVER
MAKE A LAYOUT OF
THE AREA YOURE IN.

/]‘_‘ WANT To BOWD WHY NOT? SO? THATD GE CCol! ITD
PERFECT HO - SCALE MAKE TiNY REPLIGAS OF
~ BECALSE ITD INCLUDE
l(‘;\/f?) mm A LITTLE 10" REFPLICA MY ROOMS, MY FURN IMURE—
ouT - OF YOUR HOUSE.
—AND YOOR
TRAIN LAYOUT?

Q‘% @\

1T IS IMPOSSIBLE TO NEST
MORKRE THAN SIX HO LAYOUTS

.. WHATS THE FIRST RWE?

My GoD. .
YEAH. 'T's THE DO A7 TALK ABOUT MODEL
SECOND RULE TRAIN LAYOUTSE THAT RULE
OF MODEL WAS ACTUALLY VOTED IN BY
TRAIN LAYOUTS: CUR FIRIENDS AND FAMILIES.
NO NESTING.
3 PHILISTINES.)

R &

Example problems to practice

Write a function to sum the elements of a list
— sum|[1;2;3]==>6
Write a function to append two lists
— append [1;2;3] [4;5,6] ==> [1,2;3;4,5;6]
Write a function to reverse a list
— rev [1;2;3] ==>[3;2;1]
Werite a function to a list of pairs in to a pair of lists
— split [(1,2); (3,4); (5,6)] ==> ([1;3;5], [2;4;6])
Write a function that returns all prefixes of a list
— prefixes [1;2;3] ==> [[]; [1]; [1;2]; [1;2;3]]

ANOTHER INDUCTIVE DATA TYPE:
THE NATURAL NUMBERS

Natural Numbers

Natural numbers are a lot like lists
— both can be defined inductively

A natural number n is either
— 0, or
— m+ 1 where m is a smaller natural number
Functions over naturals n must consider both cases
— programming the base case 0 is usually easy

— programming the inductive case (m+1) will often involve
recursive calls over smaller numbers

OCaml doesn't have a built-in type "nat" so we will use "int
instead for now ...
— “int” has too many values in it (and also not enough)

— later in the course we could define an abstract type that
contains exactly the natural numbers

An Example

(* precondition: n is a natural number
return double the input *)

let rec double nat (n : 1nt) : 1nt =

By definition of naturals:
* n=0or
e n=m+lforsome natm

An Example

(* precondition: n is a natural number
return double the input *)

let rec double nat (n : 1nt) : 1nt =
match n with
| 0 —->
> \
s two cases:
one for 0
one for m+1

By definition of naturals:
* n=0or
e n=m+lfor some natm

An Example

(* precondition: n is a natural number
return double the input *)

let rec double nat (n : 1nt) : 1nt =
match n with
| O -> 0
r solve easy base case first
consider:
what number is double 0?

By definition of naturals:
* n=0or
e n=m+lfor some natm

An Example

(* precondition: n is a natural number
return double the input *)

let rec double nat (n : 1nt) : 1nt =
match n with
| 0 -=> 0
| -> 22272

r s \

assume double nat m is correct
where n = m+1

that’s the inductive hypothesis

By definition of naturals:
* n=0or
e n=m+lfor some natm

An Example

(* precondition: n 1s a natural number
return double the input *)

let rec double nat (n : 1Int) : 1Int =
match n with
| 0 -=> 0
| -> 2 + double nat (n-1)

;i ~

assume double nat m is correct
where n = m+1

that’s the inductive hypothesis

AN

By definition of naturals: | wish | had a pattern (m+1) ... but

* n=0or OCaml doesn’t have it. So | use n-1
* n=m+1forsome natm to get m.

An Example

(* fail if the input i1s negative
double the input i1f 1t 1s non

let double (n int) int

let rec double nat (n int)
match n with

0 -> 0
| n -> 2 + double nat

in

(n—-1)

-negative

e

/

*\
nest double nat so it

can only be called by
double

int =

raises exception

if n < 0 then

failwith "negative input!"

else
e

double nat n

protect precondition of double nat
by wrapping it with dynamic check

later we will see how to create a
static guarantee using types

[More than one way to decompose naturals

A natural n is either:
— 0, -

— m+1, where mis a natural

unary decomposition

A natural n is either:
— 0,

- 1, ~ unary even/odd decomposition
— m+2, where mis a natural

A natural n is either:
— 0,
— m*2 — binary decomposition

— m*2+1

More than one way to decompose lists

A list xs is either:

- [l,

— X::Xs, Wwhere ys is a list

A list xs is either:

- [l
— [x],

— X::y::ys, where ys is a list

A natural n is either:
— O’
— m*2
— m*2+1

unary decomposition

unary even/odd decomposition

binary decomposition doesn't
work out as smoothly for lists
as lists have more information content:

they contain structured elements

Summary

Instead of while or for loops, functional programmers use
recursive functions
These functions operate by:

— decomposing the input data

— considering all cases

— some cases are base cases, which do not require recursive calls

— some cases are inductive cases, which require recursive calls on
smaller arguments

We've seen:

— lists with cases:
* (1) empty list, (2) a list with one or more elements
— natural numbers with cases:
* (1) zero (2) m+1
— we'll see many more examples throughout the course

END

