ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

3.4 HASH TABLES

» basic ideas
» separate chaining

Algorithms » linear probing

» hash functions

» context

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

3.4 HASH TABLES

» basic ideas

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

ST implementations: summary

worst-case cost average-case cost
(after N inserts) (after N random inserts) ordered
implementation

iteration?
insert delete | search hit insert delete
N

sequential search

N N N/2 N/2
(unordered list) / / ne
binary search g N N N g N N/2 N/2
es
(ordered array) 9 9 ¥
BST N N N 1.381g N 1.381gN ? yes
red-black BST 21gN 21gN 21gN 1.00lgN 1.00lgN 1.00IgN yes

key
interface

equals(Q

compareTo()

compareTo()

compareTo()

Q. Can we do better?
A. Yes, but with different access to the data.

Space vs. Time

The iron-folding doors of the small-room or oven were opened. Babbage
How to teach your horse to pretend hes a vicious animal and chase after others, even if heis Horse_ebooks
Does the body rule the mind or does the mind rule the body? | dunno... Morrissey

Brute force
 Treat quote as a humber.

- 180 character limit. 600 bits per quote./ were an actual law, it'd only take a
* Need array of length 2690, or about 10789, millennium.

Seems bad, but if Moore’s law

Issues

* Holographic principal provides bound on information density.

- No more than 1 bit per Planck unit of area.
1099 bits per square meter of surface area of a sphere.

- 14 gigaparsec universe contains no more than 10'22 bits.

* Can also bound information with Bekenstein bound.

« Information density maximized with a black hole.
- Try to cram more bits than bound: Collapses into black hole.

Spies

Goal: Determining overlap
* Two spies have obtained a large cache of secret documents.
* They want to know which single document they have in common.
- Must match EXACTLY!
* Can only communicate via slips of paper discretely placed around town.
- High latency.
- Low bandwidth.
- Entire document transmission possible, but very tricky.
» Can coordinate plan before their mission.

Technique one
* One spy transmits entire text of document to the other.
- Very slow.

Technique two: Header transmission

Transmit all header
* Each spy transmits only the first 10 characters of each document.
* Issue 1:
- Not enough to establish equality.
- Fix:
* New issue:
- Worst case:

CONFIDENTIAL / OFFICIAL USE ONLY
SUBJ: NEW LATVERIAN LEADER PROMISING FOR EUROPEAN INTERESTS
Classified By: Ambassador T. Travers, for reasons 616(k) and (1)

1 (S) Summary: Meeting between Ambassador Travers and new Latverian “supreme
leader” Dr. Victor Von Doom went as well as can be expected given the
political turmoil surrounding his ascension to the Latverian throne. Given
Von Doom’s relative inexperience as a leader and the fact that he was
educated in America (claims doctorate despite dropping out of New York's State
University), he should be fairly easy to work with and presents an opportunity
to further our goals in a traditionally volatile part of the world.

Recommend lending full support to the Von Doom government. End Summary.

cc: N. Fury, J. Sitwell

Technique three: Summary transmission

Transmit a summary

Hash functions

Essential idea:
* Given a document, calculate a summary.
* Transmit summaries.
e If two summaries match, transmit entire document.

Hash functions
» Converts large object into a small one.
» Desired properties:
- Deterministic.
- Differ inputs result in different outputs.
- Easy to compute.

Using hash functions for indexing

Essential idea:
» Given a document, calculate its hash.
* Transmit hashes.
« If two hashes match, transmit entire document.

Storing a quote
* Maintain quote and author arrays.
* Quote in position i corresponds to author in position i.
* To insert a quote, calculate its hash.
- Store quote and author at a position determined by its hash.

quotes[]
quote —» IEH s[@eYs (] —»m—[authors[]

reason: hashCode()
may be bigger than

array size

Example: put

0 “The iron-folding doors of the small-room or oven were opened.” Babbage

"By convention there is sweetness, by convention bitterness, by convention color, in
reality only atoms and the void.” - The Intellect (Democritus)

quotes|]

7517633

PN hashCode() NN authors|]

reason: hashCode()
may be bigger than
array size

Modular hashing

Hash code. An int between -231 and 231 - 1.
Hash function. An int between 0 and M - 1 (for use as array index).

typically a prime or power of 2

private int hash(Key key)
{ return key.hashCode() % M; }

bug

private int hash(Key key)
{ return Math.abs(key.hashCode()) % M; }

1-in-a-billion bug

hashCode() of "polygenelubricants” is -23!

private int hash(Key key)
{ return (key.hashCode() & Ox7fffffff) % M; }

correct

Example: put

0 “The iron-folding doors of the small-room or oven were opened.” Babbage

“By convention there is sweetness, by convention bitterness, by convention color, in

. e Democritus
reality only atoms and the void.

"By convention there is sweetness, by convention bitterness, by convention color, in
reality only atoms and the void.” - The Intellect (Democritus)

quotes|]

7517633 2

PN hashCode() NN authors|]

7517633 %3 =2

Symbol table development

First attempt
* See code

Issues
* How do we write a hash function? (later)
* What do we do in the event of a hash collision?
* What do we do when the table becomes full?

3.4 HASH TABLES

» separate chaining

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Separate chaining symbol table

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]
« Hash: map key to integer i between 0 and M - 1.
 Insert: put at front of i chain (if not already there).
» Search: need to search only i* chain.

key hash

s 2

E O NEEE

A O

R 4 st[] null

c 4 0

H o 4 u

e F-E10
3

X 2 4

A O [L[{p o]

M4

P33 (Lo {n el R

L 3

E O

Put

void put(Key key, Value val) {
int i = hash(key);
Node firstNodeInBucket = st[il;

st[i] Node|(key, val, firstNodeInBucket);

void put(Key key, Value val) {
int i = hash(key);
Node firstNodeInBucket = st[i];

(Node x = firstNodeInBucket; x null; x = x.next)

(key.equals(x.key)) {

x.val = val;

Node|(key, val, firstNodeInBucket);
pollEv.com/jhug

Which put method do you like better?

A. Top [43446]
B. Bottom [43704]

text to 37607

Symbol table development

Sequential Chaining Hash Table
» See code

Issues
* How do we write a hash function? (later)
* What do we do in the event of a hash collision?

* What do we do when the table becomes full?

Performance

* N << M: Constant time get and put.
* N >> M: Linear time.

Resizing

Objective
* Keep lists short.
* Don’t waste memory on empty lists.

Approach
* Increase size of array when N exceeds some constant factor of M.
* Decrease size of array when N decreases below some constant factor of M.

pollEv.com/jhug text to 37607

In which bin will the apple
B o appear after resizing?
1

, 0 [9575]
1 [9597]
} 2 [9609]
— 4 3 [9635]
’ i 4 [9637]
. 5 [9643]

Resizing

Objective
* Keep lists short.
* Don’t waste memory on empty lists.

Approach
* Increase size of array when N exceeds some constant factor of M.
* Decrease size of array when N decreases below some constant factor of M.

Resize

void [resize|(int size) {
Node[] newSt (Nodel]) Object([size];

(int i = 9; i < st.length; i++)

newSt[i] = st[i];

M = size;
st newsSt;

pollEv.com/jhug text to 37607

Will the resize method above work correctly?

A. Yes [46372]
B. No [1431]

Symbol table analysis

Sequential Chaining Hash Table
» See code

Performance
» N-<<M:Constant time get-and put.
g q <«——— These cases are now impossible.
* N within a small constant factor of M.

N

Analysis Requires COS 340 math.

« How full are the bins? —

- Average bin.
- Worst case bin.

Uniform hashing assumption. Each key is equally likely to hash to an
integer between 0 and M - 1.

Analysis of separate chaining

Proposition. Under uniform hashing assumption, prob. that the number of
keys in a list is within a constant factor of N/ M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

10,.12511...
!) —.125

i | | 0
0 10 20 30

Binomial distribution (N =104, M =103, o = 10)

N/M
equals() and hashCode()
v
Consequence. Number of probes for search/insert is proportional to N/ M.
* Mtoo large = too many empty chains. T
« Mtoo small = chains too long.) i (Fsitar e

sequential search

 Typical choice: M~ N/5 = constant-time ops.

Other consequences of uniform hashing

Uniform hashing assumption. Each key is equally likely to hash to an
integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

N proportional to

sqrt(M) gives no
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 o
collisions.

s

Birthday problem. Expect two balls in the same bin after ~~/x M/ 2 tosses.
Coupon collector. Expect every bin has = 1 ball after ~ M In M tosses.

Load balancing. After M tosses, expect most loaded bin has

o (IOg M/lOg IOgM) ba”s. N proportional to M gives worst case

expected performance of log M / log log M.

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an
integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

Expect largest
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
A

Hash value frequencies for words in Tale of Two Cities (M = 97)

bin to grow as

log N/ log log N

Java's String data uniformly distribute the keys of Tale of Two Cities

ST implementations: summary

implementation

worst-case cost average case
(after N inserts) (after N random inserts) reTed

iteration?
delete | search h insert delete

sequential search

(unordered list) Y i N N/2 N N/2 no

binary search
(ordered array) ol N N lg N N/2 N/2 yes
BST N N N 1.38IgN 1.38IgN ? yes

red-black tree 2IgN 2IgN 21gN 1.00lgN 1.00lgN 1.00IgN yes
separate chaining O(log,ogN)% O(%f 9(%)* 3.5 % 3-5 % 3-5* no

key
interface

equals(Q)
compareTo()
compareTo()

compareTo()

equals(Q
hashCode ()

* expected under uniform hashing assumption

3.4 HASH TABLES

» linear probing

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Collision resolution: open addressing

Open addressing.
When a new key collides, find next empty slot, and put it there.

st[0] jocularly
st[1] null
st[2] Tisten
st[3] suburban
: null
st[30000] browsing

linear probing (M = 30001, N = 15000)

[Amdahl-Boehme-Rocherster-Samuel, IBM 1953]

Linear probing hash table demo

Hash. Map key to integer i between 0 and M-1.
Insert. Put at table index i if free; if not try i+1, i+2, etc.

linear probing hash table

Linear probing hash table demo

Hash. Map key to integer i between 0 and M-1.
Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

search K
hash(K) = 5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
st[] P M A C S H L E R X
M = 16 K

search miss

(return null)

Linear probing hash table summary

Hash. Map key to integer i between 0 and M-1.
Insert. Put at table index i if free; if not try i+1, i+2, etc.
Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Note. Array size M must be greater than number of key-value pairs N.

st[] P M A C S H L E R X

16

Linear probing ST implementation

public class LinearProbingHashST<Key, Value>
{
private int M = 30001;)
private Value[] vals = (Value[]) new Object[M]; — a"éydOUbhngé”d
private Key[] keys = (Key[]) new Object[M]; halving code omitted
private int hash(Key key) { /* as before */ }
private void put(Key key, Value val) { /* next slide */ }
public Value get(Key key)
{
for (int i = hash(key); keys[i] != null; i = (i+1) % M)
if (key.equals(keys[i]))
return vals[i];
return null;
}
}

Linear probing ST implementation

public class LinearProbingHashST<Key, Value>

{

private int M = 30001;

private Value[] vals = (Value[]) new Object[M];
private Key[] keys = (Key[]) new Object[M];
private int hash(Key key) { /* as before */ }
private Value get(Key key) { /* previous slide */ }

public void put(Key key, Value val)
{
int i;
for (i = hash(key); keys[i] != null; i = (i+1) % M)
if (keys[i].equals(key))
break;
keys[i] = key;
vals[i] = val;

Clustering Knuth's parking problem

Cluster. A contiguous block of items. Model. Cars arrive at one-way street with M parking spaces.

if space i is taken, try i +1,i+2, etc.

Observation. New keys likely to hash into middle of big clusters.

Each desires a random space i :

Q. What is mean displacement of a car?

displacement = 3

50 O O

G G G G
PE Half-full. With M /2 cars, mean displacement is ~3/2.
E
o Full. With M cars, mean displacement is ~~/ x M/ 8.
G
B B

T L T o () < e el ol [« (I c

33 34
Analysis of linear probing ST implementations: summary
Proposition. Under uniform hashing assumption, the average # of probes
. Ao fter N inser (after N random inserts)
in a linear probing hash table of size M that contains N = a M keys is: T o (after N Inserts) ordered key
iteration? interface
delete | search h insert delete
5)
)) sequential se:arch N N N N/2 N N/2 no equals()
(unordered list)
binary search IgN N N Ig N N/2 N/2 yes compareTo()
PF. e (ordered array)
8384
NOTES Ot "OPEN® ADDRESSING. ‘D, Knuth. 7/22/63
1. Istroduction and Petinitisns. ipén addressing is a widely-used techaique BST N N N 1.381gN 1.381gN ? S8 CEIERIREE)
Tor keeping Msymbol tubles,” The nethod vas first used, in 195b by Smmuel, Amdahl,
and Bochme in an assembly program ‘or the IHM 70l. An extensive discussion of
the method was given by Peterson in 1957 {1], und frequent references have been
m::x; to it cv:r sx:;:e (; ra Scn&Z and Spruth {2], Iverson [3}). However, tl:e
SIS gamsteraties b wmareiay never bud sty crienanns i oo, red-blacktree 21gN 21gN 219N 1.00lgN 1.00lgN 1.001gN yes compareTo()
£ind the solutios after some trial. Thavefore it is tho purpose of this note to
indicste one way by which the solu.ion cen be obtained,
n))) B R equals()
separate chaining Ig N * Ig N * IgN* 3-5* 3-5* 35 no hashCode ()
Parameters.
* Mtoo large = too many empty array entries. _ .) . .) N) equalsQ
linear probing IgN* IgN* Ig N * 3-5* 3-5* 3-5* no hashCode)
» Mtoo small = search time blows up.
A : . # probes for search hit is about 3/2
 Typical choice: a = N/M ~ %. «<—— . . _
yp # probes for search miss is about 5/2 under uniform hashing assumption
35 36

3.4 HASH TABLES

Algorithms

» hash functions

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.
* Efficiently computable.

. . key
* Each table index equally likely for each key. l
\ thoroughly researched problem,
still problematic in practical applications
Ex 1. Phone numbers.
* Bad: first three digits.
* Better: last three digits. lab
index

Ex 2. Social Security numbers.
e Bad: first three d|g|ts <«—— 573 = California, 574 = Alaska

(assigned in chronological order within geographic region)

» Better: last three digits.

Practical challenge. Need different approach for each key type.

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If 1x.equals(y), then (x.hashCode() != y.hashCode()).

X y
H =
¥ v

x.hashCode () y.hashCode ()

Default implementation. Memory address of x.

Legal (but poor) implementation. Always return 17.

Customized implementations. Integer, Double, String, File, URL, Date, ...
User-defined types. Users are on their own.

Implementing hash code: integers, booleans, and doubles

Java library implementations

public final class Integer public final class Double
{ {

private final int value; private final double value;

public int hashCode() public int hashCode()

{ return value; } {
3 Tong bits = doubleToLongBits(value);
return (int) (bits A (bits >>> 32));
}
}
public final class Boolean
{ |
private final boolean value; convert to IEEE 64-bit representation;
xor most significant 32-bits
pubTic int hashCode() with least significant 32-bits
{
if (value) return 1231;
else return 1237;
}
}

40

Implementing hash code: strings

Java library implementation

public final class String
{

private final char[] s;

public int hashCode()
{
int hash = 0;
for (int i = 0; i < TengthQ); i++)
hash = s[i] + (31 * hash);
return hash;
3 ith character of s

* Horner's method to hash string of length L: L multiplies/adds.
* Equivalentto A=s[0] - 314! + ...+ s[L-3] - 312 + s[L-2]- 31' + s[L—1]-31°.

Ex. String s = "call";

int code = s.hashCode();

<«<— 3045982 =99:313 + 97-312 + 108:31' + 108:31°

=108 +31- (108 + 31 -(97 + 31 - (99)))

(Horner's method)

41

Implementing hash code: strings

Performance optimization.

* Cache the hash value in an instance variable.

e Return cached value.

public final class String
{
private int hash = 0;
private final char[] s;

public int hashCode()
{
int h = hash;
if (h !'= 0) return h;
for (int i = 0; i < Tength(Q); i++)
h = s[i] + (31 * hash);
hash = h;
return h;

<71 cache of hash code
<«——+— return cached value
< store cache of hash code

42

Implementing hash code: user-defined types

public final class Transaction implements Comparable<Transaction>

{

private final String who;
private final Date when;
private final double amount;

public Transaction(String who, Date when, double amount)
{ /* as before */ 1}

public boolean equals(Object y)
{ /* as before */ }

public int hashCode()
{

nonzero constant

int hash = 17;

hash = 31*hash + who.hashCode(Q);
hash = 31*hash + when.hashCode(Q);

hash = 31*hash + ((Double) amount).hashCode();
return hash;

typically a small prime

for reference types,
use hashCode ()

for primitive types,
use hashCode ()
of wrapper type

43

Hash code design

"Standard" recipe for user-defined types.

* Combine each significant field using the 31x+y rule.

* If field is a primitive type, use wrapper type hashCode().

« If field is null, return 0.

« If field is a reference type, use hashCode(). <—— applies rule recursively

« If field is an array, apply to each entry.

<«—— or use Arrays.deepHashCode ()

In practice. Recipe works reasonably well; used in Java libraries.

In theory. Keys are bitstring; "universal" hash functions exist.

Basic rule. Need to use the whole key to compute hash code;

consult an expert for state-of-the-art hash codes.

44

War story: String hashing in Java

String hashCode() in Java 1.1.
* For long strings: only examine 8-9 evenly spaced characters.
» Benefit: saves time in performing arithmetic.

public int hashCode()
3.4 HASH TABLES {
int hash = 0;
int skip = Math.max(1, length(Q) / 8);
for (int i = 0; i < lengthQ); i += skip)
hash = s[i] + (37 * hash);

return hash;

}

Algorithms

* Downside: great potential for bad collision patterns.
» context

ROBERT SEDGEWICK | KEVIN WAYNE
http+/ /algsdrcs.princetop.edu http://www.cs.princeton.edu/introcs/13Toop/Hello.java
http://www.cs.princeton.edu/introcs/13Toop/HelTlo.class
http://www.cs.princeton.edu/introcs/131oop/Hello.html
http://www.cs.princeton.edu/introcs/12type/index.html

t i i t i 1 1 1

War story: algorithmic complexity attacks Algorithmic complexity attack on Java
Q. Is the uniform hashing assumption important in practice? Goal. Find family of strings with the same hash code.
A. Obvious situations: aircraft control, nuclear reactor, pacemaker. Solution. The base 31 hash code is part of Java's string API.

A. Surprising situations: denial-of-service attacks.

0

1 malicious adversary learns your hash function "Aa" "AaAaAaAa" -540425984 "BBAaAaAa" -540425984
; B by CeEEIRy 0 A1) i) Garses & By i 1 "BB" "AaAaAaBB" -540425984 "BBAaAaBB" -540425984
P in single slot that grinds performance to a halt
5 ""AaAaBBAa" -540425984 "BBAaBBAa" -540425984
""AaAaBBBB" -540425984 "BBAaBBBB" -540425984
"AaBBAaAa" -540425984 "BBBBAaAa" -540425984
. "AaBBAaBB" -540425984 "BBBBAaBB" -540425984
Real-world exploits. [Crosby-Wallach 2003]
"AaBBBBAa" -540425984 "BBBBBBAa" -540425984
* Bro server: send carefully chosen packets to DOS the server,
; ; . "AaBBBBBB" -540425984 "'BBBBBBBB" -540425984
using less bandwidth than a dial-up modem.
* Perl 5.8.0: insert carefully chosen strings into associative array. 2N strings of length 2N that hash to same value!

* Linux 2.4.20 kernel: save files with carefully chosen names.

47

Diversion: one-way hash functions

One-way hash function. "Hard" to find a key that will hash to a desired
value (or two keys that hash to same value).

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160,

known to be insecure

String password = args[0];
MessageDigest shal = MessageDigest.getInstance("SHA1");
byte[] bytes = shal.digest(password);

/* prints bytes as hex string */

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.

49

Separate chaining vs. linear probing

Separate chaining.
» Easier to implement delete.
» Performance degrades gracefully.
* Clustering less sensitive to poorly-designed hash function.

Linear probing.
* Less wasted space.
» Better cache performance.

Q. How to delete from linear probing?
Q. How to resize from linear probing?

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. (separate-chaining variant)
* Hash to two positions, insert key in shorter of the two chains.
* Reduces expected length of the longest chain to log log N.
Double hashing. (linear-probing variant) Based on second hash function
» Use linear probing, but skip a variable amount, not just 1 each time.
* Effectively eliminates clustering.
* Can allow table to become nearly full.
* More difficult to implement delete.

Cuckoo hashing. (linear-probing variant)
* Hash key to two positions; insert key into either position; if occupied,
reinsert displaced key into its alternative position (and recur). AY
» Constant worst case time for search. w

Hash tables vs. balanced search trees

Hash tables.
» Simpler to code.
» No effective alternative for unordered keys.
» Faster for simple keys (a few arithmetic ops versus log N compares).
» Better system support in Java for strings (e.g., cached hash code).

Balanced search trees.
 Stronger performance guarantee.
» Support for ordered ST operations.
* Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.
* Red-black BSTs: java.util.TreeMap, java.util.TreeSet.
e Hash tables: java.util.HashMap, java.util.IdentityHashMap.

