C0OS226 Week 2 Activity

1. Generics, iterators, autoboxing, and mathematical analysis. Algorithms textbook 1.3

Use the class shown here: http://algs4.cs.princeton.edu/13stacks/ResizingArrayStack.java.html

ResizingArrayStack<Character> stack = new ResizingArrayStack<Character>();
stack.push('A');

stack.push('C');
stack.push('T');
for (char left : stack)
for (char right : stack)
StdOut.println(left + " " + right);

(a) What does the above code fragment output to standard output?

(b) If N characters are pushed onto the stack initially (instead of 3), how many lines
of output does the above code fragment produce as a function of N7

2. Unit testing. Describe three ways to test the correctness of the implementation of
ResizingArrayStack.



3. Stacks, queues, and amortized analysis. Algorithms textbook 1.3 Describe an imple-
mentation of a queue using two stacks, where each operation (construct, push, and
pop) takes a constant amortized number of stack operations. Explain why, starting
from an empty queue, any sequence of N queue operations takes proportional to N
stack operations, in the worst case.

4. Design an algorithm. Design a quadratic-time algorithm for the 3-sum problem. De-
scribe your design by giving a crisp and concise English description of your algorithm;
don’t write Java code.

(a) Given an integer x and a sorted array a[] of N distinct integers, design a linear-
time algorithm to find if there exists indices i and j such that (a[i] + a[j] ==
x). Hint: start by checking whether a[0] + a[N-1] is <, >, or == x.

(b) Given an array a[] of N distinct integers, design a quadratic-time algorithm to find
if there exists indices i, j, and k such that (a[i] + a[j] + alk] == 0). Hint:
Use the result from (a). You can assume the array is sorted since sorting the
array can be done in quadratic (and even linearithmic) time.



