How is the pacing of lectures overall? Skip
this question if you do not attend lecture.
Answer with respect to how well they are
paced for you, not how well you think they
are paced for the class as a whole.

Answered: 80 Skipped: 1

Way too slow
for more

Too slow for
more

Good

Too fast for
me

Way too fast
for me

0% 20% 40% 60% 80%

100%

A 1 g() I 1 { h Ims ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

3.1 SYMBOL TABLES

» APl

» elementary implementations

» ordered operations

3.1 SYMBOL TABLES

» API

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Symbol tables

Key-value pair abstraction.
* Insert a value with specified key.
* Given a key, search for the corresponding value.

Ex. DNS lookup.
* Insert URL with specified IP address.
* Given URL, find corresponding IP address.

URL IP address

www.cs.princeton.edu 128.112.136.11
www.princeton.edu 128.112.128.15
www.yale.edu 130.132.143.21
www.harvard.edu 128.103.060.55
WWW.Simpsons.com 209.052.165.60

T T

key value

Symbol table applications

dictionary find definition word definition
book index find relevant pages term list of page numbers
file share find song to download name of song computer ID
financial account process transactions account number transaction details
web search find relevant web pages keyword list of page names
compiler find properties of variables variable name type and value
routing table route Internet packets destination best route
DNS find IP address given URL URL IP address
reverse DNS find URL given IP address IP address URL
genomics find markers DNA string known positions

file system find file on disk filename location on disk

Basic symbol table API

Associative array abstraction. Associate one value with each key.

public class ST<Key, Value>

void

Value

void
boolean
boolean
int

Iterable<Key>

STQO

put (Key key, Value val)

get(Key key)

delete(Key key)
contains(Key key)
1sEmpty ()

size()

keys()

create a symbol table

put key-value pair into the table
(remove key from table if value is nu11)

value paired with key
(nu11 if key is absent)

remove key (and its value) from table
is there a value paired with key?
is the table empty?

number of key-value pairs in the table

all the keys in the table

alkey]

alkey]

val;

ST test client for analysis

Frequency counter.

Read a sequence of strings from standard input

and print out one that occurs with highest frequency.

% more

it
1t
1t
it
1t
1t
it
1t
1t
1t

was
was
was
was
was
was
was
was
was
was

% java

1t

10

tinyTale.txt

the best of times

the worst of times

the age of wisdom

the age of foolishness
the epoch of belief
the epoch of incredulity
the season of Tight
the season of darkness
the spring of hope

the winter of despair

FrequencyCounter 1 < tinyTale.txt

% java FrequencyCounter 8 < tale.txt
business 122

% java FrequencyCounter 10 < TeipziglM.txt <—

government 24763

D

tiny example
(60 words, 20 distinct)

real example
(135,635 words, 10,769 distinct)

real example
(21,191,455 words, 534,580 distinct)

Conventions

* Values are not null.
 Method get() returns null if key not present.
e Method put() overwrites old value with new value.

Intended consequences.
 Easy to implement contains().

public boolean contains(Key key)
{ return get(key) != null; }

 Can implement lazy version of delete().

public void delete(Key key)
{ put(key, null); 1}

Keys and values

Value type. Any generic type.

specify Comparable in API.
Key type: several natural assumptions.

 Assume keys are Comparable, use compareTo().

 Assume keys are any generic type, use equals() to test equality.

 Assume keys are any generic type, use equals() to test equality;
use hashCode() to scramble key.

\ built-in to Java

(stay tuned)

Best practices. Use immutable types for symbol table keys.
 Immutable in Java: Integer, Double, String, java.io.File, ...
e Mutable in Java: StringBuilder, java.net.URL, arrays, ...

Equality test

All Java classes inherit a method equals().

e x.equals(y) works for any objects x and y, even if different class.

Java requirements. For any references x, y and z:

e Reflexive: x.equals(x) is true. _
equivalence

 Symmetric: x.equals(y) iff y.equals(x). relation
 Transitive: if x.equals(y) and y.equals(z), then x.equals(z).
* Non-null: x.equals(null) is false.

= new Point(0, 0);
_ = new Point(0, 0);

K// the same object? x.equals(y); //returns false
Default implementation. (x == y)

do x and y refer to

< X

Customized implementations. Integer, Double, String, java.io.File, ...
User-defined implementations. Some care needed.

Implementing equals for user-defined types

Seems

public
{

easy.

class Date implements Comparable<Date>

private final int month;
private final int day;
private final int year;

pub
{

Tic boolean equals(Date that)

if (this.day I= that.day) return false;
if (this.month != that.month) return false;
if (this.year != that.year) return false;

return true;

check that all significant

fields are the same

Implementing equals for user-defined types

Seems easy, but requires some care.

typically unsafe to use equals() with inheritance

(would violate symmetry)

public final class Date implements Comparable<Date>
{
private final int month; g
private final int day; |~ mustbebbject.
pr‘ivate final int year; Why? Experts still debate.
public boolean equals(Object y)
{
if (y == this) return true; <«<—+— optimize for true object equality
if (y == null) return false; <«—+— check for nulT
if (y.getClass() != this.getClass(Q)) | objects must be in the same class
return false; (religion: getClass() vs. instanceof)
Date that = (Date) y; <«—+— cast is guaranteed to succeed
i : |]
Tf (thTS.day I= that.day) return false; check that all significant
if (this.month != that.month) return false; <~ — _
. . fields are the same
if (this.year != that.year) return false;
return true;
}
}
12

Equals design

"Standard" recipe for user-defined types.
* Optimization for reference equality.
e Check against null.
* Check that two objects are of the same type and cast.
 Compare each significant field:
- if field is a primitive type, use ==
- if field is an object, use equals(Q <—— apply rule recursively

- if field is an array, apply to each entry «<—— alternatively, use Arrays.equals(a, b)
or Arrays.deepEquals(a, b),

but not a.equals(b)

Best practices. oo cached Manhattan() distance
* No need to use calculated fields that depend on other fields.
 Compare fields mostly likely to differ first.

e Make compareTo() consistent with equalsQ).

\

x.equals(y) if and only if (x.compareTo(y) == 0)

3.1 SYMBOL TABLES

» elementary implementations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Sequential search in a linked list

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.

Insert. Scan through all keys until find a match; if no match add to front.

keyvalue first

S

> X m I N X[”™ > m
O 00 N O ui M W N R O

=

P 10
L 11
E 12

red nodes

STa], - e

| E | 1 }_>| S | 0 | black nodes

are accessed

R[]

(R[5 (A2 (e [1{s]0]

([t -RBHAR R0 -

(1[5 [[a R (A2 (e [T-[s [o}-Fumeiiine

(s (s R -

X7 s [R B HAl Ele-{s]o)

X7 (s s R AR — T
o - e -RB A HEe -]o)

(e o[s -7 (s ([« R A s -{e[e}-[5]o]
(L[o[l (X[(i [s F{c [« (R 3 F-{als|-{e[s]-{s[0]
(L[oo -7 (s e[-R B AL D

Trace of linked-list ST implementation for standard indexing client

Elementary ST implementations: summary

worst-case cost average case
(after N inserts) (after N random inserts) ordered key

ST implementation

iteration? interface
search insert search hit insert

N N N/2 N no equals()

sequential search
(unordered list)

Challenge. Efficient implementations of both search and insert.

Binary search in an ordered array

« Data structure. Maintain two arrays: One for keys, one for values.
- Keys are kept in order.

- Values kept at same index as corresponding key.

equal to the index of k if it is in keys[]
Rank helper function. How many keys < k?

keys[]
successful search for P O 1 2 3 4 5 6 7 8 9

lo hi m
0 9 4 A CE H L M P R S X entries in black
5 9 7 M P R S X/areaDo .hi]
S 6 5 M OP RSN
6 6 6 p o~ entry in red is a[m]
unsuccessful search for Q ™~ loop exits with keys[m] = P: return 6
lo hi m
0 9 4 A C EHL MP R S X
5 9 7 M P R S X
5 6 5 M P
/7 6 6 P
™

loop exits with 1o > hi: return 7

Trace of binary search for rank in an ordered array

Binary search: Java implementation

public Value get(Key key)

{
it (isEmpty()) return null;
int 1 = rank(key);
if (i < N & keys[i].compareTo(key) == 0) return vals[i];
else return null;
¥
private int rank(Key key) number of keys < key
{

int To = 0, hi = N-1;
while (lo <= hi)

{

int mid = 1o + (hi - 1o) / 2;
int cmp = key.compareTo(keys[mid]);
if (cmp < 0) hi = mid - 1;
else if (cmp > 0) To = mid + 1;
else return mid;

hy

return lo;

Binary search: trace of standard indexing client

Problem. To insert, need to shift all greater keys over.

keys[] vals[]

key value 0O 1 2 3 4 5 6 7 8 9 N 0O 1 2 3 4 5 6 7 8 9
S 0 S 1 0
E 1 E S 2 1 0 entries in black

entries in red moved to the right
A 2 A E S _— were inserted 3 2 1 0 /
R 3 R S 4 3 0
C 4 C E R S entries in gray 5 4 1 30 - lod entri

Sl circled entries are

H 5 H R S L danotiove 6 AE,,,§———£L"’changed1aﬂues
E 6 6 (6)
X 7 X 7 7
A8 7
M 9 M R S X 8 9 3 0 7
P 10 P R S X 9 10 3 0 7
L 11 L M P R S X 10 11 10 3 0 7
E 12 10 12)

A C E HL M P R S X 8 412 511 910 3 0 7

Elementary ST implementations: summary

worst-case cost average case
(after N inserts) (after N random inserts) ordered key

ST implementation

iteration? interface
search insert search hit insert

sequential search N N N/ 2 N no equals(Q)

(unordered list)

binary search
compareTo()
(ordered array) log N @ log N @ yes P

Challenge. Efficient implementations of both search and insert.

20

3.1 SYMBOL TABLES

» ordered operations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Examples of ordered symbol table API

keys

values

min()—>09:00:00 Chicago
09:00:03 Phoenix

09:00: Houston
get(09:00:13) 9:00:59 Chicago

09
floor(09:05:00)—=09
09

select(7)—09

09
09
09
keys(09:15:00, 09:25:00)—| 09
09
09
09
ceiling(09:30:00)—= 09
09

max()—> 09

size(09:15:00, 09:25:00) s 5
rank (09:10:25) s 7

:01:
:03:
:10:
:10:
:14:
:19:
:19:
:21:

122

10 Houston
13 Chicago
11 Seattle
25 Seattle
25 Phoenix
32 Chicago
46 Chicago
05 Chicago

:43 Seattle
122
:25:
:35:
:36:
:37:

54 Seattle
52 Chicago
21 Chicago
14 Seattle
44 Phoenix

22

Ordered symbol table API

pubTlic class ST<Key<§§EE;a;7Comparab{;:EE§E> Value>

void

Value

void

boolean
boolean

int

Key

Key

Key

Key

int

Key

void

void

int
Iterable<Key>
Iterable<Key>

S ————

STO

put (Key key, Value val)

get(Key key)

delete(Key key)
contains(Key key)
1sEmpty ()

size()

min()

max ()

floor(Key key)
ceiling(Key key)
rank (Key key)
select(int k)
deleteMin()
deleteMax()

size(Key lo, Key hi)
keys(Key 1o, Key hi)
keys()

create an ordered symbol table
put key-value pair into the table
(remove key from table if value is nu11)

value paired with key
(nu11 if key is absent)

remove key (and its value) from table
is there a value paired with key?

is the table empty?
number of key-value pairs

smallest key

largest key

largest key less than or equal to key
smallest key greater than or equal to key
number of keys less than key

key of rank k

delete smallest key

delete largest key
number of keys in [10..hi]

keys in [1o..hi], in sorted order

all keys in the table, in sorted order

23

Binary search: ordered symbol table operations summary

sequential binary

search search

insert / delete

floor / ceiling

ordered iteration

order of growth of the running time for ordered symbol table operations

24

A 1 g() I 1 { h Ims ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

3.2 BINARY SEARCH TREES

» BSTs
» deletion

» ordered operations (optional)

3.2 BINARY SEARCH TREES

» BSTs

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List
* Slow to find items we want (even though we’re in order)

— (W)= —(O——E—(—(©

27

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List
* Slow to find items we want (even though we’re in order)
* Adding (random) express lanes: Skip list (won’t discuss in 226)

— (A= —(O—0)—(—()—(c)
— -

28

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST
* Slow to find items we want (even though we’re in order)
 Move pointer to middle: Can’t see earlier elements

(WD—(&—() 'é (&) —(©)

29

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST
« Slow to find items we want (even though we’re in order).
* Pointer in middle, flip left links: Search time is halved.

(W) é {()—(—(©)

30

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

« Slow to find items we want (even though we’re in order).
* Pointer in middle, flip left links: Search time is halved.

* Can do better: Dream big!

D O———@

31

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

« Slow to find items we want (even though we’re in order).
* Pointer in middle, flip left links: Search time is halved.

* Allow every node to make big jumps.

D O ——@

32

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

« Slow to find items we want (even though we’re in order).
* Pointer in middle, flip left links: Search time is halved.

* Allow every node to make big jumps.

D O ——@

33

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

« Slow to find items we want (even though we’re in order).
* Pointer in middle, flip left links: Search time is halved.

* Allow every node to make big jumps.

—G—® N\ O—@

34

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:
 Empty.

 Two disjoint binary trees (left and right).

Symmetric order. Each node has a key,
and every node’s key is:
* Larger than all keys in its left subtree.

 Smaller than all keys in its right subtree.

root

a left link /
N

QQ right child
\f/ of root

null links

a subtree

parent of A and R

key
left link
of E \
Q Q : ~_ value
@ m associated
with R

/ \

keys smaller than € keys larger than E

35

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

36

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.

insert G

37

How many BSTs?

text to 37607

How many of the figures above are BSTs?

pollEv.com/jhug

A. 1 [907808]
B. 2 [907809]

[907810]
[907811]

38

BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:
A Key and a Value.

* A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node

{
private Key key;
private Value val;
private Node Tleft, right;
public Node(Key key, Value val)

{

key;
val;

this.key
this.val

Key and Value are generic types; Key is Comparable

BST

Node———| key | val

left right
BST with smaller keys BST with larger keys

Binary search tree

39

BST implementation (skeleton)

public class BST<Key extends Comparable<Key>, Value>

{

private Node root; <«

private class Node
{ /* see previous slide */ }

public void put(Key key, Value val)
{ /* see next slides */ }

public Value get(Key key)
{ /* see next slides */ }

public void delete(Key key)
{ /* see next slides */ }

public Iterable<Key> iterator()
{ /* see next slides */ }

root of BST

40

BST search: Java implementation

Get. Return value corresponding to given key, or nul11 if no such key.

pubTic Value get(Key key) {
return get(root, key);
}

public Value get(Node x, Key key) {
if (X == null) return null;
int cmp = key.compareTo(x.key);
if (cmp < 0) return get(x.left, key); <
if (cmp > 0) return get(x.right, key);
if (cmp == 0) return x.value;

don’t write if

statements like
this! Use else

instead!

This code is like
this to match the
pseudocode on
the board.

Cost. Number of compares is equal to 1 + depth of node.

41

BST search: Java implementation

Get. Return value corresponding to given key, or nul11 if no such key.

public Value get(Key key) {
return get(root, key);

}

public Value get(Node x, Key key) {
if (x == null) return null;

int cmp = key.compareTo(x.key);

if (cmp < 0) return get(key, x.left);
else if (cmp > 0) return get(key, x.right);
else return x.value;

Cost. Number of compares is equal to 1 + depth of node.

42

BST search: Java implementation

Style warning. Don’t be afraid to rely on your base cases!

public Value get(Key key) {
return get(root, key);

}

public Value get(Node x, Key key) {
int cmp = key.compareTo(x.key);

if (cmp < 0)

if (x.left == null) return null; <

else return get(key, x.left);
if (cmp > 0)

if (x.right == null) return null;

else return get(key, x.right);
else return x.value;

/

KdTree. This will be very important for assignment 5 (due after break)!

don’t do this!

43

BST search: Java implementation

[terative version.
* More intuitive for novices.
 Slightly better performance.
» Harder to prove correctness for experts.
« Much more complex code for fancier trees (stay tuned).

public Value get(Key key)
{

Node x = root;
while (x != null)

{
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = X.right;
else return x.val;
}

return null;

44

BST insert

Put. Associate value with key.

Search for key, then two cases:
« Key in tree = reset value.
« Key not in tree = add new node.

public void put(Key key, Value val) {
put(root, key, val);

private Node put(Node x, Key key, Value val)
{
}

inserting L

search for L ends 7

at this null link

create new node —» @
N
/7

reset links
on the way up

Insertion into a BST

45

BST insert: Java implementation

Put. Associate value with key.

public void put(Key key, Value val)
{ root = put(root, key, val); }

private Node put(Node x, Key key, Value val)

{

if (x == null) return new Node(key, val);
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else x.value = val;
return Xx;

¥

Cost. Number of compares is equal to 1 + depth of node.

46

Tree shape

« Many BSTs correspond to same set of keys.
« Number of compares for search/insert is equal to 1 + depth of node.

best case typical case worst case

Remark. Tree shape depends on order of insertion.

47

BST insertion: random order visualization

Ex. Insert keys in random order.

N =255

max = 16
avg = 9.1
opt=7.0

= e

48

Sorting using a BST

Proposed sort for arbitrary data.

* Insert all items into a binary search tree.

e Print out the tree in order (takes N time, algorithm in a few slides).

pollEv.com/jhug text to 37607

What is the runtime of this sort? (May be more than one right answer)

OCN Tog N): Always runs in N Tog N time or Tless. 907734

O(N2): Always runs in N2 time or Tess. 907735

QCN Tog N): Always runs in N log N time or more. 907736

©(N log N): Always runs in exactly N Tog N time. 907737
best case typical case worst case

Name for this sort?
Quicksort!

49

Correspondence between BSTs and quicksort partitioning

0O 1 2 3 4 5 6 7 8 9 1011 12 13
P S E UDOMYTH I CA L
P S E UDOMYTH I CA L
H L EADUOMCI|I P T Y U S
b CEAHOMIL I
A C D E
A C
C
E
I M L O
I M L
L M
L
S T U Y
S
U
A CDEMH I L MOZPS TUY

Remark. Correspondence is 1-1 if array has no duplicate keys.

50

BSTs: mathematical analysis

Proposition. If Ndistinct keys are inserted into a BST in random order,
the expected number of compares for a search/insert is ~2 In N.

Pf. 1-1 correspondence with quicksort partitioning (optional: see recurrence
relation in book for full proof).

Proposition. [Reed, 2003] If Ndistinct keys are inserted in random order,

expected height of tree is ~4.311 In V.
How Tall is a Tree?

Bruce Reed
CNRS, Paris, France

reed@moka.ccr.jussieu.fr

ABSTRACT

Let H, be the height of a random binary search tree on n
nodes. We show that there exists constants o = 4.31107 ...
and B8 = 1.95... such that E(H,) = alogn — Bloglogn +
O(1), We also show that Var(H,) = O(1).

But... Worst-case height is N.

(exponentially small chance when keys are inserted in random order)

51

ST implementations: summary

guarantee average case :
ordered operations

implementation
: : : ops? on keys
search insert search hit insert

sequential search
q _ N N N/2 N no equals()
(unordered list)
binary search Ig N N Ig N N/2 s compareTo()
(ordered array) g g v
BST N N 1.39IgN 1.391IgN next compareTo()

/

Why don’t we just shuffle to ensure probabilistic guarantee of height 4.311 In N?

3.2 BINARY SEARCH TREES

» deletion

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

ST implementations: summary

guarantee average case

ordered operations

implementation : :
: search : iteration? on keys
search | insert | delete » insert delete
It

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
Ig N N N Ilg N N/2 N/2 yes compareTo()
(ordered array)

BST N N N 1.39IgN 1.391IgN yes compareTo()

Next. Deletion in BSTs.

54

BST deletion: lazy approach

To remove a node with a given key:
e Set its value to null.
* Leave key in tree to guide search (but don't consider it equal in search).

delete |

A
»

Cost. ~2In N’ per insert, search, and delete (if keys in random order),
where N’ is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

55

Hibbard deletion

To delete a node with key k: search for node t containing key k.
Case 0. [0 children] Delete t by setting parent link to null.

Example. delete(H)

Recursive Call. Much like put (), visited nodes return a new pointer used by
parent. Example: When x = I: x.left = delete(x.left, H);

Available for garbage collection

When x = H: return null;

56

Hibbard deletion

To delete a node with key k: search for node t containing key k.
Case 1. [1 child] Delete t by replacing parent link.

Example. delete(R)

Available for garbage collection

57

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children] Delete t by replacing parent link.

Example. delete(L)

pollEv.com/jhug text to 37607
Which key could we move into

L’s place and still have a BST?

[907394]
[907395]
[907396]
[907397]
[907398]
[907399]

Z U X R I »r

58

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children] Delete t by replacing parent link.

Example. delete(L)

Choosing a replacement.
 Successor: N
* Predecessor: K

59

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children] Delete t by replacing parent link.

Example. delete(L)

Choosing a replacement.
e Successor: N [by convention]
* Predecessor—K

60

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children] Delete t by replacing parent link.

Example. delete(L)

Smallest item in right subtree
Four pointers must change.
* Parent of deleted node
* Parent of successor

Available for garbage collection

o Left child of successor
* Right child of successor

61

Hibbard deletion: Java implementation

Note: this code is way too much to

digest in lecture! Look again later.

public void delete(Key key)
{ root = delete(root, key); }

private Node delete(Node x, Key key) {
if (X == null) return null;
int cmp = key.compareTo(x.key);

if (cmp < 0) x.left = delete(x.left,
else if (cmp > 0) x.right = delete(x.right,

else {
if (x.right == null) return x.left;
if (x.left == null) return x.right;

Node t = Xx;
X = min(t.right);
X.right = deleteMin(t.right);
x.left = t.left;
}
x.count = size(x.left) + size(x.right)
return Xx;

+ 1;

key) ; < search for key
key);

< no right child
< no left child

replace with

AN

AN

successor

update subtree

counts

62

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

N =150

max = 16
avg = 9.3
opt=6.4

Surprising consequence. Trees not random (!) = sqrt (V) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

63

ST implementations: summary

guarantee average case

ordered operations

implementation : :
: _ : iteration? on keys
search insert delete | search hit insert delete

sequential search
(linked list)

N N N/2 N N/2 no equals()

binary search
gN N N Ilg N N/2 N/2 yes compareTo()
(ordered array)

BST N N N 1.391gN 1.391g N @ yes compareTo()

other operations also become /N

if deletions allowed

Next lecture. Guarantee logarithmic performance for all operations.

64

3.2 BINARY SEARCH TREES

» ordered operations (optional)

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?

66

Inorder traversal

* Traverse left subtree.
 Enqueue key.
* Traverse right subtree.

public Iterable<Key> keys()
{

BST
Queue<Key> g = new Queue<Key>();

inorder(root, q); key [val
return q;

} g

Teft right

private void inorder(Node x, Queue<Key> q)

{ BST with smaller keys BST with larger keys
if (x == null) return;
. () ’ smaller keys, in order key larger keys, in order
inorder(x.left, q);
g.enqueue(x.key); ™~

all keys, in order

inorder(x.right, q);

Property. Inorder traversal of a BST yields keys in ascending order.

67

Floor and ceiling

Floor. Largest key < a given key.
Ceiling. Smallest key = a given key.

floor(G)

ceiling(Q)

Q. How to find the floor / ceiling?

68

Computing the floor of k

Case 1. [k equals the key at root]
The floor of % is k.

Case 2. [k is less than the key at root]
The floor of kis in the left subtree.

Case 3. [k is greater than the key at root]
The floor of k is in the right subtree

(if there is any key =< k in right subtree);
otherwise it is the key in the root.

finding f1oor (G)

G is less than S so

m floor (G) must be
on the left

G is greater than E so
floor (G) could be
on the right

®

/
e
floor (G)in left
subtree is nul1

®

result

69

Computing the floor

public Key floor(Key key)

{
Node x = floor(root, key);
if (x == null) return null;
return Xx.key;

}

private Node floor(Node x, Key key)
{

if (x == null) return null;
int cmp = key.compareTo(x.key);

if (cmp == 0) return Xx;
if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);

if (t !'= null) return t;
else return x;

finding f1oor (G)

G is less than S so

m floor (G) must be
on the left

G is greater than E so
floor (G) could be
on the right

®

/
e
floor(G)in left
subtree is nul1

®

result

70

Subtree counts

In each node, we store the number of nodes in the subtree rooted at that
node; to implement size(), return the count at the root.

node count

Remark. This facilitates efficient implementation of rank() and select().

71

BST implementation: subtree counts

private class Node

{

private Key key;
private Value val;

private Node left; {
private Node right; if (x == null) return 0;
private int count; return x.count;

public int size()
{ return size(root); }

private int size(Node x)

ok to call

\ } when x is null

\

number of nodes in subtree

private Node put(Node x, Key key, Value val)

{

if (x == null) return new Node(key, val);
int cmp = key.compareTo(x.key);

if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else x.val = val;

x.count = 1 + size(x.left) + size(x.right);
return Xx;

72

Rank

Rank. How many keys < k?

Easy recursive algorithm (3 cases!)

node count

public int rank(Key key)

{

return rank(key, root); }

private int rank(Key key, Node x)

{

1f (x == null) return 0;
int cmp = key.compareTo(x.key);

1f (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);

73

BST: ordered symbol table operations summary

sequential binary
search search
floor / ceiling

rank
select

ordered iteration

order of growth of running time of ordered symbol table operations

h = height of BST
(proportional to log N
if keys inserted in random order)

74

