4chan invented a sorting algorithm: Sleep sort

Return Entire Thread First 100 Posts Prev 100 Next 100 Last 50 Posts Report Thread

Pages: 1-4041-80 81-120 121-160 161-200 201-240 241-280 281-320 321-360 361-400 401-440 441

Genius sorting algorithm: Sleep sort
1 Name: Anonymous 2011-01-20 12:22

Man, am I a genius. Check out this sorting algorithm I just invented.

#!/bin/bash

function £() { For each integer:
sleep "S$1"
} echo "§1° Create a process that sleeps N seconds.
while [-n "$1"]
do
£f "S$1" & . . .
shift After an integer is done sleeping:
done i]
wait It prints itself.
example usage:

./sleepsort.bash 5 3 6 3 6 3 1 4 7

2 Name: Anonymous 2011-01-20 12:27

>>1
Oh god, it works.

But I don't like to wait 218382 seconds to sort '(0 218382)

TANSTAAFL: Managing processes takes time!

A 1 g() I 1 { h Ims ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

5.2 TRIES

» R-way fries
» ternary search tries

» character-based operations

Summary of the performance of symboltable implementations

Order of growth of the frequency of operations.

typical case :
ordered operations

implementation :
: operations on keys
search insert delete

red-black BST log N log N log N yes compareTo()

equals()

t t f
hash table 1 1 1 no hashCode ()

1 under uniform hashing assumption

WE CAN'DO BETTER THAN ll[ul]\
Can We do bette r?) Euunls memegeneratofs ‘E

O

A. Yes, if we can avoid examining the entire key, as with string sorting.

Summary of the performance of symboltable implementations

Order of growth of the frequency of operations.

typical case assuming random strings
_ _ ordered
implementation _ cost model
operations
g2 N

red-black BST L+Ig2N g2 N yes chatAt()
hash table L L' L' no charAt()
1 under uniform hashing assumption L is the length of the string provided to the method.

Hash tables: Why L?
A. Number of characters needed to compute a hash (all of them).

Assumes uniformly random input strings!

BSTs: Where did that Ig2 come from? e
A. compareTo() requires average of Ig N characters (see Q&A Chapter 5.1).

O

O

String symbol table implementations cost summary

character accesses (typical case)

search search space

implementation _ :
P hit miss (references)

actors.txt

red-black BST L+Ig2N g2 N g2 N 4N 1.40 97.4
AESITTE L L L 4N to 16N 0.76 40.6
(linear probing)
Between 1/8th and 1/2 full

Parameters file size words distinct
- N = number of strings moby.txt 1.2MB 210K 32 K
+ L = length of string actors.txt 82MB 11.4M 900K
- R =radix
Challenges.

» Efficient performance for string keys.
e Support common string operations (ordered ST and beyond).

String symbol table basic API

String symbol table. Symbol table specialized to string keys.

public class StringST<Value>

StringST() create an empty symbol table
void put(String key, Value val) put key-value pair into the symbol table
Value get(String key) return value paired with given key
void delete(String key) delete key and corresponding value

Goal. Faster than hashing, more flexible than BSTs.

5.2 TRIES

» R-way fries

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Trie

A B-class article from Wikipedia, the free encyclopedia

This article is about a tree data structure. For the French
commune, see Trie-sur-Baise.

In computer science, a trie, also called digital tree or prefix tree, is
an ordered tree data structure that is used to store a dynamic set or
associative array where the keys are usually strings. Unlike a binary
search tree, no node in the tree stores the key associated with that
node; instead, its position in the tree defines the key with which it is
associated. All the descendants of a node have a common prefix of
the string associated with that node, and the root is associated with
the empty string. Values are normally not associated with every node,
only with leaves and some inner nodes that correspond to keys of
interest. For the space-optimized presentation of prefix tree, see
compact prefix tree.

[edit]

/\

e 11\
I ' 3
A trie for keys "A", "to", "tea", ©
l’ted"’ "ten"’ "i"’ “in"l and "inn"-

Why did Edward Fredkin choose that word? [edit]

Since he pronounced it homophonous to ‘tree’, didn't he realize that it was a pretty stupid choice,
because that would make it impossible to distinguish the words in speech? If he was so desperate to

combine ‘tree’ and ‘retrieve’, surely he could have done better? Shinobu (talk) 22:06, 5 October 2008
(UTC)

Tries

Tries. [from retrieval, but pronounced "try"]
e Store characters in nodes (not keys).
* Each node has R children, one for each possible character.
* For now, we do not draw null links.

link to trie for all keys
that start with s

link to trie for all keys
that start with she

key value

by 4 @ 5
sea 6
value for she in node

sells 1 corresponding to last
she 0 key character
shells 3 <I>
shore 7

the 5

Search in a trie

Follow links corresponding to each character in the key.
e Search hit: node where search ends has a non-null value.

get("shells")

return value associated
@ 3 € with last key character
(return 3)

Search in a trie

Follow links corresponding to each character in the key.
e Search hit: node where search ends has a non-null value.

get("she")

search may terminated
at an intermediate node
(return 0)

Search in a trie

Follow links corresponding to each character in the key.

e Search miss: reach null link or node where search ends has null value.

get("shell")

\ no value associated

with last key character
(return null) 13

Search in a trie

Follow links corresponding to each character in the key.

e Search miss: reach null link or node where search ends has null value.

get("shelter")

no link to t
(return null)

Insertion into a trie

Follow links corresponding to each character in the key.
 Encounter a null link: create new node.
* Encounter the last character of the key: set value in that node.

put("shore", 7)

Trie construction demo

trie

Deletion in an R-way trie

To delete a key-value pair:
* Find the node corresponding to key and set value to null.

delete("shells")

@ <«—— set value to null

Deletion in an R-way trie

To delete a key-value pair:

e |f node has null value and all null links, remove that node (and recur).

delete("shells")

null value and links @
(delete node)

Trie performance

Search hit. Need to examine all L characters for equality.

logr N assuming random strings

Search miss. see book for more.

e Could have mismatch on first character. /
* Typical case: examine only a few characters (sublinear).

Space. R null links at each leaf.
(but sublinear space possible if many short strings share common prefixes)

Bottom line. Fast search hit and even faster search miss, but wastes space.

Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node
t . . use Object instead of Value since
private Object value; — _ S
. no generic array creation in java
private Node[] next = new Node[R]; J
¥

characters are implicitly

defined by link index neither keys nor

characters are
explicitly stored

‘ \ each node has

an array of links

and a value
Trie representation

20

Trie memory usage

key
by
sea
sells
she
shells
shore

the

private static class Node

{

private Object value;
private Node[] next

value

4

6
1
0
3
7
5

new Node[R];

pollEv.com/jhug text to 37607

How much memory does the trie above use? There are 7 keys, 20
nodes, and the alphabet 1s 256 characters.

A. > 100 bytes
B. > 1000 bytes

[734697]
[734698]

. > 10000 bytes [734699]

Trie memory usage

key
by
sea
sells
she
shells
shore

the

private static class Node

{

private Object value;
private Node[] next

value

4

6
1
0
3
7
5

new Node[R];

pollEv.com/jhug text to 37607

How much memory does the trie above use?
C. > 10000 bytes

Every node has 256 links, each Tink i1s 8 bytes. With 20 nodes,
this comes to at least 20%8*256 which is more than 40 kilobytes.

R-way trie: Java implementation

public class TrieST<Value>

{

private static final int R = 256; <«—— extended ASCII
private Node root = new Node();

private static class Node
{ /* see previous slide */ }

public void put(String key, Value val)
{ put(root, key, val, 0); 1}

private Node put(Node x, String key, Value val, int d)

{
if (X == null) x = new Node();
if (d == key.length()) { x.val = val; return x; }
char c = key.charAt(d);
x.next[c] = put(x.next[c], key, val, d+1);
return X;

23

R-way trie: Java implementation (continued)

public boolean contains(String key)
{ return get(key) != null; }

public Value get(String key)

{

Node x = get(root, key, 0);

if (x == null) return null;

return (Value) x.val; <—— castneeded
}
private Node get(Node x, String key, int d)
{

if (x == null) return null;

if (d == key.length()) return x;

char c = key.charAt(d);

return get(x.next[c], key, d+1);
}

24

String symbol table implementations cost summary

character accesses (typical case)

search search space
implementation insert moby.txt actors.txt
miss (references)

red-black BST L+Ig?N 4 97.4
hashing
_ _ L L L 4N to 16N 0.76 40.6
(linear probing)
t of
R-way trie L Ig N L R+1) N 1.12 outo
memory

R-way trie.
* Method of choice for small R.
 Too much memory for large R.

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!

25

$19119) 9yl e 40
SUOISI9A UMOp-apisdn
sey apodiun

Fo invoke the hive-mind 'represenffng
~chaos/

quoklnithe feellrrg of cha~gs,>
With_out order

$M2perd|an hive-mind of chaos.

Hé who Waits Behind The WalI].
ZALGO!_

To invoke the hive-mind representing chaos.

Invoking the feeling of chaos.

With out order.

The Nezperdian hive-mind of chaos. Zalgo.

He who Waits Behind The Wall.

ZALGO!

HE COMES Toggle reference sheet

fuck up going up * mini fuck up
¢ fuck up the middle normal fuck up
fuck up going down © maxi fuck up

27

To invoke the hive-mind representing chaos.

Invoking the feeling of chaos.
With out order.

The Nezperdian hive-mind of chaos. Zalgo.

He who Waits Behind The Wall.
ZALGO!

HE COMES

fuck up going up
¢ fuck up the middle
¢ fuck up going down

Toggle reference sheet

¢ mini fuck up
normal fuck up
maxi fuck up

To invoke the hive-mind representing chaos.
Invoking the feeling of chaos.

With out order.

The Nezperdian hive-mind of chaos. Zalgo.
He who Waits Behind The Wall.

3"} ;félﬁﬁgmg ZALGO!

¥ 5
~Ha/oF Ehads
Tyt

My 74
oDe
-
QO
N |
I .a,n‘o (S
3
>ilge
Or
rd
R

I

| e~

™ < -
3rot

'S
3%

LY.

t

HE COMES Toggle reference sh;et
v fuck up going up ¢ mini fuck up

v fuck up the middle © normal fuck up

¢ fuck up going down maxi fuck up

To invoke the hive-mind representing chaos.
Invoking the feeling of chaos.

With out order.

The Nezperdian hive-mind of chaos. Zalgo.
He who Waits Behind The Wall.

ZALGO!
HE COMES Toggle reference sheet
¢ fuck up going up mini fuck up

¢ fuck up the middle © normal fuck up
¢ fuck up going down © maxi fuck up

30

Fo invoke the hive-mind 'represenffng
~chaos/

quoklnithe feellrrg of cha~gs,>
With_out order

$M2perd|an hive-mind of chaos.

Hé who Waits Behind The WalI].
ZALGO!_

To invoke the hive-mind representing chaos.

Invoking the feeling of chaos.

With out order.

The Nezperdian hive-mind of chaos. Zalgo.

He who Waits Behind The Wall.

ZALGO!

HE COMES Toggle reference sheet

fuck up going up * mini fuck up
¢ fuck up the middle normal fuck up
fuck up going down © maxi fuck up

31

To invoke the hive-mind representing chaos.

Invoking the feeling of chaos.
With out order.

The Nezperdian hive-mind of chaos. Zalgo.

He who Waits Behind The Wall.
ZALGO!

HE COMES

fuck up going up
¢ fuck up the middle
¢ fuck up going down

Toggle reference sheet

¢ mini fuck up
normal fuck up
maxi fuck up

To invoke the hive-mind representing chaos.
Invoking the feeling of chaos.

With out order.

The Nezperdian hive-mind of chaos. Zalgo.
He who Waits Behind The Wall.

3"} ;félﬁﬁgmg ZALGO!

¥ 5
~Ha/oF Ehads
Tyt

My 74
oDe
-
QO
N |
I .a,n‘o (S
3
>ilge
Or
rd
R

I

| e~

™ < -
3rot

'S
3%

LY.

t

HE COMES Toggle reference sh;et
v fuck up going up ¢ mini fuck up

v fuck up the middle © normal fuck up

¢ fuck up going down maxi fuck up

To invoke the hive-mind representing chaos.
Invoking the feeling of chaos.

With out order.

The Nezperdian hive-mind of chaos. Zalgo.
He who Waits Behind The Wall.

ZALGO!
HE COMES Toggle reference sheet
¢ fuck up going up mini fuck up

¢ fuck up the middle © normal fuck up
¢ fuck up going down © maxi fuck up

34

5.2 TRIES

» ternary search tries

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Ternary search tries

« Store characters and values in nodes (not keys).
 Each node has 3 children: smaller (left), equal (middle), larger (right).

Fast Algorithms for Sorting and Searching Strings

Jon L. Bentley*

Abstract

We present theoretical algorithms for sorting and
searching multikey data, and derive from them practical C
implementations for applications in which keys are charac-
ter strings. The sorting algorithm blends Quicksort and
radix sort; it is competitive with the best known C sort
codes. The searching algorithm blends tries and binary
search trees; it is faster than hashing and other commonly
used search methods. The basic ideas behind the algo-

Robert Sedgewick#

that is competitive with the most efficient string sorting
programs known. The second program is a symbol table
implementation that is faster than hashing, which is com-
monly regarded as the fastest symbol table implementa-
tion. The symbol table implementation is much more
space-efficient than multiway trees, and supports more
advanced searches.

In many application programs, sorts use a Quicksort
implementation based on an abstract compare operation,

36

Ternary search tries

« Store characters and values in nodes (not keys).
 Each node has 3 children: smaller (left), equal (middle), larger (right).

link to TST for all keys link to TST for all keys
that start with s

that start with
a letter before s

each node has

three links \

TST representation of a trie

37

Search hit in a TST

get("sea")

6 (2)

/

return value associated

with last key character

Note: Key is “sea”, not “shela”!

38

Search miss in a TST

get("shelter")

no link to t

(return null)

39

Ternary search trie construction demo

ternary search trie

40

Search in a TST

Follow links corresponding to each character in the key.
* If less, take left link; if greater, take right link.
* If equal, take the middle link and move to the next key character.

Search hit. Node where search ends has a non-null value.

Search miss. Reach a null link or node where search ends has null value.

get("sea") match: take middle link,
move to next char

mismatch: take left or right link,
do not move to next char

return value
associated with
last key character

41

TST representation in Java

A TST node is five fields:
* A value.

A character c.

A reference to a right TST.

private class Node

{

private Value val;

A reference to a left TST. private char c;

private Node left, mid, right;

A reference to a middle TST. }

standard array of links (R = 26) ternary search tree (TST)
link for keys
\/ that start with s ——___ [
EEEEEENEEEEEEEEEEEENEEEEE (; QD (D

\

\ link for keys —

that start with su

Trie node representations

42

26-way trie vs. TST

26-way trie. 26 null links in each leaf.

R e
GEDE G POOE @ PEED @ © 6 © WEOO @ © &
PEAOEMEEEPEOVOEOOOYOVBBOO®OPVOEEDEOEE

26-way trie (1035 null links, not shown)

TST. 3 null links in each leaf.

fa)
odiB°
OJORO
ololaEgo
© q’
(W)

®)

(©

o ()

D >R @
YU OP O
() () oo
) @) ()

TST (155 null links)

now
for
tip
ilk
dim
tag
jot
sob
nhob
sky
hut
ace
bet
men
egg
few
jay
owl
joy
rap
gig
wee
was
cab
wad
caw
cue
fee
tap
ago
tar
jam
dug
and

43

TST: Java implementation

public class TST<Value>
{

private Node root;

private class Node
{ /* see previous slide */ }

public void put(String key, Value val)
{ root = put(root, key, val, 0); 1}

private Node put(Node x, String key, Value val, int d)
{
char c = key.charAt(d);

if (X == null) { x = new Node(); x.c = c; 1}
if (c < x.0) X.left put(x.left, key, val, d);

else if (c > x.c) x.right = put(x.right, key, val, d);
else if (d < key.length() - 1) x.mid = put(x.mid, key, val, d+1);
else x.val = val;

return x;

44

String symbol table implementation cost summary

character accesses (typical case)

_ , search search _ space
implementation : _ insert moby.txt actors.txt
hit miss (references)

red-black BST L+Ig?2N g2 N g2 N 4 N 1.40 97.4
hashing
_ _ L L L 4Ntol16N 0.76 40.6
(linear probing)
_ out of
R-way trie L lg N L (R+T1)N 1.12
memory

TST L+1g N Ig N L+1g N 0.72 38.7

Remark. Can build balanced TSTs via rotations to achieve L +log N
worst-case guarantees.

Bottom line. TST is as fast as hashing (for string keys), space efficient.

45

TST with R? branching at root

Hybrid of R-way trie and TST.
Do R2-way branching at root.
* Each of R2 root nodes points to a TST.

array of 262 roots

Q. What about one- and two-letter words?

TS

T

~

TS

T

~

46

String symbol table implementation cost summary

character accesses (typical case)
search search _ space
, insert moby.txt
miss (references)

hit

implementation

red-black BST L+Ig2N g2 N g2 N 4N 1.40
hashing
_ _ L L L 4Ntol6N 0.76
(linear probing)
R-way trie L lg N L (R+1)N 1.12
TST L+IgN lg N L+IgN 4 N 0.72
TST with R? L+IgN Ig N L+IgN 4 N + R? 0.51

actors.txt

97.4

40.6

out of
memory

38.7

32.7

Bottom line. Faster than hashing for our benchmark client.

47

TST vs. hashing

Hashing.
 Need to examine entire key.
» Search hits and misses cost about the same.
* Performance relies on hash function.
* Does not support ordered symbol table operations.

TSTs.

* Works only for strings (but all data can be treated as strings).

 Only examines just enough key characters.
- Search miss may involve only a few characters.
* Supports ordered symbol table operations (plus others!).

Bottom line. TSTs are:
« Faster than hashing (especially for search misses).
* More flexible than red-black BSTs. [stay tuned]

48

5.2 TRIES

» character-based operations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

T9 texting

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key.
Ex. hello: 4 4 33555555666

/ "a much faster and more fun way to enter text"

T9 text input.
* Find all words that correspond to given sequence of numbers.

how

Jstpmessmoe Just press once Jus(pmssm

1 2abc 3def
K4ghi.L 5jkl f6mnc;

* Press O to see all completion options.

Ex. hello: 4 3 556

7pqr 8tuv 9wxyzF

Q. How to implement? www.t9.com
A. String symbol table. For details: design problem in precept tomorrow.

50

Armstrong and Miller

51

A letter to t9.com

To: info@t9support.com
Date: Tue, 25 Oct 2005 14:27:21 -0400 (EDT)

Dear T9 texting folks,

I enjoyed learning about the T9 text system

from your webpage, and used it as an example
in my data structures and algorithms class.

However, one of my students noticed a bug

in your phone keypad

http://www.t9.com/images/how.gif

s'. (D)

Somehow, it is missing the letter

Just wanted to bring this information to

your attention and thank you for your website.

Regards,
Kevin

how

just pressonce Just pressonce Just press once
*— *—

1 2abc 3def
(4ghi.L B ikt (6mno\v

7oar | 8tw Qwxyz
* \ J

where the @#%$% is the's' ???

52

A world without 's' @

To: "'Kevin Wayne'" <wayne@CS.Princeton.EDU>
Date: Tue, 25 Oct 2005 12:44:42 -0700

Thank you Kevin.

I am glad that you find T9 o valuable for your
cla. I had not noticed thi before. Thank for
writing in and letting u know.

Take care,

Brooke nyder

OEM Dev upport

AOL/Tegic Communication
1000 Dexter Ave N. uite 300
eattle, WA 98109

ALL INFORMATION CONTAINED IN THIS EMAIL IS CONSIDERED
CONFIDENTIAL AND PROPERTY OF AOL/TEGIC COMMUNICATIONS

Prefix matches

Find all keys in a symbol table starting with a given prefix.

Ex. Autocomplete in a cell phone, search bar, text editor, or shell.

* User types characters one at a time.
» System reports all matching strings.

GO&)gle

why is my comp)

why is my computer so slow

why is my computer slow

why is my computer so slow all of a sudden
why is my computer so loud

why is my computer running so slowly

why is my computer screen so big

why is my computer freezing

why is my computer beeping

why is my computer slowing down

why is my computer so slow lately

Google Search || I'm Feeling Lucky

54

String symbol table API

Character-based operations. The string symbol table APl supports several
useful character-based operations.

key value
by 4
sea 6
sells 1
she 0
shells 3
shore 7
the 5

Prefix match [autocomplete]. Keys with prefix sh: she, shells, and shore.

Wildcard match [crosswords]. Keys that match IR..E: IRATE and IRENE.

Longest prefix [routing]. Key that is the longest prefix of shellsort: shells.

55

String symbol table API

public class

StringST<Value>

void

Value

void

Iterable<String>

Iterable<String>

Iterable<String>

String

Remark. Can also add other ordered ST methods, e.g., floor() and rank().

StringST()

put(String key, Value val)

get(String key)

delete(String key)

keys()

keysWithPrefix(String s)

keysThatMatch(String s)

TongestPrefix0f(String s)

create a symbol table with string keys

put key-value pair into the symbol table

value paired with key

delete key and corresponding value

all keys

keys having s as a prefix

keys that match s (where . is a wildcard)

longest key that is a prefix of s

56

Warmup: ordered iteration

To iterate through all keys in sorted order:
Do inorder traversal of trie; add keys encountered to a queue.
* Maintain sequence of characters on path from root to node.

keys ()

key q
b
by by
S
se
sea sea
sel
sell
sells sells
sh
she she
shell
shells shells
sho
shor
shore shore
t
th
the the

Ordered iteration: Java implementation

To iterate through all keys in sorted order:
Do inorder traversal of trie; add keys encountered to a queue.
* Maintain sequence of characters on path from root to node.
* Fill in the blanks below.

public Iterable<String> keys()

{
Queue<String> queue = new Queue<String>(Q);
collect(root, "", queue);

return ueue;
9 ’ sequence of characters

/ on path from root to x

private void collect(Node x, String prefix, Queue<String> q)
{
if (x == null) return;
if (x.val !'= null) q.enqueue(R);
for (char ¢ = 0; ¢ < R; c++)
collect(x.next[c], prefix + c, q);

58

Prefix matches in an R-way trie

How do | autoco

Find all keys in a symbol table starting with a given prefix.

keysWithPrefix("sh");

find subtrie for all //////1

keys beginning with "sh"

public Iterable<String> keysWithPrefix(String prefix)
{

Queue<String> queue = new Queue<String>(Q);

Node x = get(root, prefix, 0);

collect(x, prefix, queue); k\

return queue; root of subtrie for all strings
} beginning with given prefix

collect keys
in that subtrie

key queue

sh
she she
shel
shell
shells shells
sho
shor
shore shore

59

Wildcard matches

Use wildcard . to match any character in alphabet.

Co....er

.C...C.

coalizer
coberger
codifier
cofaster
cofather
cognizer
cohelper
colander

coleader
compiler
composer

computer

cowkeper

acresce
acroach
acuracy
octarch
science
scranch
scratch
scrauch
screich
scrinch
scritch
scrunch
scudick

scutock

60

Wildcard matches

Implicit wildcard for basic autocorrect.
« Walk down all character paths adjacent to typed characters.

helo

help

yelp
deli

61

Longest prefix

Find longest key in symbol table that is a prefix of query string.

Ex. To send packet toward destination IP address, router chooses IP
address in routing table that is longest prefix match.

n128" represented as 32-bit

. . E binary number for IPv4
128.112 (instead of string)

"128.112.055"

"128.112.055.15"

"128.112.136" lTongestPrefix0Of("128.112.136.11") = "128.112.136"

" " lTongestPrefix0Of("128.112.100.16") = "128.112"
LS d 055 longestPrefix0f("128.166.123.45") = "128"

"128.112.155.13"
"128.222"
"128.222.136"

Note. Not the same as floor: floor("128.112.100.16") = "128.112.055.15"

62

Patricia trie

Patricia trie. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]
« Remove one-way branching.
* Each node represents a sequence of characters.

put("shells", 1);

* Implementation: one step beyond this course. juccrehertrion, »;

standard no one-way
trie branching
®
Applications. ® ()1 (fish):
» Database search. ()
 P2P network search. (e internal
one-way
* IP routing tables: find longest prefix match. © branching
« Compressed quad-tree for N-body simulation.)

Efficiently storing and querying XML documents.), ?p

l
O
branching
O
(h) 2

Also known as: crit-bit tree, radix tree.

63

String symbol tables summary

A success story in algorithm design and analysis.

Red-black BST.
e Performance guarantee: log N key compares.
* Supports ordered symbol table API.

Hash tables.
* Performance guarantee: constant number of probes.
* Requires good hash function for key type.

Tries. R-way, TST.

* Expected performance: log N characters accessed on a miss!
« Supports character-based operations.

Bottom line. TSTs are extremely fast.

64

