
Optional.	 Mark	 along	 the	 line	 to	 show	 your	 feelings	 	 Before	 exam:	 [L____________________J].	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 on	 the	 spectrum	 between	 L	 and	 J.	 	 After	 exam:	 [L____________________J].	

Princeton	 University	 –	 Computer	 Science	
COS226:	 Data	 Structures	 and	 Algorithms	
	
Final	 Exam,	 Fall	 2013	
	
	
This	 test	 has	 12	 questions	 worth	 a	 total	 of	 91	 points.	 The	 exam	 is	 closed	 book,	
except	 that	 you	 are	 allowed	 to	 use	 a	 one	 page	 written	 cheat	 sheet.	 No	 calculators	 or	
other	 electronic	 devices	 are	 permitted.	 Give	 your	 answers	 and	 show	 your	 work	 in	
the	 space	 provided.	 Write	 and	 sign	 the	 Honor	 Code	 pledge	 before	 turning	 in	 the	 test.	
	
“I	 pledge	 my	 honor	 that	 I	 have	 not	 violated	 the	 Honor	 Code	 during	 this	 examination.”	
	
	
	
	

	
	
	

Name:	
	

Login	 ID:	 	
	
	 	 	
	 	 	
	 	 	
	

	
	
P01	 Guna	 F	 9	 	 P03A	 Debbie	 F	 11	 	 	 	 	
P02	 Guna	 F	 10	 	 P04	 Debbie	 F	 1230	 	 	 	 	
P02A	 Tengyu	 F	 10	 	 P04A	 Ruth	 F	 1230	 	 	 	 	
P03	 Bob	 F	 11	 	 	 	 	 	 	 	 	

Jan 22: 653e 10f3 8824
Tips:	 	

• There	 may	 be	 partial	 credit	 for	 incomplete	 answers.	 Write	 as	 much	 of	 the	
solution	 as	 you	 can,	 but	 bear	 in	 mind	 that	 we	 will	 deduct	 points	 if	 your	
answers	 are	 more	 complicated	 than	 necessary.	

• There	 are	 a	 lot	 of	 problems	 on	 this	 exam.	 Work	 through	 the	 ones	 with	 which	
you	 are	 comfortable	 first.	 Do	 not	 get	 overly	 captivated	 by	 interesting	 design	
issues	 or	 complex	 corner	 cases	 you’re	 not	 sure	 about.	

• On	 all	 design	 problems,	 you	 may	 assume	 the	 uniform	 hashing	 assumption	
unless	 otherwise	 stated.	

• Not	 all	 information	 provided	 in	 a	 problem	 may	 be	 useful.	 	
	

	 Score	 	 Score	
0	 	 7	 	
1	 	 8	 	
2	 	 9	 	
3	 	 10	 	
4	 	 11	 	
5	 	 12	 	
6	 	 	 	
Sub	 1	 	 Sub	 2	 	
Total	 	 	 	 	 	 	 /92	

 PRINCETON UNIVERSITY
	

	 2	

0. So it begins. (1 point). Write your name and Princeton NetID on the front page. Circle
your precept. Enjoy your free point.

1. TSTs. (6 points)

Consider the TST below. Values associated with a node (if any) are shown to the left of
the node.

(a) List the 8 strings in the TST in alphabetical order.

(b) Give an example of a minimum length string that will increase the height of the
TST. Recall that the height is the maximum number of links that must be
traversed before reaching a leaf node.

COS 226 FINAL, FALL 2013

	 3	

2. MSTs (6 points)

Consider the following edge-weighted graph with 10 vertices and 16 edges. The edge
weights are distinct integers between 1 and 16.

(a) Complete the sequence of edges in the MST in the order that Kruskal’s algorithm
includes them (by specifying their edge weights).

 1
---- ---- ---- ---- ---- ---- ---- ---- ----

(b) Suppose we add a single constant k to every edge weight (i.e. all edges are
increased by the same amount). At most, how many of the nine edges in the MST
can change?

(c) Consider two vertices in an undirected graph. Is the shortest path between two

vertices always part of the MST? If so, explain why. If not, provide a counter-
example.

 PRINCETON UNIVERSITY
	

	 4	

3. String sorting (10 points)

(a) The column on the left is the original input of strings to be sorted; the column on
the right is the strings in sorted order; the other columns are the contents at some
intermediate step during one of the algorithms listed below. Match up each
algorithm by writing its number under the corresponding column. Numbers may
be used more than once.

HOWD ACEF FARM TOHA ACEF ISAF ACEF YAND ACEF
YAND ANDD ACKS WELC DINO ETAS ACKS TAND ACKS
WELC ACKS ETAS HOWD FARM ANDD ANDD MANS ANDD
OMET DINO ENJO YAND HOWD ACEF DINO FARM DINO
OTHE ENJO ANDD ANDD ISAF OMET ENJO SAUR ENJO
DINO ETAS DINO TAND OMET TOHA ETAS ACEF ETAS
SAUR FARM ACEF OTHE OTHE OTHE FARM ACKS FARM
FARM HOWD HOWD ISAF SAUR ORHU HOWD WELC HOWD
THIS ISAF THIS ACEF THIS THIS INOS NGOU INOS
ISAF INOS ISAF UNPL UNPL ENJO ISAF THIS ISAF
UNPL MANS UNPL FARM WELC ACKS MANS DINO MANS
ACEF NGOU SAUR YSOM YAND WELC NGOU OMET NGOU
ORHU OMET ORHU TYSN ANDD YAND OMET ANDD OMET
MANS OTHE MANS DINO INOS TAND ORHU ENJO ORHU
ANDD ORHU OTHE ENJO MANS DINO OTHE INOS OTHE
INOS SAUR INOS SAUR NGOU MANS SAUR UNPL SAUR
TOHA THIS TOHA THIS ORHU YSOM THIS TOHA TAND
NGOU TOHA NGOU MANS TOHA INOS TOHA HOWD THIS
TAND TAND TAND INOS ACKS NGOU TAND ORHU TOHA
ENJO TYSN OMET ETAS ENJO UNPL TYSN ISAF TYSN
YSOM UNPL YSOM ACKS ETAS FARM UNPL YSOM UNPL
ETAS WELC WELC OMET TAND TYSN WELC ETAS WELC
TYSN YAND TYSN ORHU TYSN SAUR YAND OTHE YAND
ACKS YSOM YAND NGOU YSOM HOWD YSOM TYSN YSOM
---- ---- ---- ---- ---- ---- ---- ---- ----

	 0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	

0:	 Original	 input	 	 	 	 	 	 4:	 MSD	 	 	 	 	 	 	 	 	
1:	 Sorted	 	 	 	 	 	 	 	 	 	 	 	 	 	 5:	 Quicksort	 (standard	 no	 shuffle)	
2:	 Mergesort	 	 	 	 	 	 	 	
3:	 LSD	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

COS 226 FINAL, FALL 2013

	 5	

(b) As you may recall, a Point2D is an object consisting of an x coordinate and a y
coordinate, each stored as doubles. The natural order is given by sorting first on
the y coordinate, then the x coordinate.

Sorting N Point2D objects using a divide and conquer based sort (e.g. mergesort)
requires 𝑂(𝑁 log 𝑁) time. In this problem, we’ll consider using LSD radix sort to
avoid the logarithmic factor.

One approach would be to use 128 bit digits, effectively treating the entire
Point2D object as one big digit. In this case 𝑅 = 2!"#, and 𝑊 = 1. If we use LSD
sort, sorting takes only 𝑂 𝑁 time. Concisely explain why this technique is not
practically possible.

(c) At the opposite extreme, we could treat each Point2D as a sequence of 128 binary
digits. In this case, 𝑅 = 2 (the binary alphabet), and 𝑊 = 128. As before, we can
sort our Point2Ds in 𝑂 𝑁 time. Give one reason why this might not be a good
idea.

 PRINCETON UNIVERSITY
	

	 6	

4. Regular Expressions (5 points)

(a) Suppose we use the RE-to-NFA construction technique from the book on the
regular expression (S|(L*U|G)). The match transition are shown below:

Circle all edges in the list below that appear in the 𝜖-transition digraph. Not all 𝜖-
transitions appear in the list below (e.g. 10 → 11 is a correct 𝜖-transition but it is
not in the list below). One answer is already provided for you.

0 → 1 0 → 2 0 → 3 0 → 4 0 → 9 0 → 10
2 → 3 2 → 4 2 → 5 2 → 6 2 → 9 2 → 10
3 → 4 3 → 6 3 → 7 3 → 8 3 → 9 3 → 10
4 → 3 4 → 4 4 → 5 4 → 6
5 → 4 5 → 6 5 → 7 5 → 9
7 → 3 7 → 5 7 → 8 7 → 9 7 → 10

(b) Give a valid regular expression corresponding to the NFAs below. These NFAs

were NOT generated using the procedure described in class. States without a
displayed character (i.e. empty circles) do not necessarily correspond to a
regular expression meta-character. Write your answer in the blank provided.
You are permitted to use any standard regular expression meta-character. It is also
ok if you stick to the basic metacharacters: () * |

Epsilon transitions are shown with dotted lines. First answer is provided for you.

COS 226 FINAL, FALL 2013

	 7	

5. Substring Search (8 points)

(a) Construct the KMP DFA that matches the string BAABBAABB.

 0 1 2 3 4 5 6 7 8
A
B 1
s B A A B B A A B B

(b) Suppose that you run Boyer-Moore as discussed in class on the text
GULLSSSSTLOSTSLUGSUG to search for the pattern SLUGS. Give the trace of
the algorithm in the grid below, circling the characters in the pattern that get
compared with the text.

G U L L S S S S T L O S T S L U G S U G
S L U G S

(c) Suppose we try to modify our substring matching algorithms so that any
permutation of the characters in a pattern will be accepted as a match. For
example, suppose our pattern is “SLUGS”. In this case, “SUGLS” and “GSLUS”
will be considered a match, but “SSSSS” will not.

Concisely explain why the KMP-DFA technique is poorly suited to the job of
finding permutations of a pattern.

 PRINCETON UNIVERSITY
	

	 8	

(d) Bonus problem (2 pts): Suppose we modify Boyer-Moore to match any
permutation. The new string comparison method will work as follows: Initialize
an array of length 26, with one entry corresponding to each letter in English. For
example, for “SLUGS”, we store the number 1 in position G, 1 in position U, 2 in
position S, and 1 in position L, and 0 in every other position. When scanning the
text, decrement the appropriate letter in the array. If any entry becomes negative
we have a mismatch. For example, for the first substring compare in the table at
the bottom of this page, S, S, U, and finally A would be decremented. The
compare method would notice that A was negative, indicating a mismatch.

On a mismatch, the pattern is then moved X positions to the right, and for every
examined text character skipped, the appropriate position in the array is
incremented by 1. For example, assume that X=3 positions, then we’re throwing
away G, A, and U. Since A and U were decremented, we have to undo these
decrement operations, and add one back to both A and U. S would remain at 0
(since neither S was skipped).When the second search began (assuming X=3), our
counters would be G=1, U=1, L=1, S=0, everything else 0. X=3 may not be the
optimal answer and is provided only as an example.

Give an optimal rule for deciding how much to skip. If you have multiple cases,
describe each. You are not required to use the chart on the bottom of this page to
design your rule, but it might be helpful. Be as concise as possible.

G A U S S L I S T L O S T S L U G S U G
S L U G S For this first compare, S decreases by 2, U and A dec. by 1

COS 226 FINAL, FALL 2013

	 9	

6. Directed Graphs (9 points).

(a) Give the reverse postorder of the graph below when using DFS. Start from vertex
M. Assume the adjacency lists are in sorted lexicographic order. For example,
follow the edge 𝐿 → 𝐴 before following 𝐿 → 𝑁.

---- ---- ---- ---- ---- ---- ---- ---- ---- ----

(b) Consider the following algorithm for finding the shortest ancestral path (from the
WordNet assignment) of two vertices A and B: Use BFS, but maintain two queues
of vertices instead of one. One queue starts with only vertex A, and one queue
starts with only vertex B. Each iteration of the algorithm, dequeue a vertex v from
the A queue, and mark v by A if it has not already been marked by A, and finally
enqueue all of v’s neighbors into the A queue. Then repeat the same thing but
with the B queue. Repeat this process of alternating between the A queue and B
queue, stopping as soon as a vertex is found that is marked with both an A and a
B, and return that vertex as the shortest ancestor.

Is this algorithm correct? If so, provide an intuitive explanation for why (you do
not need to provide a full proof). If not, give a small counter-example.

 PRINCETON UNIVERSITY
	

	 10	

(c) Consider the DFS-based code below, intended to find the longest path from some

starting vertex in an edge weighted digraph assuming edge weights are integers.

 private void dfsLongestPath(EdgeWeightedDigraph G, int v, int distToV) {
 marked[v] = true;
 distTo[v] = distToV;
 edgeTo[v] = v;
 for (DirectedEdge e : G.adj(v)) {
 int to = e.to();
 if (!marked[to]) dfsLongestPath(G, to, distTo[v] + e.weight());
 }
 }

Suppose we search from some vertex s using the call dfsLongestPath(G, s, 0).
For each of the situations below, write “Yes” if this call is guaranteed to find the
longest path to every vertex for any graph obeying the stated property, and write
“No” if it is not guaranteed to do so.

----- The graph is a tree.

----- The graph contains no cycles.

----- There are no cycles containing the target vertex.

----- All edge weights are positive.

----- All graphs.

This area of this page is a designated FUN ZONE.

COS 226 FINAL, FALL 2013

	 11	

7. Reductions (6 points)

For each of the two reductions below, circle the appropriate order of growth and state
whether or not the algorithm is correct.

(a) To find the longest path in a weighted directed acyclic graph with V vertices and
E edges, negate every edge and use the DAG shortest paths algorithm. You may
not make any assumptions about the weights on the original graph.

i. Is this algorithm correct for all inputs (circle one):

Yes No

ii. What is the worst case runtime to complete this algorithm, including the time to
perform the reduction as a function of V and E (circle one):

(b) Given a sliding puzzle on an NxN grid (e.g. an 8 puzzle is where N=3), build a
graph where each vertex represents exactly one state of the puzzle. Add an edge
between any two reachable states. After constructing the graph, run BFS starting
from the initial state. A shortest solution to the sliding-puzzle is found as soon as
the goal state of the puzzle is reached.

i. Is this algorithm correct for all inputs (circle one):

Yes No

ii. What is the worst case runtime to complete this algorithm, including the time to
perform the reduction as a function of the grid size (circle one):

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 Here	 polynomial	 means	 the	 worst	 case	 runtime	 is	 Θ 𝑁! 	 for	 some	 k	 >	 2	 (worse	 than	 quadratic).	

Constant Logarithmic Linear Linearithmic Quadratic Polynomial1 Exponential

Constant Logarithmic Linear Linearithmic Quadratic Polynomial1 Exponential

 PRINCETON UNIVERSITY
	

	 12	

8. Shortest paths (6 points)

Consider the directed weighted graph below.

(a) Complete the table of edgeTo[] and distTo[] values immediately after the first five
vertices (A, H, C, D, G) have been relaxed during the execution of Dijkstra’s
algorithm. Some values have already been provided for you.

v edgeTo[] distTo[]
A null 0.0
B
C A 5.0
D A 5.0
E
F
G D 10.0

H A 2.0

(b) What vertex will be relaxed next by Dijkstra’s algorithm?

(c) Fill in the table of edgeTo[] and distTo[] values after the 6th vertex you listed in

part b is relaxed – you are only required to list any values that have changed since
part a (i.e. leave rows blank which did not change).

v edgeTo[] distTo[]
A
B
C
D
E
F
G

H

COS 226 FINAL, FALL 2013

	 13	

(d) A modified version of Dijkstra’s algorithm with two additional lines of code is

shown below (annotated in bold). Given a graph G for which Dijkstra’s algorithm
returns a correct result, will this version of Dijkstra’s algorithm always return the
correct result G? Give an intuitive reason for your answer (you do not need to
provide a full proof).

 public DijkstraSP(EdgeWeightedDigraph G, int s) {

 distTo = new double[G.V()];
 edgeTo = new DirectedEdge[G.V()];
 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 // relax vertices in order of distance from s
 pq = new IndexMinPQ<Double>(G.V());
 pq.insert(s, distTo[s]);
 while (!pq.isEmpty()) {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
 for (DirectedEdge e : G.edges()) // G.edges() returns an Iterable of
 relax(e); // every DirectedEdge in G.
 }
 }

 PRINCETON UNIVERSITY
	

	 14	

9. LZW Compression (5 points)

For each of the compressed bitstreams below, remark on whether that bitstream could
possibly have been generated by the LZW algorithm as discussed in class. If the
bitstream is possible, provide the original input stream recovered after decompression. If
it is not possible, use the blank to explain why.

Assume that we’re using the same parameters as are used in the booksite code, i.e. 16 bit
codewords (between 0000 and FFFF), with the first 256 codewords reserved for our
ASCII characters (between 00 and FF). 0100 is used for the end of file character, and
0101 will be the first new codeword added to the codebook. The first one has been
completed for you. Codebooks reset after each problem.

0048 0045 004C 004C 004F 0100 HELLO

004C 004F 0101 0100

005A 005A 005A 0100

004C 004F 0101 0103 0100

005A 0101 0102 0100

005A 0102 0100

COS 226 FINAL, FALL 2013

	 15	

10. MaxFlow and Reductions (11 points).

Enthusiastic celebration of a sunny day at a prominent northeastern university has
resulted in the arrival at the university's medical clinic of 169 students in need of
emergency treatment. Each of the 169 students requires a transfusion of one unit of whole
blood. The clinic has supplies of 170 units of whole blood. The number of units of blood
available in each of the four major blood groups and the distribution of patients among
the groups is summarized below.
	

Blood type A B O AB SUM
Supply 46 34 45 45 170
Demand 39 38 42 50 169

Type A patients can only receive type A or O; type B patients can receive only type B or
O; type O patients can receive only type O; and type AB patients can receive any of the
four types.

Your job in this problem is to find a maxflow formulation that determines a distribution
that satisfies the demands of a maximum number of patients.

(a) Provide edge capacities that will help solve the blood distribution problem to each
edge in the problem above. If you use any infinite weight edges, it is OK to leave
them unlabeled. Draw the edge capacities on the graph above.

 PRINCETON UNIVERSITY
	

	 16	

(b) What is the value of the max flow for the graph?

(c) Which vertices are on the t side (target side!) of the min-cut? Note: These vertices
should provide a concise description of why there is not enough blood for everyone
(sry); you need not write such an explanation, just reminding you about this neat min-
cut fact.

(d) Imagine a generalized version of the blood demand problem where we have 𝑁

distinct blood types, up to 𝑁! possible supply/demand connections, and wish to
determine whether or not there is sufficient blood for everybody. Let’s call this
problem BʟᴏᴏᴅDᴇᴍᴀɴᴅ. Suppose we are given the following information:

i. BʟᴏᴏᴅDᴇᴍᴀɴᴅ reduces to a MᴀxFʟᴏᴡ problem with a number of edges E that

grows with order 𝑁! using the technique you used in the problem above.
ii. Sleator and Tarjan have discovered an algorithm that can solve MᴀxFʟᴏᴡ in

time 𝐸! log𝐸, where E is the number of edges.
iii. Guna has found that 𝐸 log log log𝐸 is a lower bound for solving MᴀxFʟᴏᴡ,

or equivalently that MᴀxFʟᴏᴡ is Ω(𝐸 log log log𝐸).

Which of the following can you definitively infer from these three facts? Write “Yes”
for those that you can infer, and “No” for those you cannot definitively infer.

----- BʟᴏᴏᴅDᴇᴍᴀɴᴅ linear time reduces to MᴀxFʟᴏᴡ.

----- BʟᴏᴏᴅDᴇᴍᴀɴᴅ quadratic time reduces to MᴀxFʟᴏᴡ.

----- MᴀxFʟᴏᴡ provides an 𝑁! log𝑁! solution to BʟᴏᴏᴅDᴇᴍᴀɴᴅ.

----- There exists an 𝐸 log log log𝐸 solution for MᴀxFʟᴏᴡ.

----- An 𝑁! log log log𝑁! solution to BʟᴏᴏᴅDᴇᴍᴀɴᴅ would provide an order
 𝐸 log log log𝐸 solution to MᴀxFʟᴏᴡ.

----- 𝑁! log log log𝑁! is a lower bound for BʟᴏᴏᴅDᴇᴍᴀɴᴅ.

COS 226 FINAL, FALL 2013

	 17	

11. Why did we do that again? (8 points)

The following questions are intended to assess your understanding of the ideas in the
course by asking things in a slightly oblique way. They are not trick questions.

(a) Heaps and binary search trees are both types of binary trees. We stored heaps as
an array to save space. Why don’t we do the same for binary search trees?

(b) In our algorithm for building NFAs for regular expression matching, we push left
parentheses and OR symbols onto a stack. In what two specific cases do we
utilize the left parenthesis?

(c) Suppose we used a priority queue of vertices instead of a queue of vertices for

BFS. Suppose we gave each vertex a priority equal to its distTo[] from the source.
Would BFS still work? Would runtime performance be better or worse?

(d) In the Ford-Fulkerson algorithm, every time we find an augmenting path, the max
flow is increased. If all edges have integer capacity, what is the minimum increase
in flow that results from this augmenting path? How does this prove that Ford-
Fulkerson always completes on graphs whose edges all have integer capacity?

(e) In the lazy version of Prim’s algorithm for finding MSTs on an undirected
weighted graph, we add the smallest edge pointing from any vertex in the MST
unless both vertices connected by that edge are already marked (in order to avoid
cycles in the MST). In Dijkstra’s algorithm for directed graphs, we never
explicitly check to see whether the to-vertices are marked, i.e. we always relax an
edge, even if it would form a cycle. Explain why such a check is not necessary for
Dijkstra’s algorithm.

(f) In our implementation of the Huffman coding algorithm, we use a standard trie
instead of a TST in order to map from a compressed bitstream back to the original
data. Why don’t we use a TST?

 PRINCETON UNIVERSITY
	

	 18	

12. Algorithm Design (10 points)

(a) Given an edge weighted directed graph G and a source vertex s, and assuming
that all edge weights are positive, provide an algorithm for finding the second
shortest paths from s to every other vertex. In other words, you want to find
something similar to the shortest paths tree (i.e. distTo and edgeTo), except that
every path found must be the second shortest. Assume that E is greater than V.
Your algorithm should complete in 𝑂 𝑉𝐸𝑙𝑜𝑔 𝑉 time. You may use any
algorithm from class as a subroutine without writing out the details of that
algorithm.

(b) Given an unweighted directed graph and a starting vertex u, give an algorithm for
finding all vertices such that there is an odd-length path to those vertices. These
paths may involve cycles. For full credit your algorithm should complete in E+V
time. For partial credit, give an algorithm that completes in EV time.

