
Optional.	
 Mark	
 along	
 the	
 line	
 to	
 show	
 your	
 feelings	
 	
 Before	
 exam:	
 [____________________].	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 on	
 the	
 spectrum	
 between	
 	
 and	
 .	
 	
 After	
 exam:	
 [____________________].	

Princeton	
 University	
 –	
 Computer	
 Science	

COS226:	
 Data	
 Structures	
 and	
 Algorithms	

	

Midterm,	
 Fall	
 2013	

	

	

This	
 test	
 has	
 8	
 questions	
 worth	
 a	
 total	
 of	
 57	
 points.	
 The	
 exam	
 is	
 closed	
 book,	
 except	

that	
 you	
 are	
 allowed	
 to	
 use	
 a	
 one	
 page	
 written	
 cheat	
 sheet.	
 No	
 calculators	
 or	
 other	

electronic	
 devices	
 are	
 permitted.	
 Give	
 your	
 answers	
 and	
 show	
 your	
 work	
 in	
 the	

space	
 provided.	
 Write	
 and	
 sign	
 the	
 Honor	
 Code	
 pledge	
 before	
 turning	
 in	
 the	
 test.	

	

“I	
 pledge	
 my	
 honor	
 that	
 I	
 have	
 not	
 violated	
 the	
 Honor	
 Code	
 during	
 this	
 examination.”	

	

	

	

	

	

	

	

Name:	

	

Login	
 ID:	
 	

	

Exam	
 Room:	
 	
 Friend	
 101	

	
 	
 Friend	
 109	

	
 	
 CS	
 105	

	
 	
 	

	

	

	

P01	
 Guna	
 F	
 9	
 	
 P03A	
 Debbie	
 F	
 11	
 	
 	
 	
 	

P02	
 Guna	
 F	
 10	
 	
 P04	
 Debbie	
 F	
 1230	
 	
 	
 	
 	

P02A	
 Tengyu	
 F	
 10	
 	
 P04A	
 Ruth	
 F	
 1230	
 	
 	
 	
 	

P03	
 Bob	
 F	
 11	
 	
 	
 	
 	
 	
 	
 	
 	

	

Tips:	
 	

• There	
 may	
 be	
 partial	
 credit	
 for	
 incomplete	
 answers.	
 Write	
 as	
 much	
 of	
 the	

solution	
 as	
 you	
 can,	
 but	
 bear	
 in	
 mind	
 that	
 we	
 will	
 deduct	
 points	
 if	
 your	

answers	
 are	
 more	
 complicated	
 than	
 necessary.	

• There	
 are	
 a	
 lot	
 of	
 problems	
 on	
 this	
 exam.	
 Work	
 through	
 the	
 ones	
 with	
 which	

you	
 are	
 comfortable	
 first.	
 Do	
 not	
 get	
 overly	
 captivated	
 by	
 interesting	
 design	

issues	
 or	
 complex	
 corner	
 cases	
 you’re	
 not	
 sure	
 about.	

• On	
 all	
 design	
 problems,	
 you	
 may	
 assume	
 the	
 uniform	
 hashing	
 assumption	

unless	
 otherwise	
 stated.	

• Not	
 all	
 information	
 provided	
 in	
 a	
 problem	
 may	
 be	
 useful.	
 	

	

	
 Score	
 	
 Score	

0	
 	
 5	
 	

1	
 	
 6	
 	

2	
 	
 7	
 	

3	
 	
 8	
 	

4	
 	
 	
 	

Sub	
 1	
 	
 Sub	
 2	
 	

Total	
 	
 	
 	
 	
 	
 	
 /57	

 PRINCETON UNIVERSITY
	

	
 2	

0. So it begins. (1 point). Write your name and Princeton NetID on the front page. Circle
the exam room. Circle your precept. Enjoy your free point.

1. Union Find (6 points).

(a) Which of the following could be the result of weighted quick union on a set of 10
 items? For arrays that could possibly occur, write “P” for possible in the blank
 provided. For arrays that could not occur, write “I” for impossible.

 i: 0 1 2 3 4 5 6 7 8 9

------- id[i]: 0 1 2 1 1 8 6 7 8 9

------- id[i]: 4 4 1 0 8 0 0 4 6 4

------- id[i]: 9 9 3 0 0 2 8 6 8 9

------- id[i]: 5 5 5 9 5 9 8 2 9 9

(b) Suppose we have a union find object of size N that utilizes weighted quick union
 with path compression. Assuming this object is initially empty, suppose we next
 perform 𝑁! random union operations on this union find object. After all of these
 union operation are complete, we perform connected queries for all ~𝑁!/2 pairs
 of items. Give the tree height of the resulting data structure in big theta notation
 (same as order of growth).

COS 226 MIDTERM, FALL 2013

	
 3	

2. Analysis of Algorithms (5 points).

Consider the Java code below, which identifies all unique words in an input file.

 In in = new In(args[0]);
 String[] words = in.readAllStrings();
 int N = words.length;

 Queue<String> allWords = new Queue<String>();
 Arrays.sort(words);
 int i = 0;

 while (i < N) {
 String currentWord = words[i];
 allWords.enqueue(currentWord);
 int j = i + 1;
 while (j < N) {
 if (!words[j].equals(currentWord))
 break;
 j++;
 }

 i = j;
 }

(a) What is the worst case order of growth of the call to Arrays.sort in terms of N?

(b) What is the worst case order of growth for the entire code fragment in terms of N?
Consider working out a small example if you’re uncertain how to proceed.

(c) Very briefly describe a solution to this problem that requires expected linear time or
better. If you use any algs4 or java.util data types, give your answer in terms of those
data types. You do not need to write code, though you can if you find that’s the most
concise way.

 PRINCETON UNIVERSITY
	

	
 4	

3. Quicksort (6 points).

(a) Show the results after 2-way partitioning. Use the I at
the far left as your pivot (and yes, 2-way partitioning
is the standard version from lecture).

I M I W R F D T T O S D E E P

(b) What is the order of growth of quicksort for each of the situations below? You
may use answers more than once.

----- Worst case if all keys are equal for 2-way quicksort.

----- Worst case if all keys are equal for 3-way quicksort.

----- Best case if all keys are equal for 2-way quicksort

modified so that we do not stop on equal keys.

----- Best case if all keys are unique for 2-way quicksort

modified so that we do not stop on equal keys.

A. Θ(𝑁)

B. Θ 𝑁 lg𝑁

C. Θ 𝑁!

D. Θ 𝑁!

E. None of these.

COS 226 MIDTERM, FALL 2013

	
 5	

4. Heaps and Priority Queues (5 points).

Consider the min heap below.

(a) Delete the minimum item, and give the array representation of the resulting heap.

(b) Consider the 8puzzle assignment. If S was the number of search nodes in your

MinPQ at the time of insertion, what was the best case time required to insert an
additional search node?

(c) What was the worst case time required to insert an additional search node? Keep in
mind that MinPQ is implemented with an array, and the size of a MinPQ is
unbounded.

F

E

G H

C

B

E

F

D

J X

E

Z W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-

Θ 1 Θ log 𝑆 Θ 𝑆 	
 Θ 𝑆 log 𝑆 Θ 𝑆! Θ 𝑆!𝑙𝑜𝑔𝑆! Θ 𝑆!

Θ 1 Θ log 𝑆 Θ 𝑆 	
 Θ 𝑆 log 𝑆 Θ 𝑆! Θ 𝑆!𝑙𝑜𝑔𝑆! Θ 𝑆!

 PRINCETON UNIVERSITY
	

	
 6	

5. Left Leaning Red Black BSTs (7 points).

(a) We use red links when inserting in order to emulate the addition of a key to an
 existing node in a 2-3 tree, forming a 3 node or a 4 node. We then use elementary
 LLRB operations (color-flipping, left rotation, right rotation) to emulate the
 process of splitting a 4-node. In the worst case, how many elementary LLRB
 operations must we complete to emulate a single 4-node split? Do not
 consider cascading splits in your answer.

(b) Consider the integer keys 1, 2, and 3. Give an order of insertion for these three
 keys into an initially empty tree that causes the worst case given in part a.

(c) For each of the situations below in a valid LLRB tree, list whether the node is red
 or black. Recall that a node’s color is the same as the link connected to its parent.

----- The largest key in a tree with more than one node.

----- The smallest key in a tree with more than one node.

----- A node whose parent is red.

----- A node whose children are the same color.

----- A freshly inserted node after the insertion operation

is completed.

A. Red

B. Black

C. Either red or
black

COS 226 MIDTERM, FALL 2013

	
 7	

6. Hash Tables (9 points).

Consider a symbol table that uses strings containing only the digits 0-9 as keys, and
uses single characters as values. Suppose that the hashCode() of these strings is given
simply by the sum of their digits, e.g. the hashCode() of “342” is 3+4+2=9.

(a) Given a hash table of initial size 5,

convert each hashCode() into an index
using the modulus operator. Fill in the
index column of the table to the
right. The first two indices have been
filled in for you.

(b) Draw	
 the	
 table	
 that	
 results	
 if	
 the	
 six	
 keys	
 above	
 are	
 inserted	
 into	
 the	
 symbol	

table	
 and	
 we	
 use	
 separate	
 chaining	
 to	
 resolve	
 collisions.	
 You	
 may	
 assume	
 that	

the	
 table	
 does	
 NOT	
 resize	
 during	
 these	
 insertions.

	

	

	

	

	

	

	

	

	

	

(c) Suppose we now insert the key-value pair (“81”, G), and that this insert results in

resizing the table to size 10. What is the size of the longest linked list after insertion is
complete?

Key Value hashCode() Index
“13” A 4 4
“15” B 6 1
“2” C 2
“34” D 7
“16” E 7
“100” F 1

0
1
2
3
4

 PRINCETON UNIVERSITY
	

	
 8	

(d) Give a set of 4 String keys which, when inserted into an empty tree, result in only a
single linked list of 4 nodes using the hash function described on the previous page.

(e) Assuming the uniform hashing assumption is true and that we resize such that the
number of items is never more than 5 times the number of bins, would we expect to
see a noticeable performance improvement if we used LLRBs instead of linked lists
to store items with the same hash value? Why or why not?

(f) What is the order of growth of the worst case runtime for a single insertion if we’re

using a separate chaining hash table with resizing? Give your answer in terms of N,
the number of items in the hash table, and circle your answer from the list below. You
may not make the uniform hashing assumption.

	

Θ 1 Θ log N Θ
𝑙𝑜𝑔𝑁

𝑙𝑜𝑔𝑙𝑜𝑔𝑁 Θ 𝑁 	
 Θ 𝑁log N Θ 𝑁
𝑙𝑜𝑔𝑁

𝑙𝑜𝑔𝑙𝑜𝑔𝑁 	
 Θ 𝑁!

COS 226 MIDTERM, FALL 2013

	
 9	

7. Sorting (9 points).

(a) If we start with the array 6 1 14 10 5 12 11 9, which sorting algorithms
will encounter 1 5 6 10 14 12 11 9 during the sorting process?

If the sorting algorithm will encounter the second array at any point in the sorting
process, write “Yes” in the blank provided. Otherwise, write “No”.

----- Insertion sort
----- Selection sort
----- 2-way quicksort (no shuffling, using leftmost item as pivot)
----- Mergesort (top down)
----- Heapsort

For formatting reasons, there’s all this extra space. Perhaps you can draw something
down here in this area if you finish early?

 PRINCETON UNIVERSITY
	

	
 10	

(b) Awaking drenched in sweat one night, you clearly see your path to fame and fortune.
You will build a robotic rhinoceros and tour the country singing songs about nature to
children, who will be allowed to play and interact with the rhinoceros. While a real
rhinoceros would be too dangerous, you believe a robotic rhinoceros can be kept in
check. In each of the situations below, which sort would you use? In all cases, assume
memory is not an issue, and that the goal is to minimize run time so that the rhino can
react as quickly as possible to any potential trouble. Answers may be used many times.

----- The rhinoceros is outfitted with a large number of
 sensors, each of which generates objects of type
 Observation. Observations include many instance
 variables, including importance, timestamp,
 pressure, temperature, light intensity, etc. These
 are placed in an unsorted array, and every time
 1000000 Observations are generated, they are
 delivered to a central processing unit that sorts
 the Observations by the importance field, which
 is of type double. What sort should you use to
 minimize the run time required to sort all
 Observations by importance?

----- Due to some close calls, you’re going to refactor

the sorting process to deal with a rare but
dangerous situation where some Observations are
generated with an incorrect importance value.
For engineering reasons not described here, you
can detect these by sorting by the timestamp and
importance of each Observation.

 Instead of importance, you first want to sort by

the timestamp of each Observation. The
timestamp is of a comparable type called
DateTime. What sort should you use to minimize
the run time required to sort all 1000000
Observations by timestamp?

----- After sorting by timestamp, you want to sort by

importance such that all the objects of the same
timestamp stay clustered. What sort should you
use to minimize the run time while maintaining
this clustering?

----- You iterate through the array, update the

importance of the very rare bad Observations
with a new value, and sort once more. What sort
do you use to put items in order of importance
while minimizing run time?

A. Quicksort

B. Mergesort

C. Insertion sort

D. Selection sort

E. Knuth shuffle

COS 226 MIDTERM, FALL 2013

	
 11	

8. Extrinsic Max PQ (10 points)

An ExtrinsicMaxPQ is a priority queue that allows the programmer to specify the priority
of an object independent of the intrinsic properties of that object. This is unlike the
MaxPQ from class, which assumed the objects were comparable and used the compare
method to establish priority. You may assume the Items are comparable.

public class ExtrinsicMaxPQ<Item extends Comparable<Item>> {
 ExtinsicMaxPQ() //do not implement
 void put(Item x, int priority)
 Item delMax()
}

If an Item already exists in the priority queue, then its priority is changed instead of
adding another item. All operations should complete in amortized logarithmic time in
the worst case. Your ExtrinsicMaxPQ should use memory proportional to the number
of items. For a small amount of partial credit, you may assume that no Item’s
priority is ever changed (i.e. no item is inserted twice).

Example:
put(“cat”, 12) // cat is inserted with priority 12
put(“dog”, 10)
put(“swimp is a raccoon who enjoys fries and does not like to eat dirt”, 11)
put(“dog”, 15) // dog’s priority is changed to 15
delMax() // deletes dog, which has priority 15, cat is now max
put(“fish”, 20) // fish is inserted, and is now max
put(“fish”, 11) // fish’s priority is reduced to 11, cat is again max
delMax() // removes cat (priority 12), either swimp or fish now max
delMax() // removing either swimp or fish is OK, both priority 11

On the next page, follow the prompts to give a crisp and concise English description of
your data structure and how the put() and delMax() operations are implemented. Your
answer will be graded on correctness, efficiency, and clarity. Feel free to use the space
below to work, but be aware that it will not be considered for grading.

 PRINCETON UNIVERSITY
	

	
 12	

• Concisely describe the data structure(s) you use to implement ExtrinsicMaxPQ. If

you use a common implementation of some useful data type, specify precisely what
you’re using (e.g. linear probing hash set of integers, resizing array based queue of
doubles, separate chaining based symbol table that maps strings to queues of doubles,
etc.). If you create a helper class (e.g. SearchNodes from 8puzzle), list its instance
variables. Do not describe how the data structures change when calls are made to
the put() and delMax() methods (such descriptions come later on this page).

Also draw a diagram of your data structure(s) after the following calls:
put(“dog”, 12)
put(“cat”, 15)
put(“laser”, 7)
put(“jello”, 9)
put(“cat”, 8) //ignore if doing partial credit
put(“jello”, 20) //ignore if doing partial credit
delMax()

• Describe precisely how your data structure(s) change when put() is called! If there are

different cases, make sure to list exactly what happens in each case. You should give
your answer in terms of operations discussed in class (i.e. do not describe how things
like resizing, sinking, swimming, hash table insertion, etc. work).

• Describe precisely how your data structure(s) change when delMax() is called.

