COS126 Number Systems Activity — Booksite 5.1

Base	Digits	#digits	"1000" in this base converted to decimal	"205" in this base converted to decimal
decimal	$0, 1, 2 \dots, 8, 9$	10	$10^3 = 1000$	$2 \times 10^2 + 0 \times 10^1 + 5 \times 10^0 = 205$
binary	0,1	2	$2^3 = 8$	n/a
hexadecimal	$0,\ldots,9,A,\ldots,F$	16	$16^3 = 4096$	$2 \times 16^{2} + 0 \times 16^{1} + 5 \times 16^{0}$ $= 2 \times 256 + 0 + 5 = 517 \text{ dec.}$
octal	0, 1, 2, 3, 4, 5, 6, 7		$8^3 = 512$	$2 \times 8^{2} + 0 \times 8^{1} + 5 \times 8^{0}$ $= 2 \times 64 + 0 \times 8 + 5 \times 1 = 133 \text{ dec.}$

Instead of "ones, tens, hundreds, ..." places, binary has "ones, twos, fours, eights, ..." places.

- 1. What is the binary integer 101, represented in decimal? 4+1=5
- 2. What is the binary integer 1010, represented in decimal? 8 + 2 = 10. (How is this related to the previous answer?) Twice as much as 101
- 3. What is the binary integer 10100, represented in decimal? **20**. (What is the pattern?) Again twice as much since all ones became twice as valuable
- 4. What is the binary integer 101001, represented in decimal?

 41. Twice as much plus one. (Could you write a program to use this approach?) Yes, and it is useful in LFSR!
- 5. What is the decimal integer 126, represented in binary? Use either of two common approaches:
 - Work right to left; start by determining the rightmost bit.
 - Work left to right; start by determining how many bits this binary number will have.

Right to left: see "Converting from decimal to base b" on booksite §5.1. 126 is even, so ends in a 0, preceded by representation of 126/2 = 63. 63 odd so it ends in a 1, etc. \Rightarrow **1111110** Left to right: biggest power of 2 that fits (≤ 126) is 64, leaving 126-64 = 62. Biggest power of 2 in this remainder is 32. Keep going with remainders, 126-64+32+16+8+4+2 = binary 1111110.

- 6. What are the hexadecimal numbers C, D, and E, expressed in binary? These are twelve, thirteen, fourteen, which are 1100, 1101, 1110.
- 7. Express the hexadecimal number C0DE as a sum of 4 terms corresponding to the 4 digits. What is the value of this expression when converted to binary? Note that $16 = 2^4$, $16^3 = 2^{12}$ and $\times 2$ shifts us left by one position. C0DE is $12 \times 16^3 + 0 \times 16^2 + 13 \times 16^1 + 14 \times 16^0 = 12 \times 2^{12} + 13 \times 2^4 + 14 = 1100\ 0000\ 0000\ 0000\ 0000 + 1101\ 0000 + 1110 = 1100\ 0000\ 1101\ 1110$ (C 0 D E)
- 8. What is the binary number 100100110, represented in hexadecimal? (Avoid using decimal.) Reverse the previous process. 1 0010 0110 and converting each 4 bits to a hex digit, **126**
- 9. Optional: what is the value of DEE+24 in hexadecimal? (Avoid using decimal.) **E12**, use long addition working right to left

Boolean Operators

- 10. What is the binary value of 1010 | 110? 1110
- 11. What is the binary value of 1010 & 110? **10**
- 12. What is the binary value of 1010 << 10? **101000**
- 13. What is the binary value of $1010 \gg 10$?
- 14. What is the binary value of $1010 \wedge 110$? 1100
- 15. What is the value, expressed in hexadecimal, of C05126 \wedge CBE245 \wedge C05126? (What is the trick?) Since the order of inputs to xor doesn't matter, this equals CBE245 \wedge C05126 \wedge C05126. Since anything xor'ed with itself is 0, this is CBE245 \wedge 0 = **CBE245**

16-bit Two's-Complement Representations

- 17. Give the **16-bit two's-complement** binary representation of the decimal integer 126 (Use question 5) **0000 0000 0111 1110**
- 18. Give the 16-bit two's-complement binary representation of the decimal integer -126 First complement the bits of +126, then add one, giving 1111 1111 1000 0010
- 19. What is the 16-bit two's-complement **hexadecimal** representation of the decimal integer -126? Like Q8 (converting each 4 bits to a hex digit) **FF82**
- 20. What is the decimal representation of the 16-bit two's-complement hexadecimal number FFFE? Since the first bit is 1, this number is negative. Call this negative number X. Then the binary representation of the positive number -X is obtained by flipping bits (0000 0000 0000 0001) and adding one (0000 0000 0000 0002). So -X is 2, i.e. X is -2.

Challenges (Read Booksite §5.1)

- 21. What should the binary numbers 0.1 and 0.01 represent? In decimal these are 10^{-1} and 10^{-2} . In binary these are likewise $2^{-1} = 1/2$ and $2^{-2} = 1/4$
- 22. What are the powers of nine in octal? What are the powers of seventeen in hexadecimal?
- 23. Booksite exercises 5.1.18, 5.1.23, 5.1.25, Booksite creative exercises 5.1.6, 5.1.29