
Princeton University
COS 217: Introduction to Programming Systems

Fall 2013 Midterm Exam Preparation

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings.
This is a non-exhaustive list of topics that were covered:

1. Number Systems
• The binary, octal, and hexadecimal number systems
• Finite representation of integers
• Representation of negative integers
• Binary arithmetic
• Bitwise operators

2. C Programming

• The program preparation process: preprocess, compile, assemble, link
• Program structure: multi-file programs using header files
• Process memory layout: text, stack, heap, rodata, data, bss sections
• Data types
• Variable declarations and definitions
• Variable scope, linkage, and duration/extent
• Constants: #define, constant variables, enumerations
• Operators and statements
• Function declarations and definitions
• Pointers; call-by-reference
• Arrays: arrays and pointers, arrays as parameters, strings
• Command-line arguments
• Input/output functions
• Text files (see King Chapter 22)
• Structures
• Dynamic memory mgmt.: malloc(), calloc(), realloc(), free()
• Dynamic memory mgmt. errors: dangling pointer, memory leak, double free
• Abstract data types; opaque pointers
• Void pointers
• Function pointers and function callbacks
• Parameterized macros and their dangers (see King Section 14.3)

3. Programming-in-the-Large
• Testing

• External testing taxonomy: boundary condition, statement, path, stress
• Internal testing techniques: testing invariants, verifying conservation properties,

checking function return values, changing code temporarily, leaving testing code intact
• General testing strategies: testing incrementally, comparing implementations,

automation, bug-driven testing, fault injection
• Debugging heuristics

• Understand error messages, think before writing, look for familiar bugs, divide and
conquer, add more internal tests, display output, use a debugger, focus on recent changes

Page 1 of 2

• Heuristics for debugging dynamic memory management: look for familiar bugs, make the
seg fault happen in a debugger, manually inspect each call of malloc(), etc., temporarily
hard-code malloc(), etc. to request a large number of bytes, temporarily comment-out
each call of free(), use Meminfo

• Building
• Separate independent paths before link
• Automated builds, dependencies, partial builds

• Performance Improvement
• When to improve performance
• Techniques for improving execution (time) efficiency
• Techniques for improving memory (space) efficiency

• Program and programming style
• Top-down design

• Data structures and algorithms
• Linked lists, hash tables, memory ownership

• Module qualities
• Separates interface and implementation, encapsulates data, manages resources

consistently, is consistent, has a minimal interface, reports errors to clients, establishes
contracts, has strong cohesion, has weak coupling

• Generics
• Generic data structures via void pointers
• Generic algorithms via function pointers, wrappers

4. Applications
• De-commenting
• Lexical analysis using finite state automata
• String manipulation
• Symbol tables, linked lists, hash tables
• Dynamically expanding arrays

5. Tools: The Unix/GNU programming environment
• Unix, Bash, Emacs, GCC, GDB, Make, Gprof

Readings

As specified by the course "Schedule" web page...

Required:
• C Programming (King): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.1, 22
• Computer Systems (Bryant & O'Hallaron): 1

Recommended:
• Computer Systems (Bryant & O'Hallaron): 2
• The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8
• Unix Tutorial for Beginners (website)
• GNU Emacs Tutorial (website)
• GNU GDB Tutorial (website)
• GNU Make Tutorial (website)
• GNU Gprof Tutorial (website)

Copyright © 2013 by Robert M. Dondero, Jr.

Page 2 of 2

	Princeton University
	COS 217: Introduction to Programming Systems
	Fall 2013 Midterm Exam Preparation
	Topics
	Readings

