SUppose... A l go r i th m S ROBERT SEDGEWICK | KEVIN WAYNE

An alien species is traveling towards Earth and wishes to avoid bloodshed
before they arrive.

They want to send a light speed transmission of a proof of their scientific
and technological superiority:

REDUCTIONS AND TRACTABILITY

* They can only send binary data.

+ They do not know our language. » linear reductions
» theoretical uses of linear reductions

» tractability, P, and NP

What sequence of bits would prove their superiority?

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Overview: introduction to advanced topics

Main topics.
* Most of our problems so far have been easy.
- Sorting, symbol table operations (array, LLRB, hash table, tries), graph
search, MSTs, SPTs, substring matching, regex simulation, etc.
REDUCTIONS AND TRACTABILITY * Some have been hard.
- 8puzzle. log-log plot
» linear reductions - Hamilton path. s12T

exponential

64T

Algorithms

time
|

8T

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu arq

2T

logarithmic

constant

T
1K 2K 4K 8K . 512K

Typical orders of growth 4

Bird's-eye view Bird's-eye view
Desiderata. Classify problems according to computational requirements. Desiderata. Classify problems according to computational requirements.
Desiderata'.
order of growth Suppose we could (could not) solve problem X efficiently.
min. max, median What else could (could not) we solve efficiently?
linear N ! ’ ’
Burrows-Wheeler transform, ...
X . . sorting, element distinctness,
linearithmic N log N .
convex hull, closest pair, ...
quadratic N2 ?
exponential cN ?
“ Give me a lever long enough and a fulcrum on which to
Frustrating news. Huge number of problems have defied classification. place it, and I shall move the world. ” — Archimedes
5
RedUCﬁOﬂ Can also think of as “Y solves X" RedUCﬁOﬂ Can also think of as “Y solves X"
Def. Problem X reduces to problem Y if you can use an algorithm that Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X. solves Y to help solve X.
— Algorithm —» — Algorithm —»
instance | ———> — — — solution to | instance | ———> — — — solution to |
— fory — — fory —
(of X) (of X)
o Algorithm for X Algorithm for X
Cost of solving X = total cost of solving ¥ + cost of reduction. Ex 1. [finding the median reduces to sorting]
T T To find the median of N items:
perhaps many calls to Y preprocessing and postprocessing « Sort N items
on problems of different sizes (typically less than cost of solving Y) i i
(though, typically only one call) e Return item in the middle.
cost of sorting
/ cost of reduction
Cost of solving finding the median. N logN + 1.
7

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

) Algorithm)
instance | solution to |

forY
(of X)

Algorithm for X

Ex 2. [element distinctness reduces to sorting]
To solve element distinctness on N items:
e Sort N items.
» Check adjacent pairs for equality.
cost of sorting

M cost of reduction

Cost of solving element distinctness. N logN + N.

Reduction

Def. Problem X linear-time reduces to problem Y if X reduces to Y with

linear reduction cost and constant number of calls to Y.

constant # calls

linear

instance |
(of X)

linear

Algorithm

solution to |
forY

Algorithm for X

Ex. Almost all of the reductions we've seen so far. [Which ones weren't?]

Also common: polynomial-time reduction.

Polynomial-time reductions

Problem X poly-time (Cook) reduces to problem Y if X can be solved with:
* Polynomial number of standard computational steps.
* Polynomial number of calls to Y.

ol
poly Hely poly
Algorithm .
instance | solution to |

forY
(of X)

Algorithm for X

Some reductions involving familiar problems

computational geometry

2d farthest
pair

N

convex hull
median

element > sorting

distinctness

l

2d closest 2d Euclidean
pair —> MST

\, |

Delaunay
triangulation

combinatorial optimization

undirected shortest paths
(nonnegative)

!

bipartite directed shortest paths
matching (nonnegative)

N

directed shortest paths

arbitrage

maximum flow
7 (no neg cycles)
baseball /
elimination
linear
programming

Big O and Big Omega reminders

Can bound a problem above and below.
* Develop an algorithm (big O).
* Prove a lower bound (big Q).

Gap?
* Lower the upper bound (discover a new algorithm).

—— |0

* Raise the lower bound (more difficult).
Worstcasepmance
for optimal algorithm
Example: Sorting.
* Insertion sort tells us that sorting is O(N2).
* Decision tree argument tells us that sorting is Q(N log N).

Example: Hamilton Path.
» Brute force: O(N!) different permutations to check.

Uses of Reduction

Proving a problem I is O(f(N))
* Prove linear-time reduction to a problem that is O(f(N)).
: Examples:N log N N log N

- Convex hull reduces to sorting (Graham scan).

- Bipartite matching reduces to max-flow.

- Baseball elimination reduces to max-flow.

- Currency arbitrage reduces to negative cycle detection.

- Wordnet’s shortest ancestral path reduces to directed shortest paths.

- Seam carving reduces to directed shortest paths.

Developing code to solve problems
» Write a translation routine from I.

Proving a problem MM is Q(f(N))
¢ Stay tuned!

REDUCTIONS AND TRACTABILITY

» theoretical uses of linear reductions

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.
Ex. In decision tree model, any compare-based sorting algorithm
requires Q(N log N) compares in the worst case.

argument must apply to all

/ conceivable algorithms

Bad news. Very difficult to establish lower bounds from scratch.
Good news. Spread Q(N log N) lower bound to Y by reducing sorting to Y.

assuming cost of reduction is not too high

Simple lower bound through reductions example

Goal. Construct a BST in linear time from a set of N randomly ordered
elements using compare operations.

model of computation: compares

Proposition. Linear time BST construction on random elements is impossible.

Q. How to convince yourself no linear time algorithm exists?
Al. [hard way] Long futile search for a linear time algorithm.
A2. [easy way] Linear-time reduction from sorting.

N

A bit counter-intuitive at first.

Proposition. Sorting linear-time reduces to BST construction.
Pf. Construct BST from elements. Perform an in-order traversal.

N AN

Linear time?? Linear time

Contradiction. If construction is linear, the reduction provides a linear time
sorting algorithm, which is impossible to do only using compares.

Lineartime reductions

Suppose problem X linear-time reduces to problem Y, i.e. solvable with:
* Linear number of standard computational steps.
» Constant number of calls to Y.

or any other function of N

Establish lower bound: /
» Example: If X takes Q(N log N) steps, then so does Y. X: Sorting

Y: BST Construction
X reduces to Y.

Example:

Mentality.
* If | could easily solve Y, then | could easily solve X.
* | can’t easily solve X.
» Therefore, | can’t easily solve Y.

Uses of Reduction

Proving a problem I is O(f(N))
* Prove linear-time reduction to a problem that is O(f(N)).

Developing code to solve problems
» Write a translation routine from I.

Proving a problem MM is Q(f(N))
» Prove linear-time reduction from a known Q(f(N)) problem.

Lower bound for convex hull

Proposition. In quadratic decision tree model, any algorithm for sorting
N integers requires Q(N log N) steps.

allows linear or quadratic tests:

Xi < Xj or (xj—xi) ok —xi) — (%) (g —xi) < 0

Proposition. Sorting linear-time reduces to convex hull.

™ lower-bound mentality:
| can't sort in linear time,

Pf. [see next slide]

so | can't solve convex hull

. in linear time either

1251432
2861534 »” —
3988818 ;
4190745 e

8111033

13546464 . o
89885444 N

43434213 e * ;
34435312 e

linear or
quadratic tests

!

Implication. Any ccw-based convex hull algorithm requires Q(N log N) ops.

sorting convex hull

Sorting linear-time reduces to convex hull

Proposition. Sorting linear-time reduces to convex hull.
* Sorting instance: xi, xa, ..., Xy
* Convex hull instance: (xi1,x1?), (x2, x22), ..., (xn, Xa?).

f@=x

Pf.
e Region {x: x2 = x} is convex = all N points are on hull.
« Starting at point with most negative x, counterclockwise order of hull
points yields integers in ascending order.

Uses of Reduction

Proving a problem I is O(f(N))
* Prove linear-time reduction to a problem that is O(f(N)).

Developing code to solve problems
» Write a translation routine from I.

Proving a problem MM is Q(f(N))
» Prove linear-time reduction from a known Q(f(N)) problem.

Suggest that a problem I is Q(f(N))
» Prove linear-time reduction from a problem suspected to be Q(f(N)).

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane,
are there 3 that all lie on the same line?

590584
-23439854
1251432 .
-2861534 Pl
3988818 7
-4190745 . e .
333255 o ’ .
13546464 ‘ .
89885444
-43434213
11998833 . .

3-sum 3-collinear

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane,
are there 3 that all lie on the same line?

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

Pf. [next two slides] ™ lower-bound mentality:
if | can't solve 3-sum in N'-99 time,

| can't solve 3-collinear

(Not covered in class) in N9 time either

Conjecture. Any algorithm for 3-SUM requires Q(N?) steps.
Implication. No sub-quadratic algorithm for 3-COLLINEAR likely.

your N2 log N algorithm was pretty good

Uses of Reduction

Proving a problem I is O(f(N))
* Prove linear-time reduction to a problem that is O(f(N)).

Developing code to solve problems
» Write a translation routine from .

Proving a problem MM is Q(f(N))
» Prove linear-time reduction from a known Q(f(N)) problem.

Suggest that a problem I is Q(f(N))
» Prove linear-time reduction from a problem suspected to be Q(f(N)).

Prove that two problems N and X have the same complexity, i.e. are ©(f(N))
* Prove that I linear-time reduces to X /
* Prove that X linear-time reduces to I

Have same worst case
order of growth, given by

unknown function!

Classifying problems: summary

Desiderata'. Prove that two problems X and Y have the same complexity.

* First, show that problem X linear-time reduces to Y.
* Second, show that Y linear-time reduces to X.
» Conclude that X and Y have the same complexity.

\

even if we don't know what it is!

sorting

/|

convex hull

Linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.
Brute force. N3 flops.

column j i
0.1 02 0.8 0.1 04 03 0.1 0.1 0.16 0.11 0.34 0.62
rowi 05 03 09 0.6 02 02 00 06 i 0.74 0.45 0.47 1.22
X =
0.1 0.0 0.7 04 00 0.0 04 05 0.36 0.19 /0.33 0.72
0.0 03 03 0.1 0.8 04 0.1 09 0.14 0.10 0.13 0.42

0.5-0.1+ 0.3-0.0 + 0.9:0.4 + 0.6-0.1 =0.47

Linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.

Brute force. N3 flops.

linear algebra order of growth

Q.

matrix multiplication AxB MM(N)
matrix inversion Al MM(N)
determinant |A] MM(N)
system of linear equations Ax=b MM(N)
LU decomposition A=LU MM(N)
least squares min [|Ax - b||2 MM(N)

numerical linear algebra problems with the same complexity as matrix multiplication

Is brute-force algorithm optimal?

History of complexity of matrix multiplication

? brute force N3
1969 Strassen N 2.808
1978 Pan N 2:796
1979 Bini N 2.780
1981 Schénhage N 2522
1982 Romani N 2517
1982 Coppersmith-Winograd N 2496
1986 Strassen N 2:479
1989 Coppersmith-Winograd N 2:376
2010 Strother N 2:3737
2011 Williams N 2:3727

? ? N2+e

number of floating-point operations to multiply two N-by-N matrices

Uses of reduction

Proving a problem I is O(f(N))
* Prove linear-time reduction to a problem that is O(f(N)).

Developing code to solve problems
» Write a translation routine from .

Proving a problem MM is Q(f(N))
» Prove linear-time reduction from a known Q(f(N)) problem.

Suggest that a problem I is Q(f(N))
» Prove linear-time reduction from a problem suspected to be Q(f(N)).

Prove that two problems N and X have the same complexity, i.e. are ©(f(N))
* Prove that I linear-time reduces to X /

* Prove that X linear-time reduces to I Have same worst case

order of growth, given by
unknown function!

REDUCTIONS AND TRACTABILITY

Al gorith ms » tractability, P and NP

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Intractability

Desiderata. Understand which problems are easy, and which are hard.

Def. A problem is intractable if it can't be solved in polynomial time.
« Run-time grows faster than Nk,

Tractable.
» Comparison sorting: O(N?)
 Collinear: O(N3)
input size = c + Ig K
Intractable. 4
* Given a constant-size program, does it halt in at most K steps?
» Given N-by-N checkers board position, can the first player force a win?

using forced capture rule

il \\HALTl -
:) ©-0 =B
@-® 1[0

\\y [ORON-1-] vﬁ

Alan designed he erfect computer

Unknown difficulty

Decision problems of unknown difficulty.
* Does there exist a Hamilton path in a graph?
* Does there exist a path a traveling salesman can take that is of total
weight less than W?
» Does there exist a set of inputs for a circuit such that the output is true?
* Given a set of axioms, can we prove mathematical theorem X?

Optimization problems of unknown difficulty.
* What is the minimum weight path for a traveling salesman?
* Given a set of basic axioms, what is the shortest proof?

Amazing fact:
* A solution to ANY of these problems provides a solution to all of them.
- Every one of these problems reduces to every other problem.
- Nobody knows whether or not these problems can be solved in
polynomial time. Does P = NP?

Decision problems vs. function problems

Easier to reason about, output is only 1 bit.

Decision Problem \

* Given some input, gives “yes” or “no” as answer.

Function problem
* Given some input, give some output as an answer.

Examples:
* Decision problems
- Does a TSP tour exist of length < M?
- Is N the product of two primes?

* Function problems
- What is the minimal weight TSP tour?
- What are the factors of N?
- What is the sorted version of X?

TSP Tour of Italy’s Cities

Solving function problems via decision problems

TSP
* What is the minimal weight TSP tour?
» Does a TSP tour exist of length < M?

* Example
- Does a TSP tour exist of length < 20000?
- Yes. What about < 100007
- Yes. What about < 5000?
- No. What about < 75007

Full discussion beyond the scope of our course.

The class P

Classic definition. Book defines P as a class of “search problems”.
A problem is in P if /
* Itis a decision problem.

All problems in P are tractable!

« It can be solved in O(NK) time.
- O(N¥) - Worst case order of growth is < Nk,
- N is number of bits needed to specify input.

Example
* Is vertex X reachable from vertex S?
- Total bits used for adjacency list representation: N = ¢1E + 2V
- DFS, worst case order of growth: E+V
- In terms of big O: O(E+V) = O(N)

Easy as P

Why O(N¥)?
* P seems rather generous.
* O(NM) closed under addition, multiplication and polynomial reduction.
- Consecutively run two algorithms in P, still in P.
- Run an algorithm N times, still in P.
- Reduce to a problem M in P, then M is in P.

» Exponents for practical problems are typically small.

FOUNDTHEMEDIAN

INOIN"90000) TIME

The class NP

A problem is in NP if Also called a certificate.
* It is a decision problem.
* If answer is “Yes”, a proof exists that can be verified in polynomial time.
- NP: Does a TSP tour exist of length less than 1000?
- Not NP: Is a given TSP tour optimal? <— Thisis inaclass called co-NP.
- Not NP: What is the optimal TSP tour? <— S:L'}':jsNZL::Z:T:SP(:;NS;:::m -
+ Stands for “non-deterministic polynomial”
- Name is a bit confusing. Don’t worry about it.

e Most important detail: Verifiable in Polynomial Time.
- “In an ideal world it would be renamed P vs VP” - Clyde Kruskal

“Joseph Kruskal [inventor of Kruskal's algorithm] should not be confused with his
two brothers Martin Kruskal(1925-2006, co-inventor of solitons and of surreal
numbers) and William Kruskal(1919-2005; developed the Kruskal-Wallis one-way
analysis of variance), or his nephew Clvde Kruskal.”” -Dbenbenn

http://en.wikipedia.org/wiki/Joseph_Kruskal

Verification example

Verifiable in polynomial time
 Circuit satisfiability: Do there exist x1, X2, x3 such that xio is true?
- If true, easy proof is xi=true, x2=true, x3=false.
- Linear time simulation with this input yields xio=true.

'“\ VT X

Xo

| Xg
Verification takes | >
-

polynomial time.

*10

Ay ﬂ».‘,ﬁ,ﬂj
13—|>C, 4 —J

Not verifiable in polynomial time
» Checkers: From a given checkerboard position, is there some sequence

of moves such that player 1 wins?
- Certificate cannot be easily verified.

Solving the circuit satisfiability problem

Solving circuit satisfiability
» 2Npossible inputs.
» Brute force solution is exponential.
» Best known solution is exponential.

X10

40

NP

NP includes a vast number of interesting problems.
* Hand-wavy reason: Many (most?) practical problems can be analyzed in
terms of interesting NP decision problems.
* Example: Managing an airline
- Can we assign planes to our routes such that we use < N gallons/year?
* Example: Destroying the global e-commerce system.
- Given Z, are there two primes such that X*Y = Z. See COS432
* Counter-example?
- Is move X better than move Y in this chess game on N2 board?

41

Completeness (short detour)

Completeness
* Let Q be a class of problems and let 1t be a specific problem.

e 1 is Q-Complete if

many glossed over details!
- misin Q.
- Everything in Q time reduces to T [1T solves any problem in Q].

 If a solution is known, can use 1T as a tool to solve any problem in Q.

42

NP-complete

NP-complete
* A problem 1t is NP-complete if: many giossed over details!

- Tris in NP. /
- All problems in NP poly-time reduce to Tr.
* Solution to an NP-complete problem would be a key to the universe!
Two questions

* Are there any NP-complete problems?
* Do we know how to solve any of them?

43

Existence of an NP complete problem

Also in NP!

3SAT
* Cook (71), Levin (73) proved every NP problem poly-time reduces to 3SAT.
- 3SAT is at least as hard as every other problem in NP.
- A solution to 3SAT provides a solution to every problem in NP.
- Every problem in NP is O(F3sat(N)).

» Does there exist a truth value for boolean variables that obeys a set of
3-variable disjunctive constraints: X1 || x2] 'x3) && (x1 || Ix1 || x1)

Stephen Leonid

Cook Levin

44

Existence of an NP complete problem

Rough idea of Cook-Levin theorem
» Create giant (!!) boolean logic expression that represents entire state of
your computer at every time step.
* If solution takes polynomial time, boolean logic circuit is polynomial in size.
» Example boolean logic variable: True if 57173rd bit of memory is true and
we’re on line 38 of code during cycle 7591872 of execution.

Stephen Leonid

Cook Levin

45

Implications of Cook-Levin theorem

3-COLOR IND-SET

Stephen Cook Leonid Levin
'82 Turing award
ILP

EXACT COVER CLIQUE

SUBSET-SUL TSP HAM-PATH

All of these problems (and many, many more)

KNAPSACK BIN-PACKING poly-time reduce to 3-SAT.

46

3SAT

Great, 3SAT solves most well defined problems of general interest!

Can we solve 3SAT efficiently?
* Nobody knows how to solve 3SAT efficiently.
* Nobody knows if an efficient solution exists.
- Unknown if 3SAT is in P.

Other NP Complete problems?
* Are there other keys to this magic kingdom?

47

NP Complete

There are more
» Dick Karp (72) proved that 3SAT reduces to 21 important NP problems.
- Example: A solution to TSP provides a solution to 3SAT.
- All of these problems join 3SAT in the NP Complete club.
- These 21 problems are Q(F3sat(N)).
* Proof applies only to these 21 problems. Each was its own special case.

Dick Karp

48

More poly-time reductions from 3-satisfiability

3-SAT
v % i/
3-COLOR IND-SET VERTEX COVER Dick Karp
'85 Turing award
w
«
>
3
3
g
EXACT COVER E CLIQUE HAM-CYCLE
3
= [\
5
SUBSET-SUM ILP vy HAM-PATH
something interesting to say about big o or big omega here?
PARTITION
\ Conjecture. 3-SAT is intractable.

Implication. All of these problems are intractable.

KNAPSACK BIN-PACKING

49

Implications of Karp + Cook-Levin

TSP<«—> HAM-PATH

PARTITION

} All of these problems are NP-complete; they are

manifestations of the same really hard

KNAPSACK <—> BIN-PACKING
problem.

Summary

Cook and Levin
* Every NP problem is O(F3sat(N)).
* 3SAT is in NP and solves every NP problem, i.e. it is NP-Complete.

Karp
» 21 specific NP problems are Q(F3sat(N)).
* These 21 problems solve 3SAT.
* All of these problems are also therefore NP-Complete.

Later work
» Thousands of practical NP problems are also Q(F3sat(N)).
 All of these problems are also therefore NP-Complete.

How to tell if your problem is NP Complete?

* Prove that it is in NP [easy].

* Prove that some NP Complete problem reduces to your problem
[tricky!]

Independent set

An independent set is a set of vertices, no two of which are adjacent.

IND-SET. Given graph G and an integer £, find an independent set of size .

Applications. Scheduling, computer vision, clustering, ...

3-satisfiability reduces to independent set

lower-bound mentality:

Proposition. 3-SAT poly-time reduces to IND-SET. <— if| could solve IND-SET efficiently,
| could solve 3-SAT efficiently
Pf. Given an instance ® of 3-SAT, create an instance G of IND-SET:
* For each clause in ®, create 3 vertices in a triangle.
* Add an edge between each literal and its negation.

@ = (x1 orx2 0r x3) and (X1 or —x2 or X4) and (—X1 or X3 or ~X4) and (X1 or X3 or X4)

3-satisfiability reduces to independent set

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance ® of 3-SAT, create an instance G of IND-SET:
* For each clause in @, create 3 vertices in a triangle.
* Add an edge between each literal and its negation.

@D = (x1 orx2 or x3) and (X1 or ~x2 or X4) and (—X1 or X3 or ~X4) and (X1 or X3 or X4)

« @ satisfiable = G has independent set of size k.

1

for each of k clauses, include in independent set one vertex corresponding to a true literal

3-satisfiability reduces to independent set

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance ® of 3-SAT, create an instance G of IND-SET:
* For each clause in ®, create 3 vertices in a triangle.
* Add an edge between each literal and its negation.

@D = (x1 orx2 0rx3) and (X1 or —x2 or X4) and (—X1 or X3 or ~X4) and (X1 or X3 or X4)
« @ satisfiable = G has independent set of size k.

» G has independent set of size k = ® satisfiable.

set literals corresponding to k vertices in independent set to true

(set remaining literals in any consistent manner)

3-satisfiability reduces to independent set

Proposition. 3-SAT poly-time reduces to IND-SET.

Implication. Assuming 3-SAT is intractable, so is IND-SET.

@ = (x1 orx2 or x3) and (X1 or —x2 or X4) and (—X1 or X3 or ~X4) and (X1 or X3 or X4)

P = NP2

Does P = NP?
* Equivalently: Is any NP Complete problem also in P?
» Equivalently: Efficiently verifiable = efficiently solvable?

NP .
P = NP P=NP

Hardest problems in NP

Reminder: NP may as well have been called VP for “Verifiable in Polynomial Time”

Birds-eye view: review

Desiderata. Classify problems according to computational requirements.

ompiedy eréerergronth

. min, max, median,
linear N
Burrows-Wheeler transform, ...
. . . sorting, element distinctness,
linearithmic N log N X
convex hull, closest pair, ...
quadratic N2 ?
exponential cN ?

Frustrating news. Huge number of problems have defied classification.

Birds-eye view: revised

Desiderata. Classify problems according to computational requirements.

complexny rderef grOWth

linear N min, max, median,
linearithmic Nlog N sorting, convex hull,
integer multiplication,
M(N) ? A
division, square root, ...
matrix multiplication, Ax = b,
MM(N) ? .
least square, determinant, ...
NP-complete probably not NP 3-SAT, IND-SET, ILP, ...

Good news. Can put many problems into equivalence classes.

60

Complexity zoo

Complexity class. Set of problems sharing some computational property.

NI .:.a._g.u

AYINDd 2 o

3IVdSd0 m.nnn—_._.z:__a
20 VAjod/dba o ES
m Z Zmag W »S

dNdd B 2 F Mod/avdsd 13

ddgansi Ww 0090-dbg dnuiiag

JWILAYS = m.._,__n%m MF dxy
3|qejdwes:

mm;:&&m 19e! ._.v_np_._m dnasiuo.g 3N

aoz= LN LVS Gojijod &0

b}
H) uudnm:a:Cuuqnm H 30VdS-2Nv 1533

Ajod/dxaN A —Qﬂ \ 147408
__mm
P i D3qv1a haz us_E:_é

41d 6 2 l— un—<n—mﬂ—u“=_s—=<x=z>

&3._ Eu A BE_:
ddy & g edgan o dusz

delg PO Nma_z

s dNO =u<£

<.ﬁ.““_ﬁ.m_§_2_=u<m,___§z
S e
giz YW VWDV 817

m BN
n_xup N

09 o o did
S_KE. -1 JdNg Mm.uz._u
,_me_"_n_ = mm 3
%Z3 did}
ddany| 19
420 B NSXEW
NN 37vdSdN
=Hd

http://qwiki.stanford.edu/index.php/Complexity_Zoo

Lots of complexity classes.

Bad news.

61

