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Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?
* Thousands of practical applications.
* Hundreds of graph algorithms known.
* Interesting and broadly useful abstraction.

» Challenging branch of computer science and discrete math.

The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet




Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics

Partners for COS 226 Spring 2013

Map of science clickstreams
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“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the

ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007




Sexual/romantic network of a high school
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Graph applications

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

chemical compound

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

molecule

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex

cycle of edge

length'5 \ l

path of
« length 4
vertex of
degree 3\
connected

components

Some graph-processing problems

Path. Is there a path between s and ¢?
Shortest path. What is the shortest path between s and ¢?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?
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Graph representation

Graph drawing. Provides intuition about the structure of the graph.

two drawings of the same graph

Caveat. Intuition can be misleading.

Graph representation

Vertex representation.
e This lecture: use integers between 0 and V- 1.
» Applications: convert between names and integers with symbol table.

=

s

C—)

symbol table

Anomalies.

Graph API

pubTlic class Graph

Graph(int V)
Graph(In in)
void addEdge(int v, int w)
Iterable<Integer> adj(int v)
int VO

int EQ

create an empty graph with V vertices
create a graph from input stream
add an edge v-w
vertices adjacent to v
number of vertices

number of edges

In in = new In(args[0]); read graph from
. —
Graph G = new Graph(in); input stream
for (1nt_v =0; v < q.V(); V++) TR IR
for (int w : G.adj(v)) < edge(twice)
StdOut.printin(v + "-" + w);




Graph API: sample client

Graph input format.

tinyG. txt % java Test tinyG.txt
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In in = new In(args[0]); read graph from

c <«
Graph G = new Graph(in); input stream
for (1nt_v =0; v < g.V(); V++) "t
for (int w ._G.adj(v)) T it ()
StdOut.printin(v + "-" + w);

Typical graph-processing code

pubTlic class Graph

Graph(int V) create an empty graph with V vertices

Graph(In in) create a graph from input stream
void addEdge(int v, int w) add an edge v-w
Iterable<Integer> adj(int v) vertices adjacent to v
int VO

number of vertices

int EQ number of edges

// degree of vertex v in graph G
public static int degree(Graph G, int v)
{

int degree = 0;

for CGint w : G.adj(v))

degree++;

return degree;

}

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

0 1

0 2
OROROINNES
o ‘o
7 8

(o )—(10) 9 10

911

[\ o
‘l’ ‘E’ 11 12

// degree of vertex v in graph G
public static int degree(Graph G, int v)
{
int degree = 0;
for (Gint w : G.adj(v))
degree++;
return degree;

3

pollEv.com/jhug text to 37607

Given exactly this data structure, what
is the best possible run time we can
achieve for degree?

A. 6(B) [90833]
B. O(V) [90846]
C. O(degree(v)) [90901]

Adjacency-matrix graph representation

Maintain a two-dimensional V-by-V boolean array;
for each edge v—w in graph: adj[v]l[w] = adj[w][v] = true.

two entries

e for each edge
2 3

0 4 5 6 7 8 9 10 11 12
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pollEv.com/jhug text to 37607

O(V) - [93893]

Same question.
O(E) - [93859]

O(degree(v)) - [93898]




Adjacency-list graph representation

Maintain vertex-indexed array of lists.

o
o

©®N O U A WwN R O

representations
of the same edge

"
~

A

text to 37607
O(degree(v)) - [96925]

pollEv.com/jhug
o(v) - [96709]

Same question.
O(E) - [12833]

Graph representations

In practice. Use adjacency-lists representation.
* Algorithms based on iterating over vertices adjacent to v.
» Real-world graphs tend to be sparse.

AN

huge number of vertices,

small average vertex degree

. edge between iterate over vertices
representation space add edge X
v and w? adjacent to v?
E 1 E

list of edges
adjacency matrix V2 0= 1
adjacency lists E+V 1 degree(v) degree(v)

* disallows parallel edges

Graph representations

In practice. Use adjacency-lists representation.
* Algorithms based on iterating over vertices adjacent to v.
» Real-world graphs tend to be sparse.

AN

huge number of vertices,
small average vertex degree

sparse (E=200)

dense (E=1000)

Two graphs (V =50)

Adjacency-list graph representation: Java implementation

public class Graph
{
private final int V;

. A adjacency lists
private Bag<Integer>[] adj; hE

(using Bag data type )

public Graph(int V)

{
this.V = V; n
adj = (Bag<Integer>[]) new Bag[V]; <—+— cr_:t\e/emstygrap

wi vertices
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();

}

public void addEdge(int v, int w)

{ ) add edge v-w
adj[v].add(w); <1 (parallel edges and
adj [w].add(v) H self-loops allowed)

}

pub'h'c Iterab'le<Integer> adj('int V) <«—+—— iterator for vertices adjacent to v

{ return adj[v]; }
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Graph search
» Traverse entire graph from starting region.
- For some objectives, quit early when objective is achieved.
* Never go any place more than once.

Examples of problems solvable using graph search.
* Finding all vertices reachable from A.
- What areas are in danger of fire?
» Testing connectivity of A and B.
- Could a fire raging in my hair reach your computer?
* Finding the shortest path from A to B.
- Kevin Bacon number.
* Finding the connected components in a graph.
- Reverse engineering of biological systems.

Basic graph search demo

Algorithm
* Two regions: Explored (marked in red) and unexplored.
» Given explored region:
- Select any unexplored vertex adjacent to the explored region.
- Mark that vertex as explored.
* Repeat until no more vertices can be selected.

0

Basic graph search

Graph search for problem solving
» So far:
- Connectivity to a particular region (using marked array).
- Finding paths from a particular region (using edgeTo array).
» Coming up:
- Shortest paths.
- Connected components.
- And more!

Algorithmic specifics
* Vertex selection strategy.
- Must select some order in which to add vertices.
» Data structure selection.
- Based on vertex selection strategy.
- Based on problem we’d like to solve.
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Depth-first search

Selection strategy
* Visiting a vertex consists of:
recursive!

- Marking that vertex as visited.
- Visiting all of its unvisited neighbors.

Z

Depth-first search demo

To visit a vertex v: @
¢ Mark vertex v as visited.

» Recursively visit all unmarked vertices adjacent to v.
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graph G

Depth-first search demo

To visit a vertex v:
* Mark vertex v as visited.
» Recursively visit all unmarked vertices adjacent to v.

v

marked[] edgeTo[v]

vertices reachable from 0
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Maze exploration
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Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

* Create a Graph object.

* Pass the Graph to a graph-processing routine.

* Query the graph-processing routine for information.

public class Paths

Paths(Graph G, int s)
boolean hasPathTo(int v)

Iterable<Integer> pathTo(int v)

Paths paths = new Paths(G, s);
for (int v = 0; v < G.VQ; v++)
if (paths.hasPathTo(v))
StdOut.printin(v);

find paths in G from source s

is there a path from s to v?

path from s to v; null if no such path

print all vertices
connected to s

Depth-first search

Goal. Find all vertices connected to s (and a corresponding path).
Idea. Fully explore one branch before going to another.

Algorithm.
» Use recursion to track where you’ve been.
- Hit a dead end? Go back to the last time you made a choice.
* Mark each visited vertex (and maybe keep track of edge taken to visit it).

Data structures.
* boolean[] marked to mark visited vertices.
e int[] edgeTo to keep tree of paths.
(edgeTo[w] == v) means that edge v-w taken to visit w for first time

Depth-first search

public class DepthFirstPaths
{

private boolean[] marked;

marked[v] = true
if v connected to s

private int[] edgeTo; PR o] = prads

private int s;

public DepthFirstSearch(Graph G, int s)

vertex on path from s to v

{

e <«<———— initialize data structures

} dfs(G, s); <«—————— find vertices connected to s

private void dfs(Graph G, int v)

{ — starting region consists of 1
marked[v] = true; vertex. easy to generalize!
for CGint w : G.adj(v))

if (!marked[w])
{ <«——— recursive DFS does the work
dfs(G, w);
edgeTo[w] = v;
}
}

40




Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to
the sum of their degrees.

Pf. [correctness] source set of marked

/ vertices
* If w marked, then w connected to s (why?)
e If w connected to s, then w marked.

(if w unmarked, then consider last edge

on a path from s to w that goes from a
3 no such edge
set of <« can exist
unmarked

vertices "\

marked vertex to an unmarked one).

Pf. [running time]
Each vertex connected to s is visited once.

41

Depth-first search properties

Proposition. After DFS, can find vertices connected to s in constant time
and can find a path to s (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at s.

public boolean hasPathTo(int v)
{ return marked[v]; }

public Iterable<Integer> pathTo(int v) 0 e edgeTo[]
{ 1|2
if (!hasPathTo(v)) return null; o 210
Stack<Integer> path = new Stack<Integer>Q); 302
for (int x = v; x !=s; x = edgeTo[x]) o 9 @ 4|3
path.push(x); 513

path.push(s);
return path;

42

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).
Assumptions. Picture has millions to billions of pixels.

Solution. Build a grid graph.
e Vertex: pixel.
* Edge: between two adjacent gray pixels.

» Blob: all pixels connected to given pixel.

43
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Breadth-first search demo

Repeat until queue is empty: @
* Remove vertex v from queue.

* Add to queue all unmarked vertices adjacent to vand mark them.

tinyCG. txt

v

4
\

O WWOoO R NNO®
NUARNWRAGOU

graph G

45

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

* Add to queue all unmarked vertices adjacent to vand mark them.

done

v

- O

v AW N

edgeTo[] distTo[]

|
o

o N N O O

46

Breadth-first search

Q: bu.. bu.. we did recursion?
Depth-first search. Put unvisited vertices on a stack. 7 AThat's just a stack!
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest number of edges.

J

BFS (from source vertex s) \

g

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v

il

- add each of v's unvisited neighbors to the queue,

and mark them as visited.

d

Intuition. BFS examines vertices in increasing distance from s.

47

Breadth-first search properties

Proposition. BFS computes shortest paths (fewest number of edges)

from s to all other vertices in a graph in time proportional to £ + V.

Pf. [correctness] Queue always consists of zero or more vertices of

distance k from s, followed by zero or more vertices of distance £+ 1.

Pf.

[running time] Each vertex connected to s is visited once.

dist =0

dist =1

dist = 2

48




Breadth-first search

public class BreadthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private int[] distTo;

private void bfs(Graph G, i

Queue<Integer> q = new Queue<Integer>();

q.enqueue(s);
marked[s] = true;
distTo[s] 0;

while (!q.isEmpty()) {
int v = g.dequeue();
for (int w : G.adj(v)
if (Imarked[w]) {
q.enqueue(w);
marked[w] = tru
edgeTo[w] = v;
distTo[w] = dis

nt s) {
initialize FIFO queue of
vertices to explore

DA

. found new vertex w
e; —
via edge v-w

tTo[v] + 1;

49

Breadth-first search application: routing

Fewest number of hops in a communication network.

v SATELLITE CIRCUIT
O e

&  PLURIBUS 1MP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS )

NAMES SHOWN ARE IMP NAMCS, NOT (NECESSARILY) HOST NAMES

ARPANET, July 1977

Breadth-first search application:

Kevin Bacon numbers

Kevin Bacon numbers.

ano The Oracle of Bacon.

<[> Jlcl@l=)[+ ][] € = rmmm oracieots - mevl s e =0 stname = Kevie

() The Clrtis |_soe of Masic GO 126 F68ACH Awarés Wang 514 Mcanchy | Momepage Stocks _ COS126.

THE ORACLE
OF BACON

Buzz Mauro

http:/ /oracleofbacon.org

taco O H &
FO7 TP KSS (17421 Gschanen »

Endless Games board game

‘Sweet Dreams (2005)
Yamn‘mmm
Lo ZeoC e ) | Uma Thurman
Andres Suarez Be Cool ‘(‘2‘005)
Carita’s Socret (2004) Soott Adsi
Paula Lemes (1 The nformant! (2009) B
FroaNin 008 Matt Damon
Kevin Bacon
- 10 s e Y o e

Q

Lookun

SixDegrees iPhone App

Kevin Bacon graph

* Include one vertex for each performer and one for each movie.

» Connect a movie to all performers that appear in that movie.
« Compute shortest path from s = Kevin Bacon.

The Stepford
wives

John

Gielgud

Uloyd
Bridges

Portrait
of a Lady
Murder on the
orient Express

The Eagle
Has Landed

Kathleen
Quinlan

An American Animal
Haunting House

John
Belushi

performer

/ vertex

Vernon
Dobtcheff

movie
vertex

Paul
Herbert

Meryl
streep
Eternal Sunshine]
of the Spotless
Mind




Breadth-first search application: Erdés numbers
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ha;ld-drawing of part of the Erdés graph by Ron Graham
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Graph-processing challenge 1 Intuition: think about it as a dating graph
Problem. Is a graph bipartite? s
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Graph-processing challenge 1 Graph-processing challenge 2

Problem. Is a graph bipartite? Problem. Find a cycle.

0-1 (oY 0-1
0-2 0-2
0-5 0-5
ORORORY ORORORY
How difficult? e o ;‘:g How difficult? e o ;‘:g
* Any programmer could do it. 2-4 * Any programmer could do it. 2-4
. . . . 4-5 . . . . 4-5
¥ « Typical diligent algorithms student could do it. ° G ¥ « Typical diligent algorithms student could do it. ° G
¢ Hire an expert. \ « Hire an expert. \ 0-5-4-6-0
* Intractable. simple DFS-based solution o1 * Intractable. simple DFS-based solution
book -
* No one knows. (see textbocly 0-2 o N G (see textbook)
. 0- .
* Impossible. 0_2 * Impossible.
1-3
2-3
2-4
4-5
4-6
57
Bridges of Kénigsberg Graph-processing challenge 3
The Seven Bridges of Koénigsberg. [Leonhard Euler 1736] Problem. Find a (general) cycle that uses every edge exactly once.
“...in Konigsberg in Prussia, there is an island A, called the 01
Kneiphof; the river which surrounds it is divided into two branches ... 0:2
and these branches are crossed by seven bridges. Concerning these 0-5
bridges, it was asked whether anyone could arrange a route in such a g_g
way that he could cross each bridge once and only once.” How difficult? 2-3
* Any programmer could do it. 2-4
. . . . 3-4
¥« Typical diligent algorithms student could do it. 05
C .
* Hire an expert. \ 4-6
0-1-2-3-4-2-0-6-4-5-0
A 0 * Intractable. Eulerian tour

(classic graph-processing problem)
+ No one knows. grapie ol

* Impossible.

Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.




Graph-processing challenge 4 Graph-processing challenge 5

Problem. Find a cycle that visits every vertex exactly once. Problem. Are two graphs identical except for vertex names?
O, 0-1 O, 0-1
0-5 0-5
OO o ORORONY
How difficult? - How difficult? =
ow difficult e o G ow difficult e o 35
* Any programmer could do it. / 3-4 * Any programmer could do it. / 4-5
. . . . 3-5 . . . . 4-6
» Typical diligent algorithms student could do it. ° A » Typical diligent algorithms student could do it. °
* Hire an expert. 4-6 * Hire an expert.
Y « Intractable. ~__ 0757374672710 * Intractable. 3) 0-4
Hamiltonian cycle 0-5
* No one knows. : ¥ + No one knows. e
(classical NP-complete problem) 0-6
* Impossible. * Impossible. \ (4) 1-4
graph isomorphism is e “ 1-5
longstanding open problem o 2-4
3-4
o
0<4, 13, 2<2, 3<6, 4<5, 5<0, 6<1
61
Graph-processing challenge 6 Graph-processing challenge 7
Problem. Lay out a graph in the plane without crossing edges? Problem. Does there exist a path from s to ¢?

How difficult?

* Any programmer could do it. "o

» Typical diligent algorithms student could do it. 0
* Hire an expert.

(o BV BV, I e I T ST )

* Intractable. a

linear-time DFS-based planarity algorithm

* No one knows. g S by Tarian in 1570
iscovered by Tarjan in s
* Impossible. (too complicated for most practitioners) a a e




Graph-processing challenge 7

v

Problem. Does there exist a path from s to ¢?

How difficult?
* Any programmer could do it.
» Typical diligent algorithms student could do it.
* Hire an expert.
* Intractable. )
* No one knows.
* Impossible.

65

Paths in graphs: union-find vs. DFS

Problem. Does there exist a path from s to ¢?

ﬂ

union-find V + E log* V

Effectively constant with path compression.

DFS preprocessing time. Use connected component algorithm. E+V time.
DFS query time. Simply look up in id[] array.

Union-find. Can intermix connected queries and edge insertions.
Depth-first search. edgeTol[] provides an actual path.
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