Fall 2013 Final Solutions (Beta Edition)

a. ID, IDD, IDDQD, IDKFA, XA, XX, XEA, XYZZY
b. IDAAAA or XDAAAA or XCAAAA, or indeed anything that is six
letters long and starts with ID, XD, or XC.

a. 1,2,3,56,7,911,12
b. None. Adding the same value to all edges does not change their
relative order, and that’s all that matters for the MST.
c. No. For example: A, B, Cin a triangle, all with weight 5. Or almost any
edge in the graph from part A that is not part of the MST.
3. String Sorting.
a. 4532343
b. Most obvious answer: Uses far too much memory (and space),
requiring count arrays of size 2128
c. Most obvious answer: While the algorithm is linear, the W adds a
large constant factor. How large? We will have WN charAt()
operations vs. somewhere around 2.78 N 1g N compareTo()
operations (or less if our points tend to be distinct). This is not quite
an apples to apples comparison, but 2.781g N is likely to be much
smaller than 128 for real data sets.
4. Regular Expressions
a. 0-1,0-32-10,3-4,3-58,4—>55-545-56,7->9
b. Weird NFAs
i. A|B
ii. (A*B)+
5. Substring Search

a. 023026702
111451189

b. (Examined characters not shown)
GIUL|L|S|S|IS|S|T|L|O|S|T|S|L|U|G|S|U|G
S|IL|U|G|S

S|IL|{U|G|S
S|ILIU|G|S
S|IL|U|G|S
S|IL|U|G|S
S|IL|U|G|S

c. Tracking permutations requires you to either create a state for any
possible permutation (factorial in size), or to create a bunch of
parallel DFAs (factorial in number, but linear in size each).

d. Solution coming soon.

6. Directed Graphs



MELTBANANA

FALSE. For example, A= B—>C—->D —>E,Z-Y->X->D,Z->E
Yes, no, no, no, no. It was also correct to say no for all problems since
edgeTo[v] = v doesn’t make sense.

7. Reductions

a.
b.

Yes, Linear.
Yes, Factorial. Since we failed to put factorial on the list of choices,
exponential was acceptable.

8. Shortest Paths

a.
b.
C.
d.

B, 30.0,C 15.0,D, 13.0

F

F, 15.0

Yes, it works fine. In fact, relaxing additional edges can never cause
any sequence of otherwise good relaxations to be suboptimal.
Relaxation only decreases distances to the target vertex. In terms of
our optimality conditions, relaxation of edge e = v — w can only
decrease distTo[w], so distTo[w] < distTo[v] + e.weight() can
never become incorrect due to any relaxation.

9. LZW compression

a. LOLO

b. Impossible, LZW would replace the second pairs of As with 0100.

c. LOLOLOL

d. Z7Z7777

e. Impossible, 102 cannot occur as the second codeword (as only one
codeword has been generated at this point).

10. Max flow

a. Supply edges are 46, 45, 45, 34. Demand edges are 39, 50, 42, 38.
Connecting edges in the middle can take any capacity larger than or
equal to the corresponding supply vertex.

b. 168

c. The O vertices, the B vertices, and t.

d. No, yes, yes, no, no, no

11. Why did we do that again?

a. Natural representations from BSTs would all suffer from flaws.
Representing in any kind of compact manner (i.e. ordered array or as
the level order traversal) would require linear time to insert.
Representing them in expanded heap-like array where the 0th element
represents the root, the 1st element the left child fo the root (if it
exists), and so forth would require tremendous amounts of space.

b. This question was not very clear. We took a wide variety of different

answers, but the intention was that when a left parenthesis is
removed from the stack, it is used to decide where to start one of the
OR arrows, as well as where to end any following *'s backwards
arrow.



c. BFS would still find shortest paths, since they would be dequeued by
total distTo order, which is the exact same as the normal order.
Performance would be either equal or worse, depending on the
priority queue implementation. Using the array-heap based
implementation from class, it would be worse, taking log time instead
of constant time to handle each insert and dequeue operation.

d. The minimum increase in flow is 1. To prove convergence, we note
that no flow can exceed any s-t cut. Since each s-t cut has a fixed
capacity, eventually the flow must exceed that cut’s capacity.

e. Aslong as edges are non-negative weight, cycles can never be shorter
than the best path found so far.

f. Since the alphabet size is only 2, there is no need to use a TST. A TST
would waste space and time (though it wouldn’t be all that hard to
implement, nor would its performance be much worse than a
standard trie).

12. Design problems

a. One was allowed to assume that all paths have distinct lengths. The
algorithm to follow works even if there are ties in path lengths, but
then the problem becomes ambiguous: if there are two paths of the
same shortest length, does one want to call one of them the shortest
and the other the second-shortest, or does one want a path of the
second-shortest length? If there are ties, the algorithm below will find
the second-shortest length, but it can be modified to find two paths of
the same length if there are such.

The idea is to run an extension of Dijkstra’s algorithm in which each
vertex v has two tentative distances, d1(v) and d2(v), which are the
two distinct shortest distances to v found so far. Critical to making
this idea work is to allow a vertex v to be reinserted in the priority
queue PQ once its actual shortest distance is known. No student
solution mentioned this. In addition to distance, we need two parent
vertices, p1(v) and p2(v), for each vertex v, which are the predecessor
of v on its tentative shortest and second-shortest paths, respectively.
Each vertex v also has a Boolean flag deleted(v) that becomes true the
first time it is deleted from the priority queue. Initially all tentative
distances are infinity except d1(s) = 0, all parents are null, all flags are
false, and the priority queue contains only s. The key of a vertex v in
the priority queue is d1(v) if deleted(v) = false, d2(v) if deleted(v) =
true.

The algorithm is as follows:



while PQ is not empty do
{delete a vertex v of minimum key from PQ
if deleted(v) = false then

else

{

{

[

[d1(v) is the key of v and is the shortest distance to v]
for each w such that (v, w) is an arc do
if di(v) + c(v, w) < di(w) then
{ di(w) = di(v) + c(v, w)
pl(w) = v
if w is not in PQ then insert w into PQ
else decrease-key(w, PQ)
[this operation restores PQ following the
decrease in the key of w]}
else if di(v) + c(v, w) > d1(w) and di(v) + c(v, w) < d2(w) then
{ d2(w) = di(v) + c(v, w)
p2(w) = v
if w is not in PQ then insert w into PQ
else decrease-key(w, PQ)}
deleted(v) = true
if d2(v) < infinity then insert v into PQ}

d2(v) is the key of v and is the second-shortest distance to v]
for each w such that (v, w) is an arc do
if d2(v) + c(v, w) < d2(v, w) then
{ d2(w) = di(v) + c(v, w)
p2(w) = v
if w is not in PQ then insert w into PQ
else decrease-key(w, PQ)}}

Once the while loop finishes, one can trace back the second shortest
path from s to v by following p2 pointers back from v as long as
d2(p2(x)) + c(p2(x), x) = d2(x), where x is the current vertex (initially
v) and then following p1 pointers until reaching s. The representation
of the second shortest paths thus consists of the shortest path tree
and a second tree, parts of which can be shared with the shortest path
tree. Each second-shortest path consists of a path in the shortest path
tree followed by a path in the second-shortest path tree.

The algorithm above runs in ElogV time with a simple PQ
implementation or in E +VlogV time with a sophisticated PQ
implementation such as a Fibonacci heap. Thus it is much faster than
required.

Note that second-shortest paths need not be simple; that is, they can
contain repeated vertices (Give an example.) If we want second-
shortest simple paths, then the algorithm above fails. (Give a
counterexample.) Instead, we can use the following algorithm, which
formed the basis of many student solutions but does not solve the
original problem as stated. (The problem statement does not exclude
simple paths.)

The idea is to compute a shortest path tree, say by Dijkstra’s
algorithm, and then delete each arc of this tree from the graph in turn,
compute shortest paths from s in the original graph with one arc



deleted, and keep track of the shortest of these paths to each vertex
that is longer than the original shortest path. This takes V runs of
Dijkstra’s algorithm and hence runs in VElogV time with a simple PQ
implementation or in VE + V2logV time with a Fibonacci heap or
similarly fast PQ implementation. (Give an example of a graph on
which this algorithm does not compute second-shortest paths if non-
simple paths are allowed.)

. There are many approaches. The conceptually simplest approach is to
run BFS, but maintain an evenQueue and an oddQueue and give each
vertex an even and odd marker. We start by marking the source as
even and enqueuing it on the evenQueue. From there, we dequeue
each vertex v from the evenQueue (only the source on the first
iteration); we then mark each of v’s neighbors as odd and enqueue
them on the oddQueue, unless they have already been marked in which
case we do nothing with v. We next do the same thing with the
oddQueue, enqueueing their neighbors as even if not marked as even,
and alternate between the two queues until both are empty.

Each vertex is enqueued and edge is used at most twice, so the
algorithm is E+V. There are many alternate formulations of this same
algorithm.

By far the most common sub-E+V solution was to only mark odd-
distance vertices (or equivalent). This algorithm is correct, but results
in V2 performance for certain graph topologies, e.g. the one shown
below. If we generalize this graph (by adding additional middle
vertices), then the vertices corresponding to A/B/C/D will be
enqueued a total of roughly V/2 times. This results in V2 runtime.




