COS226 Week 1 Activity

1. Empirical analysis. Algorithms textbook 1.4 The following table gives approximate running times for a program with N inputs, for various values of N.

N	time
--c--_-_-_-	
500	2.00 seconds
1000	4.44 seconds
2000	9.77 seconds
5000	27.37 seconds

Predict its running time (in minutes) for $N=10,000$ and give a formula that estimates the running time as a function of N.
2. Suppose you're trying to estimate running time. What is good about the data above, but wrong with the data below? Give at least 2 reasons why the data above is superior.

N	time
10	0.0030 seconds
40	0.013 seconds

3. Give a formula that estimates the running time (in seconds) in terms of N and M for the program whose timing data is given below.

Table for $M=1000$	Table for $N=100$		
N	times	M	times

4. Worst-case input for weighted quick-union. Algorithms textbook 1.5

A binomial tree is defined recursively: a binomial tree of order 0 consists of a single node; a binomial tree of order h is a tree obtained from two binomial trees of order $h-1$, by linking the root of one to the other. Below are binomial trees of order $0,1,2$, 3 , and 4 . The height of a tree is the maximum number of links that must be traversed to reach the root from the bottom.

(a) How many nodes are in a binomial tree of order h ?
(b) And what is the height of a binomial tree of order h ?
(c) What is the minimum number of union() operations (using the weighted quickunion algorithm) that produces a binomial tree of order $h=3$.
(d) What is the worst case number of array accesses of f ind () on a binomial tree, as a function of its number of nodes N ?

```
public int find(int p) {
    while (p != id[p])
        p = id[p];
    return p;
}
```

