COMPUTER SCIENCE What is this course about?
SEDGEWICK/WAYNE

A broad introduction to computer science.

Goals
» Demystify computer systems.
« Empower you to exploit available technology.
« Build awareness of substantial intellectual underpinnings.

Programming
in Java Topics
. * Programming in Java. “Science is everything we understand
1. Prologue: . _ BB ,,
« Design and architecture of computers. well enough to explain to a computer.
An iy Aprodeh So I M h ° » Theory of computation. AT
—Don Knutl
Robert Sedgevick Kevin Wayne A I m p e q C I n e « Applications in science and engineering.
I.) “Computers are incredibly fast, accurate, and stupid;
and art, music, finance,
and many other fields. humans are incredibly slow, inaccurate, and brilliant;
bRt Py ipocs.cs.princeton.edu together they are powerful beyond imagination. ”
— Albert Einstein

Who are you? [data from 2011-12]

@ Social Sciences
other Science/Math
other Engineering
Humanities

cs

Intended major

Programming l. Prologue: A Simple Machine roaramming experience ® rone
in Java ® lots

¢ Administrivia

@ Istyear
Sophomore

@ Junior

@ Senior

Robert Sedgewick Kevin Wayne Class

http://introcs.cs.princeton.ed R
§i/% P ¢ Over 60% of all Princeton students take COS 126

la.Prologue.Admin

The basics

B | ectures. [Sedgewick]
m RS office hours. ’

m Precepts. [Pritchard and team]
« Tips on assignments / worked examples |
» Questions on lecture material. 2
* Informal and interactive.

Friend 016/017 lab. [undergraduate assistants] 6
« Help with systems/debugging.
» No help with course material.

Piazza. [online discussion] 0 Il =ssignments due

« Best chance of quick response to a question. See www.princeton . edu/~cos126
« Post to class or private post to staff.

Course website

for full current details and office hours.

http://www.princeton.edu/~cos126 <«— bookmark this page!

@00 Computer Science 126, Princeton University, Fall 2013 "

v f‘i‘ﬁ&’%&‘%’: COS 126 General Computer Science Fall 2013

Course Information | People | Assignments | Lectures | Precepts | Exams | Booksite

COURSE INFORMATION

Course description. An introduction to computer science in the context of scientific, engineering, and i jcations. The goal of the course
s to teach basic principles and practical issues, while at the same time preparing students to use computers effectively for applications in computer
science, physics, biology, chemistry, engineering, and other disciplines. Topics include: ing in Java; hardware and software systems;
algorithms and data structures; principles of ion; and scientific ing, including simulation, optimization, and data analysis.

Instructor. Robert Sedgewick.
Lectures. Lectures meet on Tuesdays and Thursdays at 10am.

Preceptors. Jordan Ash - Aleksey Boyko - Doug Clark - Ohad Fried - Donna Gabai - Borislav Hristov - Judi Israel - Kevin Lai - Kevin Lee - Sachin
Ravi - David Pritchard (lead) - Shaoging (Victor) Yang - Yao-Wen Yeh - Jian Zhou

Precepts. Precepts meet twice a week on Tuesdays and Thursdays or Wednesdays and Fridays. Precepts begin either Thursday September 12 o
Friday September 13.

U i For problems, see Colleen Kenny-McGinley in CS 210.

Course website. The course website contains a wealth of information, including precept rosters, office hours, lecture slides, programming
assignments, and old exams.

Grades

are based on achievement. Due dates
Su Mo Tu We Th Fr Sa
Opportunities for us to determine your level of achievement: 0 e eel e o
.) B o
+ 9 programming assignments. B R T
« 2 written exams (in class, 10/10 and 12/12). N
. . 12
« 2 programming exams (evenings, 10/21 or 10/24 and 12/9). . R 12}% 10
. . . 3 20122 2324 25 26
« Final programming project (due Dean’s date — 1). ° 17@19 30
. 1 2
« Extra credit / staff discretion. Adjust borderline cases. 3456 7 8
> 11 12 13 14 15
1] 18 19 20 21 22
P 25 26 27 28 29 30
participation helps 1 3 4 6 7
We do not grade on a "curve". jegentiabeenceliin: 8 @m 11@13 14
o 15 17 18 20 21
‘EJ 22 23 24 25 26 27 28
29 30 31
1 2 3 4
5 6 8 910 11
z 12 1315 16 17 18
S 19 20 27 22 23 24 25
26 27 28 29 30 31
/ you are already here
5
Textbook and Booksite
Programming Textbook.
n . . .
« Full introduction to course material.
« Developed for this course.
« For use while learning and studying.
ey E3 e |
e e n
BOOkSIte. Programming
o et senaaton
« Summary of content. e
« Code, exercises, examples.
« Supplementary material. RS, g e e
* NOT the textbook. s
+ (also not the course web page). s o
+ For use while online. 5. Scoane Computaton « Excerpts. A condensed version o the text for reference while ontie.
[la]
, http://introcs.cs.princeton.edu <«— bookmark this page, too!

Programming assignments

are an essential part of the experience in learning CS.

Desiderata
» Address an important scientific or commercial problem.
« lllustrate the importance of a fundamental CS concept.
* You solve the problem from scratch on your own computer!

N-body simulation pluck a guitar string estimate Avogadro's number

RonEA A 0. Prologue: A Simple Machine

in Java
¢ Administrivia

Robert Sedgewick Kevin Wayne

http://introcs.cs.princeton.edu

la.Prologue.Admin

What's Ahead?

Coming events
* Lecture 2. Basic programming concepts.
« Precept 1. Meets today/tomorrow.
« Not registered? Go to any precept now; officially register ASAP.
: Change precepts? Use SCORE. ~ see Colleen Kenny-McGinley in CS 210

if the only precept you can attend is closed

== Assignment 0 due Monday 11:59PM <

Things to do before attempting assignment
» Read Sections 1.1 and 1.2 in textbook.
« Read assignment carefully.
« Install introcs software as per instructions.
» Do a few exercises.
« Lots of help available, don't be bashful.

http://introcs.cs.princeton.edu/assignments.php

END OF ADMINISTRATIVE STUFF

S

5

INTRODUCTION TO.

Programming

in Java

http://introcs.cs.princeton.edu

Encrypt/decrypt methods

* Secure communication with a one-time pad

1b.Prologue.OneTime

Goal. Design a method to encrypt and decrypt data.

[s [e] ~Jo [m o] w~NTETY]
'encrypt

Lo [x [7] 6 [w 3 [v 7]k]
'decrypt

(s [e[~[o [m o] w~NTET]Y]

Example 1. Enigma encryption machine
« Broken by Turing bombe (one of the first uses of a computer).
« Broken code helped win Battle of Atlantic by providing U-boat locations.

Example 2. One-time pad

Example 3. Linear feedback shift register

Sending a secret message with a cryptographic key

Alice wants to send a secret message to Bob. P |
» Sometime in the past, they exchange a cryptographic key.
« Alice uses the key to encrypt the message.
« Bob uses the same key to decrypt the message.

Hey, Bob. Here's a secret message. Hey, Bob. Here's a secret message.

Hi Alice. OK, I'm ready.

Hi Alice. OK, I'm ready.
ki yT25a5i/S
SENDMONEY | sending gX76W3v7K

gX76W3v7K

key: yT25a5i/S SENDMONEY

encrypted message is "in the clear" (anyone can read it)

Critical point: Without the key, Eve cannot understand the message.

Q. How does the system work?

A digital world

"use yT25a51 /S if I ever send

you an encrypted message”

A bit is a basic unit of information.
» Two possible values (0 or 1).
« Easy to represent in the physical world (on or off).

In modern computing and communications systems,
we represent everything as a sequence of bits.

« Text [details to follow in this lecture]

« Numbers

« Sound [details to follow in this course]
« Pictures [details to follow in this course] 0|10 o0

* Programs

Bottom line. If we can send and receive bits, we can send and receive anything.

010001012 = 6910

Encoding text as a sequence of bits

Base64 encoding of character strings bits symbols
» A simple method for representing text. Base64 6 64

« 64 different symbols allowed: A-Z, a-z, 0-9, +, /.

* 6 bits to represent each symbol.

« ASCIl and Unicode methods used on your computer are similar.

ASCII 8 256

Unicode 16 65,536+

000000 A |001000 I [010000 Q | 011000 Y | 100000 g | 101000 o | 110000 w | 111000 4
000001 B | 001001 J 010001 R | 011001 Z | 100001 h | 101001 p | 110001 x | 111001 5
000010 C |001010 K | 010010 S [011010 a | 100010 i | 101010 g | 110010 y | 111010 6
000011 D [001011 L [010011 T |011011 b | 100011 j | 101011 r | 110011 z | 111011 7
000100 E [001100 M [010100 U | 011100 c | 100100 k | 101100 s | 110100 0| 111100 8
000101 F |001101 N 010101 V [011101 d | 100101 1 | 101101 t | 110101 1| 111101 9
000110 G [001110 O [010110 W | 011110 e | 100110 m | 101110 u | 110110 2| 111110 +
000111 H |001111 P 010111 X [011111 f | 100111 n | 101111 v | 110111 3 | 111111 /

Example:
M 0

S E N D N E Y
SENDMONEY '—»‘ o10o10\00o100\001101\000o11\001100\001110\001101\000100\011000‘

Encryption with a one-time pad

T ———
. /“use yT25a51/5 if | ever send
Preparation you an encrypted message” |

« Create a "random" sequence of bits (a one-time pad).
» Send one-time pad to intended recipient through a secure channel.

ap

Alice

Encryption

* Encode text as a sequence of N bits.
« Use the first N bits of the pad.

» Compute a new sequence of N bits (a function of the message and the pad).
« Decode result to get a sequence of characters.

Result: A ciphertext (encrypted message).

a
simple
machine

message ‘ SENDMONEY }—»‘ 010010000100001101000011001100001110001101000100011000 }\

one-time pad ‘y T25a54i/ 8 }—}‘ 110010010011110110111001011010111001100010111111010010

ciphertext ‘ gX76W3v7K }(—(100000010111111011111010010110110111101111111011001010 ‘

One-Time Pads

—
use yT25251/5 if | ever send
You an encrypted messag

What is a one-time pad?

* A cryptographic key known only to the sender and receiver.
« Good choice: A random sequence of bits (stay tuned).

« Security depends on each sequence being used only once.

/

y T 2 5 a 5 i S
‘110010‘010011‘110110‘111001‘011010‘111001‘100010‘111111‘010010 }_, yT25a51i/5

000000 A [001000 T [010000 Q [011000 Y [100000 g [101000 o [110000 w [111000
000001 B |001001 J | 010001 R | 011001 Z | 100001 h | 101001 p | 110001 x | 111001
000010 C 001010 K | 010010 S | 011010 a | 100010 i | 101010 g | 110010 111010

3

Kk

1

x
y
000011 D [001011 L [010011 T [011011 b [100011 j [101011 r [110011 z | 111011
000100 E |001100 M | 010100 U | 011100 c | 100100 101100 s | 110100 0 | 111100
d 1
e 2
3

000101 F [001101 N [010101 V [011101 d [100101 1 | 101101 t [110101 1[111101
000110 G [001110 0 [010110 W [011110 e [100110 m | 101110 u [110110
000111 H [001111 P [010111 X [011111 f [100111 n [101111 v [110111

111110
111111

NG EINEIEIES

more convenient than bits

/ for initial exchange
Note: Any sequence of bits can be decoded into a sequence of characters.

A (very) simple machine for encryption

To compute a cyphertext from a message and a one-time pad
* Encode message and pad in binary.
« Each cyphertext bit is the bitwise exclusive or of corresponding bits in message and pad.

Def. The bitwise exclusive or of two bits is 1 if they differ, O if they are the same.

s E N D M o N E Y

SENDMONEY message

010010‘000100‘001101‘000011‘001100‘001110‘001101‘000100‘011000‘

yT25a5i/s one-time pad

11oo1o‘o10o11‘11o110‘1110o1‘011o10‘111001‘100010‘111111‘010010‘

y T 2 5 a 5 i / s

gX76W3v7K cyphertext

[=

ooooo‘o10111‘111011‘111o10‘01o110‘110111‘101111‘111011‘001010 ‘

g X 7 6 W 3 v 7 K

Typical Exam Question (TEQ) on bitwise XOR encryption

Q. Encrypt the message E A S Y withthepad0 1 2 3.

A (very) simple machine for encryption and decryption

To compute a message from a cyphertext and a one-time pad
« Use binary encoding of cyphertext and pad.

» Each message bit is the bitwise exclusive or of corresponding bits in cyphertext and pad.

\ 1 if they differ; 0 if they are the same

g X 7 6

W

5

v

P

K

gX76W3v7TK cyphertext

100000‘010111‘111011‘111010‘010110‘110111‘101111‘111011‘001010‘

yT25a5i/s one-time pad

11oo1o‘o10o11‘11o110‘1110o1‘011o10‘111001‘100010‘111111‘010010‘

v I 2 5

a

5

i

/

s

SENDMONEY message ()

[e

1oo10‘0oo10o‘oo11o1‘0ooo11‘0011oo‘o01110‘001101‘000100‘011000

s E N D

M

o

N

E

Y

Decryption with a one-time pad

Sending a secret message with a cryptographic key
use y225054/5 i | ever send

Alice wants to send a secret message to Bob. ‘you an encrypted message’
+ Sometime in the past, they exchange a cryptographic key. . (o
« Alice uses the key to encrypt the message. Z /

+ Bob uses the same key to decrypt the message.

Hey, Bob. Here's a secret message, Hey, Bob. Here's a secret message.

Hi Alice. OK, I'm ready. Hi Alice. OK, I'm ready.

key: yT25asi/s XTEWIVTK

SENDMONEY | sending gX76W3v7K] key: yT25a51/5 | | SENDMONEY

gX76W3VTK)

Critical point: Without the key, Eve cannot understand the message.

Q. How does the system work?

A. Alice's device uses a "bitwise exclusive or" machine to encrypt the message.

Q. What kind of machine does Bob's device use to decrypt the message?

A. The same one (!)
21 22

Why does it work?

£ message

one-time pad

s E N D M o N E Y

SENDMONEY }—}‘ 010010{000100‘001101‘000011‘001100‘0011101001101‘00010%011000

yT25a5i/s ‘—}‘ 110010010011110110111001011010111001100010111111010010 V

&(\phertext ‘ gX76W3v7K »‘:»‘ 100000‘010111‘111011‘111010‘010110‘110111‘101111‘111011‘001010 }\}

one-time pad yT25a54i/s ‘—)‘ 110010010011110110111001011010111001100010111111010010 V

ol
(& message

©
2]
z
o
=
o
2z
2]

Y }4_‘ 010010(000100‘001101‘000011‘001100‘001110‘001101‘000104011000 ‘

s E N D M o N E Y

Crucial property: Decrypted message is the same as the original message.
Let m be a bit of the message and k be the corresponding bit of the one-time pad.
To prove: (mA k) A k=m <«—— Notation: m A kis equivalent to XOR(m, k)

k mAk (mAk)Ak

Approach 1: Truth tables () Approach 2: Boolean algebra (kAk=0
00 o0 0 mAO=m
0 1 1 0 MAKAKk=mA (kA k)
10 1 1 =mAOQ
11 o0 1 v =m v

23

* « Truly random bits are very hard to come by.

—> « Pad must be as long as the message.

Decryption with the wrong pad

My informant
tells me that
Alice and Bob's
one-time pad
might be
qwDgbDuav

Eve cannot read a message without knowing the pad.

g X 7 6 W 3 v 7 K

ciphertext ‘g X76W3v7K }—}‘ 100000‘010111‘111011‘111010{010110‘11011].‘101111‘11101].‘001010

wrong pad ‘ qwDgbDuav ‘—)‘ 1010101110000‘000011‘100000(011011‘000011‘101110‘011014101111 V

gibberish ‘ Knd4aNOBhI1 }4—{ 001010‘100111‘111000‘011010‘001101‘110104000001‘100001‘100101 ‘

K n 4 a N [} B h 1

One-time pad is provably secure [Shannon, 1940s]

« IF each pad is used only once,

« AND the pad bits are random,

« THEN Eve cannot distinguish cyphertext from random bits.

Kn4aNOBhI 777

foiled again

25

Goods and bads of one-time pads

71 Goods.

« Very simple encryption method.

* Decrypt with the same method.

« Provably unbreakable if bits are truly random.

» Widely used in practice. [Example: cold war hotline.]

a one-time pad A

Dallas Morning News, 1963

Bads.
« Easily breakable if seed is re-used.

“I'd like to send you a
secret video (1 GB)”

“ Where are you going to ge
8 billion bits for the key? "

» Need separate secure channel to distribute key.

No room on my phone for
both the video and the key.”

Alice

27

Eve's problem with one-time pads

Eve has a computer. Why not try all possibilities?

Problem
)) i ?

« 54 bits, so there are 254 possible pad values. padiyalue I
s £ \d check a mill | d AMMAAAAAA gX76W3VTK
uppose Eve could check a million values per second. AorRE | GTeHIL

+ It would still take 570+ years to check all possibilities. AAMAMC gX76W3V7T

qwDgbDuav Kn4aNOBh1
Much worse problem

 There are also 254 possible messages. tTtpWk+1E NEWTATTOO
« If Eve were to check all the pads, she'd see all the messages.

- No way to distinguish the real one from any other. yT25251/5 SENDMONEY

117111117+ fo7FpIQE0

One-time pad is provably secure. /11111117 fo7FpIQEL

Random bits are not so easy to find

You might look on the internet. (The randomness comes from atmospheric noise)

T ke

Home Games Numbers Lists&More Drawings WebTools Swtistcs Testimonals LeamMore Login

RANDOM.ORG -

Do you own an iPhone, iPad or iPod Touch? Check out or new app! Android version coming soon.

Random Integer Generator

‘This form allows you to generate random integers (The randomness comes from atmospheric noise, Jvhich for many purposes is better

than the pseudo-random number algorithms typi Th COMPUtET progrars.

“I think 'l call it
random.org”

Part 1: The Integers

Generate (1000 | random integers (maximum 10,000).

Each integer should have a value between [0 and [1 (both inclusive; limits £1,000,000,000).
Formatin 5| column(s).

Part 2: Go!

... if you trust the internet.

Be patient! It may take a little while to generate your numbers...

Next: Creating a (long) sequence of "pseudo-random" bits from a (short) key.

NTRODUCTION T

Programming 0. Prologue: A Simple Machine

in Java

e Administrivia
TEE

* Secure communication with a one-time pad

Robert Sedgewick Kevin Wayne

http://introcs.cs.princeton.edu

1b.Prologue.OneTime

A pseudo-random number generator

is a deterministic machine that produces a long sequence of pseudo random bits.

Examples
Enigma.
Linear feedback shift register (next).
Blum-Blum-Shub generator.

[an early application of computing]
[research still ongoing]

9

3 FEE a “Anyone who considers arithmetical
methods of producing random
digits is, of course, in a state of sin. ”

comiN Oy

—John von Neumann

31

NTRODUCTION T0

Programming 0. Prologue: A Simple Machine

in Java

e Administrivia

* Secure communication with a one-time pad
S * Linear feedback shift registers
Robert Sedgewick Kevin Wayne

http://introcs.cs.princeton.edu

lc.Prologue.LFSR

A pseudo-random number generator

is a deterministic machine that produces a long sequence of pseudo random bits.

Deterministic: Given the current state of the machine, we know the next bit.
An absolute requirement: Alice and Bob need the same sequence.

Random: We never know the next bit.

10000001011111101
11101001011011011
100101

11
11 m
1011111110110010
Pseudo-random: The sequence of bits appears to be random.

1
1
0

Appears to be random?? Ex. 1: No long repeats

Ex. 2: About the same number of 0s and 1s
<A profound and elusive concept Ex. 3: About the same number of 00s, 01s, 10s, and 11s.

« For this lecture: "Has enough properties of a random sequence that Eve can't tell the difference".

Which of these sequences appear to be random?

‘000000000000000O00O00000OOOOOO000000000000000000000000‘ X

but # of Os and 1s

‘01‘ X 10 b e

but#ofOOsO s 10s

‘001101100011011000110110011011001101100110110011011000‘ X and 11s are about equal

‘010010000100001101000011001100001110001101000100011000‘ X SENDMONEY

‘110010010011110110111001011010111001100010111111010010‘ v key for Alice and Bob

‘100000010111111011111010010110110111101111111011001010‘ y/ ciphertext for SENDMONEY

‘100000011100010110001000110001100010101001100101100110‘ V' generated by coin flips

typed arbitrarily

[100010010110111011111010010110110111101100011011001010] X et

Note: Any one of them could be random!
33

Linear feedback shift register simulation

/(:2\

‘0110100001

History of register contents Time

y

o
=
o
=

101000010 0

J

-
-
o
-
o
o
o
o
-
o
~
=
N
N
<)
=
o
<)
<)
<)
=
o
=

po
Y,

2

N
o
R
o
o
o
o
=
o
-
=
o
R
o
=
o
o
o
o
=
o
=
=

a pseudo-random

/ bit sequence !

3

po
Y,

o
=
o
o
o
o
=
o
-
=
o
o
o
~
o
o
o
o
H
o
-
-
o

po
Y

._.
o
o
o
o
=
o
=
=
IS)
o
=
i
o
o
o
o
=
o
[
[
o
o
IS

po
Y,

o
o
o
o
=
o
R
R
o
o
=
o
o
o
o
o
-
o
=
-
o
o
=
«

Linear feedback shift register

Terminology
*Bit: Oorl.
« Cell: storage element that holds one bit.
« Register: sequence of cells.
« Seed: initial sequence of bits.
« Feedback: Compute XOR of two bits and put result at right.
« Shift register: when clock ticks, bits propagate one position to left.

2
X -
‘o 110100001 0‘1
11 10 9 8 7 6 5 4 3 2 1

An [11, 9] LFSR

More terminology
« Tap: Bit positions used for XOR (one must be leftmost). «——Numbered from right, starting at 1.
« [N, k] LFSR: N-bit register with taps at N and k.

A random bit sequence?

No long repeats.
997 0s, 1003 Ts.

i ?
Q. Is this a random sequence? 256 005, 254 015, 256 105, 257 115.

one-time pad in our example

1100100100l1110110l110010llO10l11001100010111l110lO010ﬁ00100llO10010ll110011001001111111011100000101
0100000100001000101001010100011000001011110001

0010011010110111100011010011011100111101011110010001001110101011101000001010010001000110101010111000
0000101100000100111000101110110100101011001100001111111001100000111111000110000110111100111010011110
1001110010011101110111010101010100000000001000000001010000001000100001010101001000000011010000011100
1000110111010111010100010100001010001001000101011010100001100001001111001011100111001011110111001001
0101110110000101011100100001011101001001010011011000111101110110010101011110000001001100001011111001
0010001110110101101011000110001110111101101010010110000110011100111111011110000101001100100011111101
0110000100011100101011011100001101011001110001111101101100010110111010011010100111100001110011001101
1111111101000000010010000010110100010011001010111111000010000110010100111110001110001101101101110110
1101010110110000011011100011101011011010001101100101110111100101010011100000111011000110101110111000
1010101101000000110010000111110100110001001111101011100010001011010101001100000011111000011000110011
1101111110010100001110001001101101011110110001001011101011001010001111000101100110100111111001110000
1111011001100101111111100100000011101000011010010011100110111011111010101000100000010101000010000010
0101000101100010100111010001110100101101001100110011111111111000000000110000000111100000110011000111
1111101100000010111000010010110010110011110011111001111000111100110110011111011111000101000110100010
1110010100101110001100101101111100110100011111001011000111001110110111101011010010001100110101111111
0001000001101010001110000101101100100110111101111010010100100110001101111101110100010101001010000011
0001000111101010110010000011110100011001001011111011001000101111010100100100001101101001110110011101
0111110100010001001010101011000000001110000001101100001110111001101010111110000010001100010101111010

A. No. It is the output of an [11, 9] LFSR with seed 01101000010! ~__ i< pseudo-random

(at least to some observers).

«—— Not all values of k give desired effect (stay tuned).

Typical Exam Question (TEQ) on LFSRs

Q. Give first 10 steps of [5,4] LFSR with initial fill 00001.

37

Eve's opportunity with LFSR encryption

Eve has computers. Why not try all possible seeds?

« Seeds are short, messages are long.

« All seeds give a tiny fraction of all messages.

« Extremely likely that all but real seed will produce gibberish.

Good news (for Eve): This approach can work.
« Ex: 11-bit register implies 2047 possibilities.
« Extremely likely that only one of those is not gibberish.

« After this course, you could write a program to check whether
any of the 2047 messages have words in the dictionary.

Bad news (for Eve): It is easy for Alice and Bob to use a much longer LFSR.

39

Encryption/decryption with an LFSR

“Use the next seed in the book to
decode this secret video (1 GB)"

N
“ OK (consults book)
01101000010 "
Alice .

Preparation
« Alice creates a book of "random" (short) seeds.
« Alice sends the book to Bob through a secure channel.

Encryption/decryption ,1

« Alice sends Bob a description of which seed to use. A

» They use the specified seed to initialize an LFSR and produce N bits. (\'r’
[and proceed in the same way as for one-time pads] " Bob

message ‘ SENDMONEY }—}‘ 010010000100001101000011001100001110001101000100011000

seed 01101000010 m—}‘ 110010010011110110111001011010111001100010111111010010

L. ciphertext ‘ gX76W3v7K }4—(100000‘010111‘111011‘111010‘010110‘110111‘101111‘111011‘001010

seed 01101000010 m—}‘ 110010010011110110111001011010111001100010111111010010

message ‘ SENDMONEY }4_‘ 010010000100001101000011001100001110001101000100011000 ‘

%

¥

-
B

Key properties of LFSRs

Property 1. Q
» Don’t use all Os as a seed! v

‘ooooooooooo‘o

« Fill of all Os will not otherwise occur.

40

Key properties of LFSRs

Property 1.
» Don’t use all Os as a seed!
« Fill of all Os will not otherwise occur.

Property 2. Bitstream must eventually cycle.
« 2N — 1 nonzero fills in an N-bit register.
« Future output completely determined by current fill.

Key properties of LFSRs

Ex. [4,3] LFSR

© ©o o B H H K OFROUHRHKHOOUFR O

H O © ©o P B B KB OHOZBKRERER O O®R

© B O O OB K KR O OUH KL O O

© W O ©O O B B H K OH OZHKH B O
S L ® N O U AW =

Property 1.
» Don’t use all Os as a seed!
« Fill of all Os will not otherwise occur.

Property 2. Bitstream must eventually cycle.
« 2N — 1 nonzero fills in an N-bit register.
« Future output completely determined by current fill.

Property 3. Cycle length in an N-bit register is at most 2V— 1.
« Could be smaller; cycle length depends on tap positions.
« Need theory of finite groups to know good tap positions.

Bottom line.
< [11, 9] register generates 2047 bits before repeating.

Linear Feedback Shift Reglster Taps

XILINX manual, 1990s

« [63, 62] register generates 263 -1 bits before repeating. «—— Definitely preferable: small cost, huge payoff.

41

43

Key properties of LFSRs

Property 1. ;@\—\
» Don’t use all Os as a seed! B FIZT U6 o010l
« Fill of all Os will not otherwise occur. o10.10R
10111 2
Property 2. Bitstream must eventually cycle. 01111 3
« 2N — 1 nonzero fills in an N-bit register. 11110 4
« Future output completely determined by current fill. 111 0K
11000 6
10001 7
Property 3. Cycle length in an N-bit register is at most 2N— 1. TYElC G
« Could be smaller; cycle length depends on tap positions. 0010
« Need theory of finite groups to know good tap positions.
Eve's problem with LFSR encryption
gX76W3v7K 77?7
Without the seed, Eve cannot read the message. | o
(30,2%9)

Eve has computers. Why not try all possible seeds?
« Seeds are short, messages are long.
« All seeds give a tiny fraction of all messages.

« Extremely likely that all but real seed will produce gibberish.

Bad news (for Eve): There are still way too many possibilities.
« Ex: 63-bit register implies 263 — 1 possibilities.

« If Eve could check 1 million seeds per second,
it would take her 2923 centuries to try them all!

Bad news (for Alice and Bob): LFSR output is not random.

Exponential growth dwarfs
technological improvements

[stay tuned] \

NOT ENOUGH COMPUTERS ?

experts have cracked LFSRs

(20, 220) f

N

42

44

Goods and bads of LFSRs

Goods.

« Very simple encryption method.
» Decrypt with the same method.

« Scalable: 20 cells for 1 million bits; 30 cells for 1 billion bits.

. . . . a commercially available LFSR
» Widely used in practice. [Example: military cryptosystems.]

Bads.

s+ efatt.c thor:
/% usage is:

« Easily breakable if seed is re-used.
« Still need secure key distribution.
 Experts can crack LFSR encryption.

Charle:

M. Hannum <root@ihack.net>
cat title-key scrambled.vob | efdtt >clear.vob
#define m(i) (x[i]%s[i+84])<<

NTRODUCTION T

: 0. Prologue: A Simple Machine
; Programming g P
“ in Java
e Administrivia
unsigned char x[5] +¥,s[2048] ;main (
n) {for(read(0,x,5) iread(0,s ,n=2048
) write +8,n))if(s
[y=s [13]%8+20] /16%4 ==1) {int
i=m(1)17 ~256 +m(0) 8,k =m(2)
j 17* m(3) 9°k* 2-k%8
=26; for (slyl -=16;
a*2*is 1,i=i /2*j&1
¥)
Example. N i s
. . >>84y<<9,k=s[3] ,k
» CSS encryption widely used for DVDs
» Widely available DeCSS breaks it!

>>14,y=a*a*8"a<<6,a=a

Robert Sedgewick ~ Kevin Wayne

* Secure communication with a onetime pad
="7Wo~"G_\216" [k
&7]427"cr3sfwbv; *k+>/n. " [k>>4] *2°k*257/
8,5[31=k" (k6k*2834) *6Act~y
22l
DeCSS DVD decryption code

* Linear feedback shift registers

http://introcs.cs.princeton.edu
45

lc.Prologue.LFSR

NTRODUCTION T

LFSRs and general-purpose computers

component LFSR computer
control start, stop, load same
LFSR clock same
. . computer memory 12 bits billions of bits
Programming 0. Prologue: A Simple Machine
in Java Important similarities. input 12 bits bit sequence
o Administrivia « Both are built from simple components. computation shift, XOR —t/
¢ Secure communication with a one-time pad * Both scale to handle huge problems.
P « Both require careful study to use effectively. outpur Pseudo-random bit any computable
i i i sequence it sequence
* Linear feedback shift registers
Robert Sedgewick ~Kevin Wayne
* Implications
Critical differences: Operations, input. <—— but the simplest computers differ only slightly from LFSRs!
« General purpose computer can simulate any abstract machine.
http://introcs.cs.princeton.edu « All general purpose computers have equivalent power (!) [stay tuned].
1d.Prologue.Implications

48

A Profound Idea

Programming. We can write a Java program to simulate the operation of any abstract machine.

« Basis for theoretical understanding of computation.
« Basis for bootstrapping real machines into existence.
Stay tuned (we cover these sorts of issues in this course).

public class LFSR
{
public static void main(String[] args)

int[Ja={0,01,00,0,0,1,0, 1,1, 0}
for (int t = 0; t < 2000; t++)

YOU will be writing {

code like this within ——>

af0] = (a[11] A a[9]);
a few weeks.

System.out.print(a[0]);
for (int i = 11; i > 0; i--)
a[i] = a[i-1]1;

System.out.printin(Q);

SA\(\;
[011 01000010
11 10 9 8 7 6 5 4 3 2 1

o

% java LFSR
11001001001111011011100101101011100110001
01111110100100001001101001011110011001001
11111101110000010101100010000111010100110
10000111100100110011101111111010100000100
00100010100101010001100000101111000100100
11010110111100011010011011100111101. . .

Note: You will write and apply an LFSR simulator in Assignment 5.

NTRODUCTION T

Programming

in Java

M u e Administrivia

Robert Sedgewick Kevin Wayne

* Implications

http://introcs.cs.princeton.edu

0. Prologue: A Simple Machine

* Secure communication with a one-time pad

* Linear feedback shift registers

1d.Prologue.Implications

Profound questions

Q. What is a random number?

LFSRs do not produce random numbers.
. They are deterministic. <—— von Neumann's "state of sin": we know that "deterministic" is incompatible with "random"
« It is not obvious how to distinguish the bits LFSRs produce from random,
« BUT experts have figured out how to do so.

Q. Are random processes found in nature?
» Motion of cosmic rays or subatomic particles?
» Mutations in DNA?

Q. Is the natural world a (not-so-simple) deterministic machine??

“God does not play dice. ”

49 — Albert Einstein

COMPUTER SCIENCE
SEDGEWICK/WAYNE

INTRODUCTION T0

Programming

in Java

1. Prologue:
A Simple Machine

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

