Number Systems

Why Bits (Binary Digits)?

- Computers are built using digital circuits
 - Inputs and outputs can have only two values
 - True (high voltage) or false (low voltage)
 - Represented as 1 and 0
- Can represent many kinds of information
 - Boolean (true or false)
 - Numbers (23, 79, ...)
 - Characters (‘a’, ‘z’, ...)
 - Pixels, sounds
 - Internet addresses
- Can manipulate in many ways
 - Read and write
 - Logical operations
 - Arithmetic
Base 10 and Base 2

- Decimal (base 10)
 - Each digit represents a power of 10
 - $4173 = 4 \times 10^3 + 1 \times 10^2 + 7 \times 10^1 + 3 \times 10^0$

- Binary (base 2)
 - Each bit represents a power of 2
 - $10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22$

Decimal to binary conversion:
Divide repeatedly by 2 and keep remainders

12 / 2 = 6 R = 0
6 / 2 = 3 R = 0
3 / 2 = 1 R = 1
1 / 2 = 0 R = 1
Result = 1100

Writing Bits is Tedious for People

- Octal (base 8)
 - Digits 0, 1, ..., 7

- Hexadecimal (base 16)
 - Digits 0, 1, ..., 9, A, B, C, D, E, F

<table>
<thead>
<tr>
<th>Octal</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 = 0</td>
<td>0000 = 8</td>
</tr>
<tr>
<td>0001 = 1</td>
<td>1001 = 9</td>
</tr>
<tr>
<td>0010 = 2</td>
<td>1010 = A</td>
</tr>
<tr>
<td>0011 = 3</td>
<td>1011 = B</td>
</tr>
<tr>
<td>0100 = 4</td>
<td>1100 = C</td>
</tr>
<tr>
<td>0101 = 5</td>
<td>1101 = D</td>
</tr>
<tr>
<td>0110 = 6</td>
<td>1110 = E</td>
</tr>
<tr>
<td>0111 = 7</td>
<td>1111 = F</td>
</tr>
</tbody>
</table>

Thus the 16-bit binary number 1011 0010 1010 1001 converted to hex is B2A9
Representing Colors: RGB

- Three primary colors
 - Red
 - Green
 - Blue

- Strength
 - 8-bit number for each color (e.g., two hex digits)
 - So, 24 bits to specify a color

- In HTML, e.g. course “Schedule” Web page
 - Red: De-Comment Assignment Due
 - Blue: Reading Period

- Same thing in digital cameras
 - Each pixel is a mixture of red, green, and blue

Finite Representation of Integers

- Fixed number of bits in memory
 - Usually 8, 16, or 32 bits
 - (1, 2, or 4 bytes)

- Unsigned integer
 - No sign bit
 - Always 0 or a positive number
 - All arithmetic is modulo 2^n

- Examples of unsigned integers
 - 00000001 \Rightarrow 1
 - 00011111 \Rightarrow 15
 - 00100000 \Rightarrow 16
 - 00100001 \Rightarrow 33
 - 11111111 \Rightarrow 255
Adding Two Integers

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column

<table>
<thead>
<tr>
<th>Base 10</th>
<th>Base 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Sum</td>
<td>Sum</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Carry</td>
<td>Carry</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Binary Sums and Carries

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR
("exclusive OR")

AND

0100 0101 + 0110 0111
1010 1100

0100 0101
+ 0110 0111
1010 1100

69
103
172
Modulo Arithmetic

- Consider only numbers in a range
 - E.g., five-digit car odometer: 0, 1, ..., 99999
 - E.g., eight-bit numbers 0, 1, ..., 255

- Roll-over when you run out of space
 - E.g., car odometer goes from 99999 to 0, 1, ...
 - E.g., eight-bit number goes from 255 to 0, 1, ...

- Adding 2^n doesn’t change the answer
 - For eight-bit number, n=8 and 2^8=256
 - E.g., (37 + 256) mod 256 is simply 37

- This can help us do subtraction by changing it to addition…
 - Suppose you want to compute a – b
 - Note that this equals a – b + 256 = a + (256 – b)
 - How to compute 256 – b?

One’s and Two’s Complement

- What’s easy is computing 255 – b (in 8 bits)
- Because it’s 11111111 – b, so just flip every bit of b
 - E.g., if b is 01000101 (i.e., 69 in decimal)
 - 255 – b
 \[
 \begin{array}{ccc}
 1 & 1 & 1 & 1 \\
 - & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
 \end{array}
 \]
 - 255 – b = 88
 - This is the one’s complement of b; 2^n - 1 - b; just flip all the bits of b
 - But I want 2^n - b

- Two’s complement
 - Add 1 to the one’s complement
 - E.g., 256 – 69 = (255 – 69) + 1 \(\Rightarrow\) 1011 1011
Putting it All Together

• Computing “a – b”
 • Same as “a + 256 – b” (in 8-bit representation)
 • Same as “a + (255 – b) + 1”
 • Same as “a + onesComplement(b) + 1”
 • Same as “a + twosComplement(b)”

• Example: 172 – 69
 • The original number 69: 0100 0101
 • One’s complement of 69: 1011 1010
 • Two’s complement of 69: 1011 1011
 • Add to the number 172: 1010 1100
 • The sum comes to: 0110 0111
 • Equals: 103 in decimal

1010 1100
 + 1011 1011
 10110 0111

Signed Integers

How to represent negative as well as positive numbers

• Sign-magnitude representation
 • Use one bit to store the sign, (n-1) for magnitude
 • Sign bit is 0 for positive number, 1 for negative number
 • Examples
 • E.g., 0010 1100 ➔ 44
 • E.g., 1010 1100 ➔ -44
 • Hard to do arithmetic this way, so rarely used

• Complement representation
 • One’s complement
 • Flip every bit: E.g., 1101 0011 ➔ -44
 • Two’s complement
 • Flip every bit, then add 1: E.g., 1101 0100 ➔ -44
Overflow: Running Out of Room

- Adding two large integers together
 - Sum might be too large to store in the number of bits available
 - What happens?

- Unsigned integers
 - All arithmetic is "modulo" arithmetic
 - Sum would just wrap around
 - End up with sum modulo 2^n

- Signed integers
 - Can get nonsense values
 - Example with 16-bit integers
 - Sum: 10000+20000+30000
 - Result: -5536

Bitwise Operators: AND and OR

- Bitwise AND (&)
 - Mod on the cheap!
 - E.g., 53 % 16
 - … is same as 53 & 15;

- 53: 0 0 1 1 0 1 0 1
- & 15: 0 0 0 0 1 1 1 1
- 5: 0 0 0 0 1 0 1
Bitwise Operators: Not and XOR

- Not or One’s complement (~)
 - Turns 0s to 1s, and 1s to 0s
 - E.g., set last three bits to 0
 - \(x = x \& \sim 7; \)

- XOR (^)
 - 0 if both bits are the same
 - 1 if the two bits are different

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Bitwise Operators: Shift Left/Right

- Shift left (<<): Multiply by powers of 2
 - Shift some # of bits to the left, filling the blanks with 0
 - 53 \[0\ 0\ 1\ 1\ 0\ 1\ 0\ 1\]
 - 53<<2 \[1\ 1\ 0\ 1\ 0\ 0\ 0\ 0\]

- Shift right (>>): Divide by powers of 2
 - Shift some # of bits to the right
 - For unsigned integer, fill in blanks with 0
 - What about signed negative integers?
 - Can vary from one machine to another!
 - 53 \[0\ 0\ 1\ 1\ 0\ 1\ 0\ 1\]
 - 53>>2 \[0\ 0\ 0\ 0\ 1\ 1\ 0\ 1\]
Example: Counting the 1’s

- How many 1 bits in a number?
 - E.g., how many 1 bits in the binary representation of 53?

 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |

 - Four 1 bits

- How to count them?
 - Look at one bit at a time
 - Check if that bit is a 1
 - Increment counter

- How to look at one bit at a time?
 - To look at the value of the last bit: $n \& 1$
 - To check if it is a 1: $(n \& 1) == 1$, or simply $(n \& 1)$

Counting the Number of ‘1’ Bits

```c
#include <stdio.h>
#include <stdlib.h>
int main(void) {
    unsigned int n;
    unsigned int count;
    printf("Number: ");
    if (scanf("%u", &n) != 1) {
        fprintf(stderr, "Error: Expect unsigned int.\n");
        exit(EXIT_FAILURE);
    }
    for (count = 0; n > 0; n >>= 1)
        count += (n & 1);
    printf("Number of 1 bits: %u\n", count);
    return 0;
}
```
Summary

• Computer represents everything in binary
 • Integers, floating-point numbers, characters, addresses, …
 • Pixels, sounds, colors, etc.

• Binary arithmetic through logic operations
 • Sum (XOR) and Carry (AND)
 • Two’s complement for subtraction

• Bitwise operators
 • AND, OR, NOT, and XOR
 • Shift left and shift right
 • Useful for efficient and concise code, though sometimes cryptic