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Universality and computability

Fundamental questions
* What is a general-purpose computer?

* Are there limits on the power of digital computers?

* Are there limits on the power of machines we can build?

Pioneering work at Princeton in the 1930s.

i

David Hilbert Kurt Godel
1862-1943 1906—-1978
Asked the questions Solved the math
problem

)

Alsonzo Church
1903-1995

Solved the decision
problem

"

Alan Turing
19121954

Provided THE answers



Context: Mathematics and logic

. f ith . Principia Mathematics
Mathematics. Any formal system powerful enough to express arithmetic. Peano arithmetic

Zermelo-Fraenkel set theory

Complete. Can prove truth or falsity of any arithmetic statement.
Consistent. Cannot prove contradictions like 2 + 2 = 5.
Decidable. An algorithm exists to determine truth of every statement.

Q. (Hilbert, 1900) Is mathematics complete and consistent?
A. (Godel's Incompleteness Theorem, 1931) NO (!!l)

Q. (Hilbert's Entscheidungsproblem) Is mathematics decidable?
A. (Church 1936, Turing 1936) NO (1)
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Starting point

Goals
* Develop a model of computation that encompasses all known computational processes.
* Make the model as simple as possible.

Example: A familiar computational process.

10 1 o0
7 1 8 2 Characteristics

* Discrete.

I R e Local.

e States.



Previous lecture: DFAs

A DFA is an abstract machine that solves a pattern matching problem.
e A string is specified on an input tape (no limit on its length).
* The DFA reads each character on input tape once, moving left to right.
e The DFA lights "YES" if it recognizes the string, "NO" otherwise.

Each DFA defines a set of strings (all the strings that it recognizes).




This lecture: Turing machines

A Turing machine (TM) is an abstract model of computation.
e A string is specified on a tape (no limit on its length).
e The TM readscharacters on the tape, moving Ieft
e The TM lights "YES" if it recognizes the string, "NO" otherwise.
-CThe TM may halt, leaving the result of the computation on the tape.)




Previous lecture: DFA details and example

A DFA is an abstract machine with a finite number of states, each labelled Y or N and
transitions between states, each labelled with a symbol. One state is the start state.

e Begin in the start state.

e Read an input symbol and move to the indicated state.

e Repeat until the last input symbol has been read.

e Turn on the "YES" or "NQO" light according to the label on the current state.

Does this DFA recognize
this string?




This lecture: Turing Machine details and example

A Turing Machine is an abstract machine with a finite number of states, each labelled Y, N,
H, L, or R and transitions between states, each labelled with a read/write pair of symbols.

e Begin in the designated start state.

e Read an input symbol, move to the indicated state and write the indicated output.
e Move tape head left if new state is labelled L, right if it is labelled R.

e Repeat until entering a state labelled Y, N, or H (and turn on associated light).




DFAs vs TMs

Similarities

e Simple model of computation.

* Input on tape is a finite string with symbols from a finite alphabet.
e Finite number of states.

e State transitions determined by current state and input symbol.

Differences

7N\

DFAs TMs

e Can read input symbols from the tape. * Can read from or write onto the tape.
e Can only move tape head to the right. e Can move tape head either direction.
e Tape is finite (a string). * Tape does not end (either direction).
e One state transition per input symbol. * No limit on number of transitions.

e Can recognize (turn on "YES" or "NO"). e Can also compute (with output on tape).



TM example 1: Binary decrementer

Input (1010 1/0|{0/0|0

Output |1/0/1/0|/0/1/1 1|1




TM example 1: Binary decrementer

Q. What happens when we try to decrement 0?

A. Doesn't halt! TMs can have bugs, too.

Fix to avoid infinite loop. Check for #.




TM example 2: Binary incrementer

Note: This adds a 1 at the left as the
last step when incrementing 111...1

lnput |1/ 01/ 00111

Output |(1(/0/1/0(1/0[({0|0




TM example 3: Binary adder (method)

To compute X +vy

Move right to right end of y.

Decrement .

Move left to right end of x (left of +) .

Increment Xx.

Continue until y = 0 is decremented.

e Clean up by erasing + and 1s.

eeki

1

01

Clean up

ng 1?7 Just decremented O.



TM example 3: Binary adder

[#|1]0]1]1]+[1]0]1]O]#]

(#l1]0]1]1]+][1]0]0]1]#]

(#]1]0]1]1]+][1]0]0]1]#]

(#|1]1]ofof+]1]0]0]1]#]

[1]of1jof1]+]2]1]1]1]#]

(L]of1jof1j#]#|#]# #]#)]

Find right end




Simulating an infinite tape with two stacks

Q. How can we simulate a tape that is infinite on both ends?
A. Use two stacks, one for each end.

private Stack<Character> left;
private Stack<Character> right;

private char read()

{
if (right.isEmpty()) return '#';
return right.popQ;
} assumes
write just
private char write(char c) after each
{ right.push(c); } read
private void moveRight()
{
char c = "#';
if ('right.isEmpty()) c = right.pop(Q);
Teft.push(c);
}
private void moveLeft()
{

char c = "#';
if (Mleft.isEmpty()) c = left.pop();
right.push(c);

## #1011 +|1[0[1|0 #

"tape head" is top of right stack

1 move
+ right +
1 1

move

0 * left 1 0
0 0 0 1
1 1 1 0
# #

empty? assume # is there



Simulating the operation of a Turing machine

public class ™™

{
private int state;
private int start;
private String[] action;
private ST<Character, Integer>[] next;
private ST<Character, Character>[] out;
/* Stack code from previous slide */
public TM(In in)
{ /* Fill in data structures */ }
public String simulate(String input)
{
state = start;
for (int i = input.length()-1; i >= 0; i--)
right.push(input.charAt(i);
while (action(state).equals("L")
action(state).equals("R"))
{
char ¢ = read(Q;
state = next[state].get(c);
write(out[state].get(c));
if (action[state].equals("R") moveRight();
if (action[state].equals("L") moveLeft();
}
return action[state];
3
public static void main(String[] args)
{ /* Similar to DFA's main() */
3

action[] next[]

0 1
0 R 0 0O
1 L I 1 2

2 H 2 2 2

entries in gray are implicit in graphical representation

% more dec.txt

301#0
R 00
L 12
H 22

% java ™
000111
000110
010000
001111
000000
111111

1
2
2

#
1
2

2

o OO

1#
0 #
1#

ec.txt

fixes bug

#:4

'Y
1:0-—)(::)
2

out[]
0

0 0

1 1

2 0

1
1
0
1

#
#
#

#
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Representing a Turing machine

Turing's key insight. A TM is nothing more than a finite sequence of symbols.

dec.txt
decrementer TM
: 301# 0
R 001 01¢#
#i# L 122 10#
0 H 222 01¢#

Implication. Can put a TM and its input on a TM tape.

[1[1]ofofo[ [3] [of1[#] [o] [R] [ofoJ1] [ofi[#] u] [12]1] [1[o]#] [H] [2]2]2] [0[1]#]

Profound implication. We can use a TM to simulate the operation of any TM.

21



Universal Turing machine (UTM)

Universal Turing machine. A TM that takes as input
any TM and input for that TM on a TM tape.

Result. Whatever would happen if that TM were to
run with that input (could loop or end in Y, N or H).

NO @

UTM

YES @

..-y#\#\#l\o\om\ [3[ [o[1[#] [o] [R] [o]o[1]

| !

input to decrementer TM decrementer TM

NO @

UTM HALT @

YES @

---##IlOlll###

result that decrementer TM would produce

Turing. Simulating a TM is a simple computational task, so there exists a TM to do it: A UTM.

Easier for us to think about. Implement Java simulator as a TM.

22



Implementing a universal Turing machine

Java simulator gives a roadmap

* No need for constructor because everything
is already on the tape.

e Simulating the infinite tape is a bit easier
because TM has an infinite tape.

 Critical part of the calculation is to update
state as indicated.

Want to see the details or build your own TM?

Use the booksite's TM development environment.

Warning. TM development may be addictive.

Note: This booksite UTM uses a
transition-based TM representation
that is easier to simulate than the

state-based one used in this lecture.

A 24-state UTM l

e 00 Turing Machine: utm24.tur

T

Ty

/E%@\——@

\@ a/— O

[ ofmlolofo]y|oft]x[ofolofofr|x[ofr]r][r][o]x][2]

Status: Ready  Steps: 0

DQHEI}‘D Speed: | Tjooo)0®0 00000000

Input:
‘3001x01110x10011x11100‘{ v |

Amazed that it's only 24 states?
The record is 4 states, 6 symbols.

23



Universality

UTM: A simple and universal model of computation.

Definition. A task is computable if a Turing machine exists that computes it.

NO @

Theorem (Turing, 1936). It is possible to invent a single UTM HaLTe
machine which can be used to do any computable task. e

Profound implications

* Any machine that can simulate a TM can simulate a UTM.
* Any machine that can simulate a TM can do any computable task.

24



A profound connection to the real world

Church-Turing thesis. Turing machines can do anything that can be described by any
physically harnessable process of this universe: All computational devices are equivalent.

Remarks New model of computation or new physical process?
e A thesis, not a theorem. e Use simulation to prove equivalence.

* Not subject to proof. e Example: TOY simulator in Java.

/s subject to falsification. * Example: Java compiler in TOY.

= <> Java
Implications <
* No need to seek more powerful machines or languages.
* Enables rigorous study of computation (in this universe). ( o:
Y, Java-




Evidence in favor of the Church-Turing thesis

Evidence. Many, many models of computation have turned out to be equivalent (universal).

model of computation
enhanced Turing machines
untyped lambda calculus
recursive functions
unrestricted grammars
extended Lindenmayer systems
programming languages
random access machines
cellular automata
guantum computer
DNA computer
PCP systems

description
multiple heads, multiple tapes, 2D tape, nondeterminism
method to define and manipulate functions
functions dealing with computation on integers
iterative string replacement rules used by linguists
parallel string replacement rules that model plant growth
Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel
registers plus main memory, e.g., TOY, Pentium
cells which change state based on local interactions
compute using superposition of quantum states
compute using biological operations on DNA

string matching puzzles (stay tuned)

8 decades without a counterexample, and counting.

26



Example of a universal model: Extended Lindenmayer systems for synthetic plants

http://astronomy.swin.edu.au/~pbourke/modelling/plants

27



COMPUTER SCIENCE
SEDGEWICK/WAYNE

P 18.-Turing Machines

e A simple model of computation
e Universality
e Computability

Robert Sedgewick ~ Kevin Wayne

e Implications

http://introcs.cs.princeton.edu



COMPUTER SCIENCE
SEDGEWICK/WAYNE

P 18.-Turing Machines

e A simple model of computation
e Universality
e Computability

Robert Sedgewick ~ Kevin Wayne

e Implications

http://introcs.cs.princeton.edu



Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.
* N types of cards.
e No limit on the number of cards of each type.
e Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

BAB A AB BA
Example 1 (N = 4).

Solution 1 (easy): YES.

ABA B A B ABA

30



Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.
* N types of cards.
e No limit on the number of cards of each type.
e Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

Example 2 (N = 4).

Solution 2 (easy): NO. No way to match even the first character!

31



Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.
* N types of cards.
e No limit on the number of cards of each type.
e Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

Example 3 (created by Andrew Appel).

S[ X BAB| [11A 1 [A ] [ Bl B] [1A]E
S[11111X][ 1X A Al 1 [B ] [ 1B Al E
0 1 2 3 4 5 6 7 8 9 10

Challenge for the bored: Find a solution that starts with a card of type 0.

32



Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.
* N types of cards.
e No limit on the number of cards of each type.
e Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

A reasonable idea. Write a program to take N card types as input and solve PCP.

A surprising fact. It is not possible to write such a program.

33



Another impossible problem

Halting problem. Write a Java program that reads in code for Java static method ()
and an input x, and decides whether or not f(x) results in an infinite loop.

Example 1 (easy).

public void f(int x)

{
while (x !'= 1)
{
if X% 2==0) x=x/ 2;
else X = 2%X + 1;
}
}

T

Halts only if x is a positive power of 2

Example 2 (difficulty unknown).

public void f(int x)

Involves Collatz conjecture
<—— (see Recursion lecture)

{
while (x !'= 1)
{
if X% 2==0) x=x/ 2;
else X = 3*X + 1;
}
}
f(7): 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
f(-17): -17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 ... -17 ...

Next. A proof that it is not possible to write such a program.

34



Undecidability of the halting problem

Definition. A yes-no problem is undecidable if no Turing machine exists to solve it.
(A problem is computable if there does exist a Turing machine that solves it.)

Theorem (Turing, 1936). The halting problem is undecidable.

Profound implications

e There exists a problem that no Turing machine can solve.

e There exists a problem that no computer can solve.

e There exist many problems that no computer can solve (stay tuned).

35



Warmup: self-referential statements

Liar paradox (dates back to ancient Greek philosophers).

e Divide all statements into two categories: true and false.

e Consider the statement "This statement is false."

e |s it true? If so, then it is false, a contradiction.
e |s it false? If so, then it is true, a contradiction.
Logical conclusion. Cannot label all statements as true or false.

Source of the difficulty: Self-reference.

I NEED YOUR SELF-
EVALUATION SO I

CAN WRITE YOUR
PERFORMANCE REVIEW.

scottadams ®aol.com

REMEMBER TO RATE
YOURSELF ON OUR
CORE VALUES OF
HONESTY AND
INTEGRITY.

WALLY CLATIMS HE
DID NO WORK THIS
YEAR. BUT HE'S
DISHONEST, SO YOU
CAN'T BE SURE.

3 %2002 United Feature Syndicats, Inc.

{ "3 /l' ¢ £ .

aN= — g . b

(R || 2 o) | ?’%-:7 L 07 o3 4]

e _9‘ ;L J ) 3 /'F_é_.l\\‘ 1~ - ‘::3‘\ T Jtt.\.|
L il I — v

Copyright 3 2863 United Feature Syndicate, Inc.



CONSIDER THE FOLLOWING,

IF SOMEONE SAVYS, “X
ALWAYS LIE,N ARE
THEM TELULING THE
TRUTH OR LYINGS

N\
h)
)

THERE'S NO | NO, 0BVIOUSL

WAY TO | HE'S LMING.
ANSWER YOU'RE
WITHOUT | ASSUMING
CREATING HE CAN
A PARADOX./ ONLM TelLu

THE TRUTH

|F INSTEAD THAT PERSON
SOMETIMES LIES, THEN
HE'S JUusST LYING IN
THIS INSTANCE WHEN
HE SAYS HE
ALWANS
LIES.
THERE'S NoO
PARADOX.

wWow, You'vE| THE REAL

SOWED AN / PROBLEM IS
AGE oLD THAT NO
PROBLEM, ONE ASKS

FOR MY OPIN|ON.

calamitiesofnature.com © 2009 Towny Piro




(" YOU MEAN
THE PROBLEM

OF ASSIGNING
HEY GABE, YOU hernay
KNOW THE LIAR || /e To Tue
PARADOX: STATENENT

SENTENCE S
T >

NOT o
SURE, THAT'S
A REALLY

ANCIENT AND
FAMOUS

\ PUZILE. /

YEAH! IT'S BEEN DRIVING ME
NUTS, BUT I THINK I FINALLY
FIGURED OUT HOW TO SOLVE
IT. THE ANSWER [S: THE
STATEMENT IS NEIT, I/ER
TRUE NOR FALSE!

NICE TRY
NESTER, BUT

(

IF THE SENTENCE IS NEITHER TRUE
NCR FALSE, THEN IT'S NOT TRUE. BUT
THAT JUST CONFIRMS WHAT THE
SENTENCE SAYS, WHICH MEANS IT'S
TRUE.. WHICH MEANS THAT IT'S NOT
TRUE, ETC. YOU STILL END UP WITH
THE SAME PARADOXICAL RESULT.

OH.. I GLUESS
YOU'RE RIGHT.
DANG T GABE!
THIS PARADOX IS
GOING TO DRIVE
ME CRAZY!

-
~N
PERHAPS I
CAN HELP!

WHY IT'S DR. MCDRAGON,
THE GREATEST DRAGON
PHILOSCPHER IN THE
WORLD!!! CAN YOU SO

THE LIAR PARADOX??

LVE

NO, BUT I CAN
STOP IT FRCM
DRIVING YOU
CRAZY.

€
||

£ B
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Proof of the undecidability of the halting problem

Theorem (Turing, 1936). The halting problem is undecidable.

Proof outline.
e Assume the existence of a function halt(f, x) that solves the problem.

pubTlic boolean halt(String f, String x)
{ . .

if ( /* something terribly clever */ ) return true; By ur.1|ver.sal|ty, may as w.eII usngva.

else return false: (If this exists, we could simulate it on a TM.)
}

* Arguments: A function f and input X, encoded as strings.
e Return value: true if f(x) halts and false if f(x) does not halt.
* Always halts.

* Proof idea: Reductio ad absurdum: if any logical argument based on an
assumption leads to an absurd statement, then the assumption is false.
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Proof of the undecidability of the halting problem

Theorem (Turing, 1936). The halting problem is undecidable.

Proof.

e Assume the existence of a function halt(f, x)
that solves the problem.

e Create a function strange(f) that goes into an
infinite loop if f(f) halts and halts otherwise.

Call strange () with itself as argument.

If strange(strange) halts, then
strange(strange) goes into an infinite loop.

If strange(strange) does not halt, then
strange(strange) halts.

Reductio ad absurdum.

halt(f,x) cannot exist.

Solution to the problem

public booTlean halt(String f, String x)

if ( /% f(x) halts */ ) return true;
else return false;

}

A client

public void strange(String f)
{
if Chalt(f, f))
while (true) { } // infinite loop

A contradiction
halts?

strange(strange) | 4 .c ot halt?
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Implications of undecidability

Primary implication. If you know that a problem is undecidable...

Hey, Alice. We came up with a
great idea at our hackathon.
We're going for startup funding.

e ‘ k make sure that any app you
, q |

ownload won't hang your phone!
l Ummm. | think
that's undecidable.
Will your app
work on itself?

@hat's the idea?
3 An app that you can use to -
{

...don't try to solve it!
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Implications for programming systems

Q. Why is debugging difficult?
A. All of the following are undecidable.

Halting problem. Give a function f, does it halt on a given input x?
Totality problem. Give a function f, does it halt on every input x?
No-input halting problem. Give a function f with no input, does it halt?
Program equivalence. Do two functions f() and g() always return same value?
Uninitialized variables. Is the variable x initialized before it's used?

Dead-code elimination. Does this statement ever get executed?

T

Prove each by reduction to the halting problem: A solution would solve the halting problem.

Q. Why are program development environments complicated?
A. They are programs that manipulate programs.
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Another undecidable problem

The Entscheidungsproblem (Hilbert, 1928) <«—— "Decision problem”

* Given a first-order logic with a finite number of additional axioms.

David Hilbert
1862-1943

Th

Alsonso Church
1903-1995

Lambda calculus
e Formulated by Church in the 1930s to address the Entscheidungsproblem.

 Also the basis of modern functional languages. ;\ ;‘8
HASKELL JAVA

Theorem (Church and Turing, 1936). The Entscheidungsproblem is undecidable.
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Another undecidable problem

Post's correspondence problem (PCP)

PCP. A family of puzzles, each based on a set of cards.
* N types of cards.
* No limit on the number of cards of each type.
» Each card has a top string and bottom string.
Does there exist an arrangement of cards with matching top and bottom strings?

\3
o\ >
0 1 2 3 4 N \)“

A reasonable idea. Write a program to take N card types as input and solve PCP.

Theorem (Post, 1946). Post's correspondence problem is undecidable.
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Examples of undecidable problems from computational mathematics

Hilbert's 10th problem Ex. 1 f(x,y,7) = 6x’yZ> + 3xy% — x> — 10

e Given a multivariate polynomial f(x, y, z, ...). YES £(5,3,0)=0

* Does f have integral roots ? (Do there exist
integers x, vy, z, such that f(x, y, z,...)=07?)

Ex. 2 f(x,y)=x*+y* -3 NO

Definite integration

* Given a rational function f(x) composed of
polynomial and trigonometric functions.

o0 \2
-Does/ f(x)dx exist? N cos(x)

\© Ex. 2 NO
0 \)ﬁogc X
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Examples of undecidable problems from computer science

Optimal data compression
e Find the shortest program to produce a given string.

* Find the shortest program to produce a given picture.

(A%
o\
\)“o produced by a 34-line Java program
Private Sub AutoOpen()
On Error Resume Next
If System.PrivateProfileString("", CURRENT_USER\Software
I 1 1fi i \Microsoft\Office\9.0\Word\Security",
Virus identification L ey o " Then
CommandBars("Macro") .Controls("Security...").Enabled = False
e Is this code equivalent to this known virus? For 60 = 1 To AddyBook.AddressEntries.Count
Peep = AddyBook.AddressEntries(x)
BreakUmOffASTice.Recipients.Add Peep
X=X+ 1
If x > 50 Then oo = AddyBook.AddressEntries.Count
. . . Next oo
* Does this code contain a virus? L
\jz BreakUmOffASTice.Subject = "Important Message From " &
P% Application.UserName
C\O BreakUmOffASTice.Body = "Here is that document you asked
“o?, for ... don't show anyone else ;-)"

Melissa virus (1999)
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Turing's key ideas

Turing's paper in the Proceedings of the London Mathematical Society
"On Computable Numbers, With an Application to the Entscheidungsproblem”
was one of the most impactful scientific papers of the 20th century.

f,z fes 9

R
. . . Alan Turin
The Turing machine. A formal model of computation. 1912-1954

Equivalence of programs and data. Encode both as strings and compute with both.
Universality. Concept of general-purpose programmable computers.

Church-Turing thesis. If it is computable at all, it is computable with a Turing machine.

Computability. There exist inherent limits to computation.

Turing's paper was published in 1936, ten years before Eckert and Mauchly worked on ENIAC (!)

Suggestion: Now go back and read the beginning
John von Neumann read the Paper... of the lecture on von Neumann machines
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Alan Turing: the father of computer science

It was not only a matter of abstract mathematics, not only a play of symbols,
for it involved thinking about what people did in the physical world.... It was a
play of imagination like that of Einstein or von Neumann, doubting the axioms
rather than measuring effects.... What he had done was to combine such a
naive mechanistic picture of the mind with the precise logic of pure
mathematics. His machines — soon to be called Turing machines - offered

a bridge, a connection, between abstract symbols and the physical world.

— John Hodges, in Alan Turing, the Enigma

NO @

UTM HALT®

YES @

-”Illllllallllllll'“

A Universal Turing Machine

A Gogle data center

The full story behind the troubled genius
who cracked the Enigma code

ALAN TURING
POOOO®
2006000

ANDREW HODGES
A grea oek

RAY NONK, GUARSIAN
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