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Abstract

Spectral methods for mesh processing and analysis rely on the eigenvalues, eigenvectors, or eigenspace projections
derived from appropriately defined mesh operators to carry out desired tasks. Early work in this area can be traced
back to the seminal paper by Taubin in 1995, where spectral analysis of mesh geometry based on a combinatorial
Laplacian aids our understanding of the low-pass filtering approach to mesh smoothing. Over the past fifteen
years, the list of applications in the area of geometry processing which utilize the eigenstructures of a variety of
mesh operators in different manners have been growing steadily. Many works presented so far draw parallels from
developments in fields such as graph theory, computer vision, machine learning, graph drawing, numerical linear
algebra, and high-performance computing. This paper aims to provide a comprehensive survey on the spectral
approach, focusing on its power and versatility in solving geometry processing problems and attempting to bridge
the gap between relevant research in computer graphics and other fields. Necessary theoretical background is
provided. Existing works covered are classified according to different criteria: the operators or eigenstructures
employed, application domains, or the dimensionality of the spectral embeddings used. Despite much empirical
success, there still remain many open questions pertaining to the spectral approach. These are discussed as we
conclude the survey and provide our perspective on possible future research.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

A great number of spectral methods have been proposed in
the computing science literature in recent years, appearing in
the fields of graph theory, computer vision, machine learn-
ing, visualization, graph drawing, high performance com-
puting, and computer graphics. Generally speaking, a spec-
tral method solves a problem by examining or manipulat-
ing the eigenvalues, eigenvectors, eigenspace projections, or
a combination of these quantities, derived from an appro-
priately defined linear operator. More specific to the area
of geometry processing and analysis, spectral methods have
been developed to solve a diversity of problems including
mesh compression, correspondence, parameterization, seg-
mentation, sequencing, smoothing, symmetry detection, wa-
termarking, surface reconstruction, and remeshing.

As a consequence of these developments, researchers are
now faced with an extensive literature on spectral methods. It
might be a laborious task for those new to the field to collect
the necessary references in order to obtain an overview of the

different methods, as well as an understanding of their simi-
larities and differences. Furthermore, this is a topic that still
instigates much interest, with many open problems deserv-
ing further investigation. Although introductory and short
surveys which cover particular aspects of the spectral ap-
proach have been given before, e.g., by Gotsman [Got03]
on spectral partitioning, layout, and geometry coding, and
more recently by Lévy [L0́6] on a study of Laplace-Beltrami
eigenfunctions, we believe a comprehensive survey is still
called for. Our goal is to provide sufficient theoretical back-
ground, informative insights, as well as a thorough and up-
to-date reference on the topic so as to draw interested re-
searchers into this area and facilitate future research. Our
effort should also serve to bridge the gap between past and
on-going developments in several related disciplines.

The survey is organized as follows. We start with a histor-
ical account on the use of spectral methods. Section 3 offers
an overview of the spectral approach, its general solution
paradigm, and possible classifications. Section 4 motivates
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Figure 1: Overview of the spectral approach to geometry processing. (a) An input mesh with certain relationship, e.g., geodesic
distances between its primitives, is considered. (b) A linear mesh operator A is derived from this relationship. (c) Matrix A
is eigendecomposed. (d) The eigenstructure is utilized in some way to serve the application as hand. Here, we construct the
projection of the input mesh vertex coordinates y into the space spanned by the first three eigenvectors of A, where A is the
graph Laplacian of the mesh (Section 2). The resulting structure lies in the plane and we show its boundary contour.

the spectral approach through a few examples and mentions
at a high level several natural applications. In Section 5, we
provide some theoretical background with several theorems
from linear algebra and other results that are frequently en-
countered in the literature covering spectral methods. Sec-
tions 6 and 7 survey existing operators used for spectral
mesh processing and analysis, while Section 8 outlines how
the different eigenstructures can be utilized to solve specific
problems. Computational issues are addressed in Section 9.
Section 10 finally provides a detailed survey of specific ap-
plications. Finally, we summarize and offer a few open ques-
tions for future consideration in Section 11.

2. A historical account

Historically, there have been three major threads underly-
ing the development of spectral methods: spectral graph the-
ory, a signal processing view relating to the classical Fourier
analysis, and works in computer vision and machine learn-
ing, in particular those on kernel principal component anal-
ysis and spectral clustering. Spectral mesh processing draws
inspirations from all these developments.

2.1. Spectral graph theory and the Fielder vector

Long before spectral methods came about in the com-
puter graphics and geometry processing community, a great
deal of knowledge from the field of spectral graph theory
had been accumulated, following the pioneering work of
Fielder [Fie73] in the 1970’s. A detailed account of results
from this theory can be found in the book by Chung [Chu97],
two survey papers by Mohar [MP93, Moh97], as well as
other graph theory texts, e.g., [Bol98].

The focus in spectral graph theory has been to derive rela-
tionships between the eigenvalues of the Laplacian or adja-
cency matrices of a graph and various fundamental proper-
ties of the graph, e.g., its diameter and connectivity [Chu97].
Given a graph G = (V,E) with n vertices, the graph Lapla-

cian K = K(G) is an n×n matrix where

Ki j =


−1 if (i, j) ∈ E,
di if i = j,
0 otherwise,

and di is the degree or valence of vertex i.

In multidimensional calculus the Laplacian is a second-
order differential operator frequently encountered in
physics, e.g., in the study of wave propagation, heat dif-
fusion, electrostatics, and fluid mechanics. In Riemannian
geometry, the Laplace operator can be generalized to
operate on functions defined on surfaces. The resulting
Laplace-Beltrami operator is of particular interest in ge-
ometry processing. It has long been known that the graph
Laplacian can be seen as a combinatorial version of the
Laplace-Beltrami operator [Moh97]. Thus the interplay be-
tween spectral Riemannian geometry [Cha84] and spectral
graph theory has been a subject of much study [Chu97].

One major development stemming from spectral graph
theory that has found many practical applications involves
the use of the Fielder vector, the eigenvector of a graph
Laplacian corresponding to the smallest non-zero eigen-
value. These applications include graph layout [DPS02,
Kor03], image segmentation via normalized cut [SM00],
graph partitioning for parallel computing [AKY99], as well
as sparse matrix reordering [BPS93] in numerical linear al-
gebra. For the most part, these works had not received a
great deal of attention in the graphics community until re-
cently. For example, Fielder vectors have be used for mesh
sequencing [IL05] and segmentation [ZL05, LZ07].

2.2. The signal processing view

Treating the mesh vertex coordinates as a 3D signal defined
over the underlying mesh graph, Taubin [Tau95] first in-
troduced the use of mesh Laplacian operators for discrete
geometry processing in his SIGGRAPH 1995 paper. What
had motivated this development were not results from spec-
tral graph theory but an analogy between spectral analy-
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sis with respect to the mesh Laplacian and the classical
discrete Fourier analysis. Such an analysis was then ap-
plied over the irregular grids characterizing general meshes.
Specifically, mesh smoothing was carried out via low-pass
filtering. Subsequently, projections of a mesh signal into
the eigenspaces of particular mesh Laplacians have been
studied for different problems, e.g., implicit mesh fairing
[DMSB99, KR05, ZF03], geometry compression [KG00],
and mesh watermarking [OTMM01, OMT02]. A summary
of the filtering approach to mesh processing was given by
Taubin [Tau00]. Mesh Laplacian operators also allow us
to define differential coordinates to represent mesh geom-
etry, which is useful in applications such as mesh editing
and shape interpolation; these works have been surveyed by
Sorkine [Sor05] in her state-of-the-art report.

While mesh filtering [Tau95, DMSB99, ZF03] can be
efficiently carried out in the spatial domain via convolu-
tion, methods which require explicit eigenvector computa-
tion, e.g., geometry compression [KG00] or mesh water-
marking [OTMM01], had suffered from the high compu-
tational cost. One remedy proposed was to partition the
mesh into smaller patches and perform spectral processing
on a per patch basis [KG00]. Another approach is to con-
vert each patch into one having regular connectivity so that
the classical Fourier transform, which admits fast computa-
tions, may be performed [KG01]. Similarly, one may also
choose to perform regular resampling geometrically over
each patch and conduct Fourier analysis [PG01]. However,
artifacts emerging at the artificially introduced patch bound-
aries may occur and it would still be desirable to perform
global spectral analysis over the whole mesh surface seam-
lessly. Recently, efficient schemes for eigenvector computa-
tion, e.g., with the use of multi-grid methods [KCH02], spec-
tral shift [DBG∗06, VL08], and eigenvector approximation
via the Nyström method [FBCM04], have fueled renewed
interests in spectral mesh processing.

2.3. Works in computer vision and machine learning

At the same time, developments in fields such as computer
vision and machine learning on spectral techniques have
started to exert more influence on the computer graphics
community. These inspiring developments include spectral
graph matching and point correspondence from computer
vision, dating back to the works of Umeyama [Ume88]
and Shapiro and Brady [SB92] in the late 1980’s and early
1990’s. Extremal properties of the eigenvectors known from
linear algebra provided the theoretical background. These
techniques have been extended to the correspondence be-
tween 3D meshes, e.g., [JZvK07].

The method of spectral clustering [vL06] from machine
learning, along with its variants, has received increased at-
tention in the geometry processing community, e.g., for
problems such as mesh segmentation [LZ04,LZ07] and sur-
face reconstruction from point clouds [KSO04]. Central to

Figure 2: Construction of a spectral embedding. The oper-
ator A is defined by a Gaussian of the pairwise Euclidean
distances between the input points.

the idea of spectral clustering is a transformation of input
data from its original domain to a spectral domain, result-
ing in an embedding that is constructed using a set of eigen-
vectors of an appropriately defined linear operator; see Fig-
ure 2. Such an idea also underlines the closely related con-
cepts of isomaps [TL00], locally linear embedding [RS00],
Laplacian eigenmaps [BN03], and kernel principal compo-
nent analysis (kernel PCA) [SSrM98]. It turns out that the
kernel view can be used to unify these concepts [HLMS04],
all as means for dimensionality reduction on manifolds.

Efforts on unifying related concepts using the spectral ap-
proach continue in the machine learning community, e.g.,
using learning eigenfunctions to link spectral clustering
with kernel PCA [BDLR∗04]. Also important are works
which focus on explaining the success of spectral meth-
ods [ST96, NJW02] as well as discovering their limitations
[vLBB05]. While at the same time, the geometry process-
ing community has fulfilled the promise of the spectral ap-
proach, in particular the use of spectral embeddings, in a
variety of applications including planar [ZKK02, MTAD08]
and spherical [Got03] mesh parameterization, shape cor-
respondence [JZvK07] and retrieval [EK03], quadrilateral
remeshing [DBG∗06], global intrinsic symmetry detection
[OSG08], and mesh segmentation [LZ07, dGGV08].

3. Overview of the spectral approach

Most spectral methods have a basic framework in common,
which can be roughly divided into three steps; see Figure 1
for an illustration. Note that throughout the paper, we only
require the input mesh to be a 2-manifold embedded in 3D;
the mesh can possibly have boundaries.

1. A matrix M which represents a discrete linear operator
based on the structure of the input mesh is constructed,
typically as a discretization of some continuous opera-
tor. This matrix can be seen as incorporating pairwise re-
lations between mesh elements. That is, each entry Mi j
possesses a value that represents the relation between the
vertices (faces or other primitives) i and j of the mesh.
The pairwise relations, sometimes called affinities, can
take into account only the mesh connectivity or combine
topological and geometric information.
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2. An eigendecomposition of the matrix M is performed,
that is, its eigenvalues and eigenvectors are computed.

3. Resulting structures from the decomposition are em-
ployed in a problem-specific manner to obtain a solu-
tion. In the example shown in Figure 1, the application
is mesh segmentation. We see that the spectral transform
from 3D mesh data to 2D contour data, while still pre-
serving certain salient geometric features (the three tips
of the 2D contour correspond to the two ears and the tail
of the bunny), simplifies the processing task [LZ07].

The above framework leads to a few possible classifica-
tions of spectral methods.

• Based on the operator used:
Depending on whether the matrix M should be defined by
the geometry of the input mesh or only its connectivity,
one can classify linear mesh operators used for spectral
analysis as either combinatorial or geometric.

It is also possible to distinguish between matrices
which encode graph adjacency and matrices which ap-
proximate the Laplacian operator [Bol98,Chu97,Moh97].
In graph-theoretic terminology, the adjacency matrix
is sometimes said to model the Lagrangian of a
graph [Bol98]. Note here that for a given graph G and
a scalar function v defined on the vertices of G, the
Lagrangian fG(v) = 〈Av,v〉, where 〈,〉 is the conven-
tional dot product and A is the adjacency matrix. One
possible extension of the graph Laplacian operator is
to the class of discrete Schrödinger operators, e.g.,
see [BHL∗04, DGLS01]. The precise definition of these
and other operators mentioned in this section will be
given in Sections 6 and 7.

Both the graph adjacency and the Laplacian matrices
can also be extended to incorporate higher-order neigh-
borhood information. That is, relationships between all
pairs of mesh elements are modeled instead of only con-
sidering element pairs that are adjacent in a mesh graph. A
particularly important class of such operators are the so-
called Gram matrices, e.g., see [STWCK05]. These matri-
ces play a crucial role in several techniques from machine
learning, including spectral clustering [vL06] and kernel-
based methods [SS02], e.g., kernel PCA [SSM98].

• Based on the eigenstructures used:
In graph theory, the focus has been placed on the eigen-
values of graph adjacency or Laplacian matrices. Many
results are known which relate these eigenvalues to graph-
theoretical properties [Chu97]. While from a theoretical
point of view, it is of interest to obtain various bounds on
the graph invariants from the eigenvalues. Several practi-
cal applications simply rely on the eigenvalues of appro-
priately defined graphs to characterize geometric shapes,
e.g., [JZ07, RWP06, SMD∗05, SSGD03].

Indeed, eigenvalues and eigenspace projections are
primarily used to derive shape descriptors (or signatures)

for shape matching and retrieval, where the latter, ob-
tained by projecting a mesh representation along the ap-
propriate eigenvectors, mimics the behavior of Fourier de-
scriptors [ZR72] in the classical setting.

Eigenvectors, on the other hand, are most frequently
used to derive a spectral embedding of the input data, e.g.,
a mesh shape. Often, the new (spectral) domain is more
convenient to operate on, e.g., it is low-dimensional, while
the transform still retains as much information about the
input data as possible. This issue, along with the use of
eigenvalues and Fourier descriptors for shape characteri-
zation, will be discussed further in Sections 8 and 10.

• Based on the dimensionality of the eigenstructure:
Such a classification is the most relevant to the use of
eigenvectors for constructing spectral embeddings. One-
dimensional embeddings typically serve as solutions to
ordering or sequencing problems, where some specific op-
timization criterion is to be met. In many instances, the
optimization problem is NP-hard and the use of an eigen-
vector provides a good heuristic [DPS02, MP93]. Of par-
ticular importance is the Fiedler vector [Fie73]. For ex-
ample, it has been used by the well-known normalized cut
algorithm for image segmentation [SM00].

Two-dimensional spectral embeddings have been
used for graph drawing [KCH02] and mesh flat-
tening [ZSGS04, ZKK02], and three-dimensional
embeddings have been applied to spherical mesh parame-
terization [Got03]. Generally speaking, low-dimensional
embeddings can be utilized to facilitate solutions to
several geometric processing problems, including mesh
segmentation [LZ04, ZL05, LZ07] and correspon-
dence [JZvK07]. These works are inspired by the use of
the spectral approach for clustering [vL06] and graph
matching [SB92, Ume88].

4. Motivation

In this section, we motivate the use of the spectral approach
for mesh processing and analysis from several perspectives.
These discussions naturally reveal which classes of prob-
lems are suitable for the spectral approach. Several examples
are presented to better illustrate the ideas.

4.1. “Harmonic” behavior of Laplacian eigenvectors

One of the main reasons that combinatorial and geometric
Laplacians are often considered for spectral mesh process-
ing is that their eigenvectors possess similar properties as
the classical Fourier basis functions. By representing mesh
geometry using a discrete signal defined over the manifold
mesh surface, it is commonly believed that a “Fourier trans-
form” of such a signal can be obtained by an eigenspace pro-
jection of the signal along the eigenvectors of a mesh Lapla-
cian. This stipulation was first applied by Taubin [Tau95] to
develop a signal processing framework for mesh fairing.
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Figure 3: Color plots of the first 12 eigenvectors of the graph Laplacian for the Max Planck mesh. Vertices whose corresponding
eigenvector entry is zero, which are part of a nodal set, are shown in gray (nodal sets are discussed in Section 6.6.2).

Indeed, the classical Fourier transform of a periodic 1D
signal can be seen as the decomposition of the signal into a
linear combination of the eigenvectors of the Laplacian op-
erator. It is worth noting here that this statement still holds
if we replace the Laplacian operator by any circulant ma-
trix [Jai89]. A combinatorial mesh Laplacian is then adopted
to conduct Fourier analysis on a mesh signal.

An important distinction between the mesh case and the
classical Fourier transform however is that while the latter
uses a fixed set of basis functions, the eigenvectors which
serve as “Fourier-like” bases for mesh signal processing
would change depending on mesh connectivity, geometry,
and which type of Laplacian operator is adopted. Neverthe-
less, the eigenvectors of the mesh Laplacians all appear to
exhibit “harmonic behavior”, loosely referring to their os-
cillatory nature. They are seen as the vibration modes or
the harmonics of the mesh surface with their correspond-
ing eigenvalues as the associated frequencies [Tau95]. Here
we recall that in the classical setting, harmonic functions are
solutions to the Laplace equation with Dirichlet boundary
conditions. With the above analogy, mesh fairing can then be
carried out via low-pass filtering. This approach and subse-
quent developments have been described in detail in [Tau00].

In Figure 3, we give color plots of the first 12 eigenvec-
tors of the combinatorial graph Laplacian of the Max Planck
mesh, where the entries of an eigenvector are color-mapped.
As we can see, the harmonic behavior of the eigenvectors is

evident. Although the filtering approach proposed by Taubin
does not fall strictly into the category of spectral methods
since neither the eigenvalues nor the eigenvectors of the
mesh Laplacian are explicitly computed, the resemblance to
classical Fourier analysis implies that any application which
utilizes the Fourier transform can be applied in the mesh
setting, e.g., JPEG-like geometry compression [KG00]. In
Figure 4, we show a horse model (with 7,502 vertices and
15,000 faces) reconstructed using a few spectral coefficients
derived from the graph Laplacian.

4.2. Modeling of global characteristics

Although each entry in a linear mesh operator may encode
only local information, it is widely held that the eigenval-
ues and eigenvectors of the operator can reveal meaningful
global information about the mesh shape. This is hardly sur-
prising from the perspective of spectral graph theory, where
many results are known which relate extremal properties of
a graph, e.g., its diameter and Cheeger constant, with the
eigenvalues of the graph Laplacian.

As Chung stated in her book [Chu97], results from spec-
tral theory suggest that the Laplacian eigenvalues are closely
related to almost all major graph invariants. Thus if a matrix
models the structures of a shape, either in terms of topology
or geometry, then we would expect its set of eigenvalues to
provide an adequate characterization of the shape. Indeed,
this has motivated the use of graph spectra for shape match-
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(a) Original model. (b) With 300 eigenvectors. (c) With 200 eigenvectors. (d) With 100 eigenvectors.

(e) With 50 eigenvectors. (f) With 10 eigenvectors. (g) With 5 eigenvectors. (h) With 3 eigenvectors.

Figure 4: The horse model shown in (a) is reconstructed in (b)-(h) using the indicated number of eigenvectors of the graph
Laplacian. The original model has 7,502 vertices and 15,000 faces.

ing and retrieval in computer vision [SMD∗05,SSGD03] and
geometry processing [JZ07,RWP06]. The eigenvalues serve
as compact global shape descriptors. They are sorted by their
magnitudes so as to establish a correspondence for comput-
ing the similarity distance between two shapes. In this con-
text, it is not necessary to consider what particular character-
istic an individual eigenvalue reveals.

Compared with eigenvalues, eigenvectors provide a more
refined shape characterization which also tends to have a
global nature. For instance, it can be shown [SFYD04] that
pairwise distances between points given by the spectral em-
beddings derived from the graph Laplacian model the so-
called commute-time distances [Lov93], a global measure
related to the behavior of random walks on a graph. Eigen-
vectors also possess extremal properties, highlighted by the
Courant-Fischer theorem (given in Section 5), which en-
able spectral techniques to provide high-quality results for
several NP-hard global optimization problems, including
normalized cuts [SM97] and the linear arrangement prob-
lem [DPS02], among others [MP93].

4.3. Structure revelation

Depending on the requirement of the problem at hand, the
operator we use to compute the spectral embeddings can be
made to incorporate any intrinsic measure on a shape in or-
der to obtain useful invariance properties, e.g., with respect
to part articulation. In Figure 5, we show 3D spectral em-
beddings of a few human and hand models obtained from
an operator derived from geodesic distances over the mesh

Figure 5: Spectral embeddings (bottom row) of some ar-
ticulated 3D shapes (top row) from the McGill 3D shape
benchmark database [McG]. Since the mesh operator is con-
structed from geodesic distances, the embeddings are nor-
malized with respect to shape bending.

surfaces. As geodesic distance is bending-tolerant, the re-
sulting embeddings are normalized with respect to bend-
ing and can facilitate shape retrieval under part articula-
tion [EK03, JZ07]. Recently, such embeddings have been
exploited to detect global intrinsic symmetries in a shape
[OSG08]. To better handle moderate stretchings in a shape,
Liu et al. [LZSCO09] propose to augment geodesic distances
and normal variations by a volume-based part-aware surface
distance to derive spectral embeddings for shape analysis.

Generally speaking, with an appropriately chosen linear
operator, the resulting spectral embedding can better reveal,
single out, or even exaggerate useful underlying structures
in the input data. The above example shows that via a trans-
formation into the spectral domain, certain intrinsic shape
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Figure 6: Unfolding of a “Swiss roll” dataset which pre-
serves distances measured over the surface of the roll. These
images are taken from [TL00].

Figure 7: Result of spectral clustering, shown in (c), on the
2-ring data set (a). (b) shows the 2D spectral embedding.

structures, e.g., part composition of the shape, are better re-
vealed by removing the effects of other features, e.g., those
resulting from shape bending. In other instances, the spec-
tral approach can present the nonlinear structures in an input
data in a high-dimensional feature space so that they become
much easier to handle. In particular, the nonlinear structures
may be “unfolded” into linear ones so that methods based on
linear transformations and linear separators, e.g., PCA and
k-means clustering, can be applied. An illustration of such
an “unfolding” is given in Figure 6. This concept is often
referred to as the “kernel trick” in the machine learning lit-
erature [HLMS04], whereby linear classifiers can be used to
solve non-linear problems.

One classical example to illustrate the “kernel trick” at
work is the clustering of the 2-ring data set shown in Fig-
ure 7(a). Although to a human observer, the data should
clearly be clustered into an outer and an inner ring via a cir-
cular separator, conventional clustering methods such as k-
means or support vectors would fail. However, by construct-
ing an operator using a Gaussian kernel (applying a Gaus-
sian to the pairwise Euclidean distances between the input
points) and then spectrally embedding the data into the 2D
domain, we arrive at the set shown in Figure 7(b). This set
is trivial to cluster via k-means to obtain the desired result in
(c), as there is a clear linear separator. This is an instance of
the spectral clustering method [vL06].

4.4. Dimensionality reduction

Typically, the dimensionality of the linear operator used for
spectral mesh analysis is equal to the size of the input mesh,
which can become quite large. By properly selecting a small
number of leading eigenvectors of the operator to construct

(a) Optimal cut. (b) Result of line search.

Figure 8: First cut on the Igea model (example taken
from [LZ07]). (a) The best cut present in the mesh face se-
quence. (b) Result from line search based on part salience.

an embedding, the dimensionality of the problem is effec-
tively reduced while the global characteristics of the origi-
nal data set are still retained. In fact, the extremal properties
of the eigenvectors ensure that the spectral embeddings are
“information-preserving”; this is suggested by a theorem due
to Eckart and Young [EY36], which we give in Section 5 as
Theorem 5.5. Furthermore, there is evidence that the clus-
ter structures in the input data may be enhanced in a low-
dimensional embedding space, as hinted by the Polarization
Theorem [BH03] (Theorem 5.6 in Section 5).

Some of the advantages of dimensionality reduction in-
clude computational efficiency and problem simplification.
One such example is image segmentation using normal-
ized cuts [SM00]. In a recursive setting, each iteration of
the segmentation algorithm corresponds to a line search
along a 1D embedding obtained by the Fiedler vector of a
weighted graph Laplacian. The same idea has been applied
to mesh segmentation [ZL05, LZ07] where the simplicity of
the line search allows the incorporation of any efficiently
computable (but not necessarily easy to optimize) search cri-
teria, e.g., part salience [HS97]. In Figure 8(a), we show
the best cut present in the mesh face sequence obtained us-
ing the 1D spectral embedding technique given by Liu and
Zhang [LZ07]. This example reflects the ability of spectral
embeddings to reveal, in only one dimension, meaningful
global shape characteristics for a model that is difficult to
segment. However, line search based on part salience does
not always return the best result, as shown in (b). This is due
to the inability of the part salience measure to capture the
most meaningful cut.

5. Theoretical background

In this section, we list a few theorems from linear algebra
related to eigenstructures of general matrices, as well as a
few useful results concerning spectral embeddings. These in-
clude the Spectral Theorem, the Courant-Fischer Theorem,
the Ky-Fan theorem [Bha97], and the Polarization Theo-
rem [BH03]. These theorems are stated here without proofs.
Proofs of some of these theorems can be found in the associ-
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ated references. The Spectral and Courant-Fischer theorems
are well known in linear algebra, whose proofs can be found
in many standard linear algebra texts, e.g., [Mey00, TB97].

Let M be an n× n diagonalizable matrix with eigen-
values λ1 ≤ λ2 ≤ . . . ≤ λn and associated eigenvectors
v1,v2, . . . ,vn. By definition,

Mvi = λi vi and vi 6= 0, for i ∈ {1, . . . ,n}.

The set of eigenvalues λ(M) = {λ1,λ2, . . . ,λn} is known as
the spectrum of the matrix.

When the matrix M is generalized to a linear operator
acting on a Hilbert space, the eigenvectors become eigen-
functions of the operator. For our purpose, we will focus
on real symmetric matrices, whose counterpart in functional
analysis are compact self-adjoint operators. The main advan-
tage offered by symmetric matrices is that they possess real
eigenvalues whose eigenvectors form an orthogonal basis,
that is, vᵀ

i v j = 0 for i 6= j. The eigendecomposition of a real
symmetric matrix is described by the Spectral Theorem:

Theorem 5.1 (The Spectral Theorem) Let S be a real sym-
metric matrix of dimension n. Then we have

S = V ΛVᵀ =
n

∑
i=1

λiviv
ᵀ
i ,

the eigendecomposition of S, where V = [v1 v2 . . . vn] is
the matrix of eigenvectors of S and Λ is the diagonal matrix
of the eigenvalues of S. The eigenvalues of S are real and
its eigenvectors are orthogonal, i.e., VᵀV = I, where Mᵀ de-
notes the transpose of a matrix M and I is the identity matrix.

One of the most fundamental theorems which characterize
eigenvalues and eigenvectors of a symmetric matrix is the
Courant-Fischer theorem. It reveals certain extremal prop-
erty of eigenvectors, which has frequently motivated the use
of eigenvectors and the embeddings they define for solving
a variety of optimization problems.

Theorem 5.2 (Courant-Fischer) Let S be a real symmetric
matrix of dimension n. Then its eigenvalues λ1 ≤ λ2 ≤ . . .≤
λn satisfy the following,

λi = min
V⊂Rn

dim V=i

max
v∈V
‖v‖2=1

vᵀSv

where V is a subspace of Rn with the given dimension. When
considering only the smallest eigenvalue of S, we have

λ1 = min
‖v‖2=1

vᵀSv.

Similarly, the largest eigenvalue

λn = max
‖v‖2=1

vᵀSv.

The unit length constraint can be removed if the quadratic
form vᵀSv in Theorem 5.2 is replaced with the well-known
Rayleigh quotient vᵀSv/vᵀv. Another way of characterizing
the eigenstructures is the following result, which can be seen
as a corollary of the Courant-Fischer Theorem.

Theorem 5.3 Let S be a real symmetric matrix of dimen-
sion n. Then its eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn satisfy the
following,

λi = min
‖v‖2=1

vᵀvk=0, k<i

vᵀSv

where v1, . . . ,vi−1 are the eigenvectors of S corresponding
to eigenvalues λ1, . . . ,λi−1, respectively.

Another useful theorem which relates the sum of the par-
tial spectrum of a symmetric matrix to the respective eigen-
vectors is also known.

Theorem 5.4 (Ky-Fan) Let S be a real symmetric matrix
with eigenvalues λ1 ≤ λ2 ≤ . . .≤ λn. Then

k

∑
i=1

λi = min
U∈Rn×k

UᵀU=Ik

tr (UᵀSU),

where tr(M) denotes the trace of a matrix M and Ik is the
k× k identity matrix.

One may also interpret Theorem 5.4 as saying that a set
of k orthogonal vectors which minimizes the matrix trace
in the theorem is given by the k eigenvectors corresponding
to the k smallest eigenvalues. Clearly, if U consists of the
k eigenvectors of S corresponding to eigenvalues λ1, . . . ,λk,
then we have tr (UᵀSU) = ∑

k
i=1 λi.

Taking an alternative view, we will see that the set of lead-
ing eigenvectors of a symmetric matrix plays a role in low-
rank approximation of matrices, as given by a theorem due
to Eckart and Young [EY36]. This result is useful in studying
the properties of spectral embeddings, e.g., [BH03, dST04].

Theorem 5.5 (Eckart-Young) Let S be a real, symmetric
and positive semi-definite matrix of dimension n and let
S = V ΛVᵀ be the eigendecomposition of S. Suppose that the
eigenvalues, given along the diagonal of Λ, are in descend-
ing order. Let X = V Λ

1/2 be the matrix of eigenvectors that
are scaled by the square root of their respective eigenval-
ues. Denote by X(k) ∈Rn×k a truncated version of X , i.e., its
columns consist of the k leading columns of X . Then

X(k) = argmin
U ∈ Rn×k

rank(U) = k

‖S−UUᵀ‖F ,

where rank(M) denotes the rank of a matrix M and ‖ · ‖F is
the Frobenius norm.

Theorem 5.5 states that the outer product of the k largest
eigenvectors of S (eigenvectors corresponding to the largest
eigenvalues), when scaled using the square root of their re-
spective eigenvalues, provides the best rank-k approxima-
tion of S. As a related result, we mention an interesting the-
orem which suggests that the clustering structures in a data
set are somewhat exaggerated as the dimensionality of the
spectral embedding decreases. This is the Polarization theo-
rem due to Brand and Huang [BH03].
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Theorem 5.6 (Polarization Theorem) Denote by
S(k) = X(k)X

ᵀ
(k) the best rank-k approximation of S

with respect to the Frobenius norm, where X(k) is as defined
in Theorem 5.5. As S is projected to successively lower
ranks S(n−1),S(n−2), . . . ,S(2),S(1), the sum of squared
angle-cosines,

sk = ∑
i 6= j

(cosθ
(k)
i j )2 = ∑

i 6= j

 x(k)ᵀ
i x(k)

j

‖x(k)
i ‖2 · ‖x

(k)
j ‖2

2

is strictly increasing, where x(k)
i is the i-th row of X(k).

This theorem states that as the dimensionality of the repre-
sentation is reduced, the distribution of the cosines migrates
away from 0 towards two poles +1 or −1, such that the an-
gles migrate from θi j = π/2 to θi j ∈ {0,π}.

6. Mesh Laplacian operators

The mesh Laplacians are the most commonly used opera-
tors for spectral mesh processing. In this section we discuss
these operators. In Section 7 we examine other operators that
have been adopted for spectral analysis, most of which can
be viewed as extensions of the Laplacian operators described
here. These operators and their applications appear mostly in
the fields of computer vision and machine learning.

We group mesh Laplacian operators into two categories.
On the one hand are operators that have been extensively
studied in graph theory [Chu97]. These operators are deter-
mined by the connectivity of the graph that is the 1-skeleton
of the mesh and they do not explicitly encode geometric
information. We refer to such operators as combinatorial
mesh Laplacians. Although these operators are based solely
upon topological information, their eigenfunctions gener-
ally exhibit a remarkable conformity to the mesh geometry.
This is a manifestation of the fact that meshes are usually
constructed in such a way that the connectivity implicitly
encodes geometric information [IGG01]. Nonetheless, the
eigenfunctions of these operators are inherently sensitive to
changes in mesh connectivity.

The other category of mesh Laplacians represents dis-
cretizations of the Laplace-Beltrami operator from Rieman-
nian geometry [Ros97, Cha84]. Since these operators do ex-
plicitly encode geometric information we refer to them as
geometric mesh Laplacians. While the combinatorial Lapla-
cians are meaningfully defined on general meshes, the geo-
metric mesh Laplacians require a manifold triangle mesh.
The eigenfunctions of these operators exhibit robustness
with respect to changes in mesh connectivity [DZM07].

Despite their distinct heritage, both categories of mesh
Laplacians can be encompassed in a single mathematical
definition. We present this definition and several fundamen-
tal properties in Section 6.2. Subsequent subsections develop
each of the two categories and their properties.

6.1. Notation

A triangle mesh with n vertices is represented as M =
(G ,P), where G = (V,E) models the mesh graph, with V
denoting the set of mesh vertices and E ⊆ V ×V the set of
edges. P ∈Rn×3 represents the geometry of the mesh, given
by an array of 3D vertex coordinates. Each vertex i ∈ V has
an associated position vector, denoted by pi = [xi yi zi]; it
corresponds to the i-th row of P. The set of 1-ring neigh-
bours of i is N(i) = { j ∈V |(i, j) ∈ E}.

Matrices are denoted by upper-case letters (e.g., M), vec-
tors by lower-case bold (e.g., v), and scalars or functions by
lower-case roman (e.g., s). The i-th element of a vector v is
denoted by vi, and the (i, j)-th element of a matrix M by Mi j.

6.2. Mesh Laplacians: overview and properties

Mesh Laplacian operators are linear operators that act on
functions defined on a mesh. These functions are specified
by their values at the vertices. Thus if a mesh M has n ver-
tices, then functions on M will be represented by vectors
with n components and a mesh Laplacian will be described
by an n×n matrix.

Loosely speaking, a mesh Laplacian operator locally takes
the difference between the value of a function at a vertex and
a weighted average of its values at the first-order or imme-
diate neighbour vertices. Although we will discuss general-
izations, for introductory purposes a Laplacian, L, will have
a local form given by

(L f)i = b−1
i ∑

j∈N(i)
wi j
(

fi− f j
)
. (1)

The edge weights, wi j, are symmetric: wi j = w ji. The factor
b−1

i is a positive number. Its expression as an inverse will
appear natural in subsequent developments.

A Laplacian satisfying equation (1) is called a first order
Laplacian because its definition at a given vertex involves
only the one-ring neighbours. On a manifold triangle mesh,
the matrix of such an operator will be sparse, with an average
of seven nonzero entries per row.

6.2.1. Zero row sum

An important property imposed by equation (1) is the zero
row sum. If f is a constant vector, i.e., one all of whose com-
ponents are the same, then f lies in the kernel of L, since
Lf = 0 for an operator L with zero row sum. This implies
that the constant vectors are eigenvectors of L with eigen-
value zero, and allows the identification of a DC component
of the spectral projection to be discussed in Section 8.3. It
is known [MP93, Moh97] that the multiplicity of the zero
eigenvalue equals the number of connected components in
the graph.
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6.2.2. Eigenvector orthogonality

An operator that is locally expressed by (1) can be factored
into the product of a diagonal and a symmetric matrix

L = B−1S, (2)

where B−1 is a diagonal matrix whose diagonal entries are
the b−1

i ’s and S is a symmetric matrix whose diagonal entries
are given by Sii = ∑ j∈N(i) wi j and whose off diagonal entries
are −wi j . Although L itself is not symmetric in general, it is
similar to the symmetric matrix O = B−1/2SB−1/2 since

L = B−1S = B−1/2B−1/2SB−1/2B1/2 = B−1/2OB1/2.

Thus L and O have the same real eigenvalues. And if v is an
eigenvector of O with eigenvalue λ, then u = B−1/2v is an
eigenvector of L with the same eigenvalue. As mentioned in
Section 9.1, these observations can be exploited to facilitate
the computation of eigenvectors of L.

The eigenvectors of O are mutually orthogonal, since O is
symmetric. This is not generally true for L. However, if we
define a scalar product by

〈f,g〉B = fᵀBg, (3)

then the eigenvectors of L are orthogonal with respect to that
product: 〈

ui,u j
〉

B = uᵀ
i Bu j = vᵀ

i v j = δi j.

Thus although a Laplacian satisfying equation (1) is not
symmetric in general, for most applications the properties,
such as orthogonality of the eigenvectors, that motivate the
desire for a symmetric matrix can be recovered by using the
appropriate scalar product.

The above arguments apply whenever B−1 is symmetric
positive definite, not just diagonal, since in this case B−1/2

is well defined. Thus the comments are quite general, since
any matrix L, symmetric or not, which has real eigenvalues
and a complete set of eigenvectors can be written in the form
(2): If L = XΛX−1 is the eigendecomposition of L, then we
have the positive definite B−1 = XXᵀ and S = (XXᵀ)−1L =
(XXᵀ)−1XΛX−1 = (X−1)

ᵀ
ΛX−1 is symmetric.

The inner product (3), renders a matrix of the form (2)
self-adjoint. If this inner product is employed, then theorems
which demand a symmetric matrix can be applied. For exam-
ple, the Courant-Fisher theorem becomes

λi = min
V⊂Rn

dim V=i

max
v∈V
‖v‖B=1

〈v,Lv〉B,

where ‖v‖B =
√
〈v,v〉B. To see this, transform L into the

basis of its eigenvectors. The Courant-Fisher theorem ap-
plies to the resulting diagonal matrix, Λ. Replacing Λ with
X−1LX and v with X−1v yields the above expression.

6.2.3. Positive semi-definiteness

Equation (1) does not guarantee that L is positive semidefi-
nite, but such a property is desirable in a Laplacian operator:
the zero eigenvalue associated with the constant (zero fre-
quency) eigenvectors should be the smallest one.

Suppose that the weights wi j’s are non-negative. Then L
is positive semi-definite with respect to the appropriate inner
product (3). Indeed, it is straightforward to show that

〈f,Lf〉B = fᵀSf =
1
2

n

∑
i, j=1

wi j( fi− f j)
2 ≥ 0. (4)

However, some important Laplacians, specifically the cotan-
gent operator in Section 6.5, may have negative weights in
S, yet they can still be shown to be positive semi-definite.

6.2.4. Mesh Laplacians: no free lunch

We have highlighted here the characteristic properties of
mesh Laplacians that are important for most spectral pro-
cessing applications. Mesh Laplacians are ubiquitous in ge-
ometry processing, not just when spectral methods are em-
ployed. Depending on the application, different properties
may be deemed fundamental. In an interesting recent work,
Wardetzky et al. [WMKG07] listed several properties, in-
cluding the ones above, which may be naturally expected of
a mesh Laplacian. They then went on to demonstrate that
a certain four of these properties cannot be simultaneously
satisfied by any one operator on all triangle meshes.

6.3. Combinatorial mesh Laplacians

On a mesh M = (V,E,P), a combinatorial mesh Laplacian
is completely defined by the graph associated with the mesh;
the geometry component, P, plays no role.

6.3.1. Graph Laplacian

The adjacency matrix W of M is given by

Wi j =
{

1 if (i, j) ∈ E,
0 otherwise.

The degree matrix D is defined as

Di j =
{

di = |N(i)| if i = j,
0 otherwise.

di is said to be the degree of vertex i. W and D are n× n
matrices, where n = |V |.

We define the graph Laplacian matrix K as

K = D−W.

Referring to equation (1), K corresponds to setting bi = 1
and wi j = Wi j for all i, j. The operator K is also known as
the Kirchoff operator [OTMM01], as it has been encoun-
tered in the study of electrical networks by Kirchoff. In that
context, the (weighted) adjacency matrix W is referred as the
conductance matrix [GM00].
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6.3.2. Tutte Laplacian

Another operator that has been applied as a combinatorial
mesh Laplacian was used by Taubin [Tau95] in his signal
processing approach to mesh fairing. It has also been used in
the context of planar graph drawing [Kor03], first studied by
Tutte [Tut63]. Following the terminology used by Gotsman
et al. [Got03], we call this operator the Tutte Laplacian. It is
defined as

T = D−1K,

thus

Ti j =


1 if i = j,
−1/di if (i, j) ∈ E,
0 otherwise.

In other words we take b−1
i = d−1

i in equation (1).

Of course, T , while possessing useful properties, is not
a symmetric matrix. This fact has been responsible for the
creation of several associated combinatorial operators.

6.3.3. Normalized graph Laplacian

In the literature, there is no consensus as to what should be
called a graph Laplacian. In Chung’s book [Chu97], for ex-
ample, the following symmetrized version of T ,

Q = D−1/2KD−1/2,

with

Qi j =


1 if i = j,
−1/

√
did j if (i, j) ∈ E,

0 otherwise,

is called a graph Laplacian. In this paper, we call Q the
normalized graph Laplacian. Since Q is similar to T =
D−1/2QD1/2, it has the same spectrum. However, it is not a
Laplacian as defined by equation (1). In particular it does not
have a zero row sum. For spectral processing, the main utility
of Q is to provide a symmetric matrix to facilitate computa-
tion of the eigenvectors of T , as described in Section 9.1.

6.3.4. Other symmetrized graph Laplacians

Another way to obtain a symmetric version from the initial
non-symmetric Laplacian T is by applying the simple trans-
formation T ′ = 1

2 (T + Tᵀ), as suggested by Lévy [L0́6].
Zhang [Zha04] proposes a new symmetric operator which
approximates the Tutte Laplacian. A common drawback of
these suggestions is that their geometric significance is un-
clear. More recent works tend to prefer to treat the symme-
try issue by exploiting an appropriate inner product, as de-
scribed in Section 6.2.2; see [VL08] for example.

The Tutte Laplacian T can also be “symmetrized” into a
second-order operator T ′′ = TᵀT , where the non-zero en-
tries of the matrix extend to the second-order neighbors of a
vertex [Zha04]. The eigendecomposition of T ′′ is related to

the singular value decomposition of T : the nonzero singular
values of T are the square roots of the nonzero eigenvalues
of T ′′ [TB97].

6.3.5. Weighted variations

Finally, it is trivial to extend the above definitions to
weighted graphs, where the graph adjacency matrix W
would be defined by Wi j = w(ei j) = wi j, for some edge
weight w : E → R+, whenever (i, j) ∈ E. Then, it is
necessary to define the diagonal entries of the degree matrix
D as Dii = ∑ j∈N(i) wi j.

6.4. Comments on combinatorial Laplacians

Zhang [Zha04] has examined various matrix-theoretic prop-
erties of the three (unweighted) combinatorial Laplacians K,
T and Q. While the eigenvectors of the three operators ap-
pear qualitatively similar, it was shown that depending on
the application, there are some subtle differences between
them. For example, unlike K and T , the eigenvector of Q
corresponding to the smallest (zero) eigenvalue is not a con-
stant vector, where we assume that the mesh in question is
connected. It follows that the normalized graph Laplacian Q
cannot be used for low-pass filtering as done in [Tau95].

In the context of spectral mesh compression, Ben-Chen
and Gotsman [BCG05] demonstrate that if a specific distri-
bution of geometries is assumed, then the graph Laplacian K
is optimal in terms of capturing the most spectral power for
a given number of leading eigenvectors. This result is based
on the idea that the spectral decomposition of a mesh signal
of a certain class is equivalent to its PCA, when this class is
equipped with the specific probability distribution.

However, it has been shown [ZB04, Zha04] that although
optimal for a specific singular multivariate Gaussian distri-
bution, the graph Laplacian K tends to exhibit more sensi-
tivity towards vertex degrees, resulting in artifacts in meshes
reconstructed from a truncated spectrum, as shown in Fig-
ure 9. In comparison, the Tutte Laplacian appears to possess
more desirable properties in this regard and as well as when
they are applied to spectral graph drawing [Kor03].

6.4.1. Graph Laplacian and Laplace-Beltrami operator

Following Mohar [Moh97], we show below that the graph
Laplacian K can be seen as a combinatorial analogue of the
Laplace-Beltrami operator defined on a manifold.

Let us first define an oriented incidence matrix R of a
mesh graph G as follows. Orient each of the m edges of G in
an arbitrary manner. Then R ∈ Rn×m is an oriented vertex-
edge incidence matrix where

Rie =
{
−1 if i is the initial vertex of edge e,
+1 if i is the terminal vertex of edge e.

It is not hard to show that K = RRᵀ regardless of the assign-
ment of edge orientations [Moh97].
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(a) (b)

(c) (d)

Figure 9: Comparing results of spectral compression of the
sphere (a) using 100 out of 379 spectral coefficients: (b)
graph Laplacian K, (c) Tutte Laplacian T , (d) second-order
Tutte Laplacian T ′′ = TᵀT . Visible artifacts result from us-
ing the graph Laplacian K, likely due to variations in the
vertex degrees; the sphere mesh has 4-8 connectivity.

The Laplace-Beltrami operator ∆ on a Riemannian man-
ifold is a second-order differential operator which can be
defined as the divergence of the gradient [Ros97]. Given a
smooth real scalar function φ defined over the manifold,

∆(φ) = div(grad(φ)).

Now let G = (V,E) be the graph of a triangulation of the Rie-
mannian manifold. Consider the scalar function f : V → R
which is a restriction of φ to V . Let R be an oriented inci-
dence matrix corresponding to G, imposing an orientation
on the edges of G. Consider the operator Rᵀ which acts on
functions f and returns a real-valued discrete function acting
on the set of oriented edges,

(Rᵀ f )(e) = f (e+)− f (e−),

where e+ and e− are the terminal and initial vertices of the
oriented edge e, respectively. One can view the above as a
natural analogue of the gradient of φ along edge e. It fol-
lows that K = RRᵀ provides an analogue of the divergence of
the gradient, giving a combinatorial version of the Laplace-
Beltrami operator.

Recently these insights have been developed in consid-
erably more detail within the emerging framework of the
discrete exterior calculus which we discuss briefly in Sec-
tion 6.5.1. In this context, Rᵀ is related to the discrete dif-
ferential operator, d, and R plays the role of the discrete
co-differential, ∂, when the geometry of the triangles is ig-
nored. The Laplacian (Laplace-deRham operator) is defined

by ∆ = ∂d + d∂, but the second term vanishes on 0-forms,
i.e., functions. However, the Laplacian that is defined by
means of the discrete exterior calculus belongs to the family
of geometric mesh Laplacians.

6.5. Geometric mesh Laplacians

Although the graph Laplacian can be viewed as a dis-
crete analogue of the Laplace-Beltrami operator, a geomet-
ric mesh Laplacian is constructed at the outset as a discrete
approximation to the Laplace-Beltrami operator (Laplacian)
on a smooth surface. On a C∞ surface without boundary, S ,
the Laplacian is a self-adjoint positive semi-definite operator
∆S : C∞(S )→C∞(S ). An important, and even defining,
property of ∆S is thatZ

S
f ∆S gda =

Z
S

∇ f ·∇gda, (5)

from which the self-adjoint nature of the Laplacian is an im-
mediate consequence. On a surface with boundary, if von
Neumann boundary conditions are imposed, constraining the
functions to those whose gradient vanishes at the boundary,
the Laplacian remains self-adjoint. Choosing g = f yieldsZ

S
f ∆S f da =

Z
S
‖∇ f‖2 da, (6)

and establishes the positive semi-definite property. The right
hand side of equation (6) defines the Dirichlet energy of the
function f .

Given a triangle mesh M that approximates S , we want
an operator LM on M that will play the role that ∆S plays
on S . Let A(M ) denote the n dimensional vector space of
functions on M . These functions are defined by their values
at the vertices and we let the function values on the faces
of the mesh be given by barycentric interpolation so that
A(M ) represents piecewise linear (continuous) functions on
M . To emphasize this viewpoint we drop, in this subsec-
tion, the convention of using boldface to represent elements
of A(M ).

Within this setting a candidate, C, for LM is defined by

[C f ]i = ∑
j∈N(i)

1
2
(cotαi j + cotβi j)( fi− f j), (7)

where the angles αi j and βi j are subtended by the edge (i, j),
as shown in Figure 10. In reference to (1), C is obtained by
setting bi = 1 for all i and wi j = 1

2 (cotαi j + cotβi j) for all
i, j. If (i, j) is a boundary edge, the cotβi j term vanishes.
This corresponds to imposing von Neumann boundary con-
ditions [VL08].

The expression (7) was obtained in [PP93] by noting that
on a triangular face T with vertices pi,p j,pk, we have

∇ϕk ·∇ϕ j =− 1
2aT

cot∠pi, (8)

where ϕ j is the nodal linear basis function (“hat function”)
centred at p j and aT is the area of T .
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Figure 10: Angles involved in the calculation of cotangent
weights for geometric mesh Laplacians.

In analogy with equation (6), C satisfies

f ᵀC f = ∑
T∈F
‖∇ f |T ‖2 aT

=
Z
M
‖∇ f‖2 da

(9)

for piecewise linear functions f ∈ A(M ). Also, C is a sym-
metric matrix so it possesses the important self-adjoint prop-
erty of the Laplacian.

The expression on the right hand side of equation (7) can
be arrived at in several different ways. Let Ωi be a neighbour-
hood of pi in M such that ∂Ωi intersects at the midpoint each
of the edges linking pi with its one-ring neigbours. A natural
choice for such a cell has its boundary defined by straight
lines connecting the barycentres of the triangles adjacent to
pi with the midpoints of the adjacent edges. We refer to cells
constructed in this way as barycells.

The rhs of equation (7) can then be seen to be the total
flux of the gradient of the piecewise linear function f that
crosses ∂Ωi. Such a computation can be found in [MDSB02]
for example. By the divergence theorem it follows that [C f ]i
is actually the integral of the Laplacian of f over Ωi.

This points to a weakness in C as a representative of
the Laplacian: as an operator A(M ) → A(M ), C alone
yields nodal values that represent the integral of LM f over
a neighbourhood, rather than a point sample.

The solution proposed in [MDSB02] is to divide by the
area of the local neighbourhood thus yielding values that are
local spatial averages of the Laplacian. If D is the diagonal
matrix whose entries are |Ωi|, the area of Ωi, then the Lapla-
cian proposed is Y = D−1C. Then

[Y f ]i =
1
|Ωi| ∑

j∈N(i)

1
2
(cotαi j + cotβ ji)( fi− f j). (10)

However, Y is not a symmetric matrix, so the self-adjoint
character of the Laplacian is apparently sacrificed. By mod-
ifying the definition of the scalar product in A(M ) as de-
scribed in Section 6.2.2, the situation is salvaged. For f ,g ∈
A(M ) we define

〈 f ,g〉D = f ᵀDg. (11)

Then 〈Y f ,g〉D = 〈 f ,Y g〉D and the eigenfunctions of Y are
orthogonal with respect to this inner product.

Now instead of equation (9) we have

〈 f ,Y f 〉D = ∑
T∈F
‖∇ f |T ‖2 aT

=
Z
M
‖∇ f‖2 da.

(12)

For a smooth surface S the usual scalar product on C∞(S )
is given by

〈 f ,g〉=
Z
S

f gda. (13)

If we interpret 〈 f ,g〉D as an approximation to this integral,
then equation (12) is again in analogy with equation (6) and
in a sense the analogy is closer.

However, there is something aesthetically wanting about
using an approximation to the integral as a scalar product.
Members of A(M ) are viewed as piecewise linear functions.
As such we are able to integrate them analytically. Indeed for
f ,g ∈ A(M ) we haveZ

M
f gda =

Z
M

∑
i

fiϕi ∑
j

g jϕ j da = f ᵀBg, (14)

where B is the mass matrix encountered in finite element
analysis. It is a sparse matrix defined by Bi j =

R
M ϕiϕ j da.

If pi and p j are neighbours, then Bi j is 1/12 the area of the
triangles adjacent to edge (i, j). The diagonal entries Bii are
1/6 the area of the triangles adjacent to pi. All other entries
are zero.

Thus another candidate for LM is suggested: F = B−1C.
This matrix is self-adjoint with respect to the inner prod-
uct 〈 f ,g〉B = f ᵀBg, which also renders its eigenvectors or-
thogonal. The generalized eigenvalue problem that yields
the spectral decomposition of F (c.f. Section 9.1) is ex-
actly the equation that results when the eigenfunctions of
the Laplace-Beltrami operator are computed via the finite el-
ement method with linear elements. For this reason we refer
to F as the FEM operator.

The sum of all the entries in B or D is equal to the surface
area of M . Note that when the matrix D is defined using
barycells as the Ωi, then the diagonal entries of D are just
the sums of the corresponding rows in B. Thus in this con-
text the operator defined by Y represents the lumped mass
approximation that is sometimes employed in finite element
methods.

Although the FEM Laplacian, F , has been presented as
an improvement upon Y and C, experiments indicate that Y
produces eigenvalues and eigenfunctions which are more ro-
bust with respect to variations in the mesh used to represent a
surface [DZM07]. As mentioned in [SF73], this may be due
to the dampening effect of the lumped mass approximation
cancelling errors in the stiffness matrix C.

The geometric Laplacians we have introduced are based
on the cotan formula (7) and represent the most popular dis-
crete approximations to the Laplace-Beltrami operator cur-
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rently used for geometry processing. There are other ge-
ometric Laplacians, as presented in [Fuj95], [Flo03] and
[Xu04a] for example, but these have not seen use in spec-
tral geometry processing, although a Laplacian similar to
the one presented by Fujiwara was used by Karni and Gots-
man [KG00] to assess errors for spectral compression.

6.5.1. The discrete exterior calculus

In differential geometry, differential forms give rise to the
powerful mathematical framework of the exterior calculus.
This framework is further enriched with the introduction
of the metric tensor in Riemannian geometry, and yields a
Laplacian operator which acts on differential forms. This op-
erator is sometimes referred to as the Laplace-deRham op-
erator, or the Hodge Laplacian. Functions on a manifold
are 0-forms and, when applied to functions, the Laplace-
deRham operator is equivalent to the Laplace-Beltrami op-
erator. A formal development of the subject can be found
in [Ros97, Cha84].

The discrete exterior calculus is an emerging mathemat-
ical framework that is formulated from first principles in
the discrete setting. It is modeled on its differential coun-
terpart, but it should not be considered as a discretization of
the continuous theory. A persuasive argument for this view-
point, together with a gentle introduction to the subject is
provided in [DKT06]. More comprehensive expositions can
be found in the original work of Hirani [Hir03], and in a later
preprint [DHLM05].

The discrete exterior calculus provides yet another deriva-
tion of the cotan weights that appear in equation (7). The
Laplacian operator computed in this way has the same form
as Y in equation (10), but the cell Ωi in this context is the
circumcentric dual cell of pi. It will have sides that connect
the circumcentres of the triangles incident to pi. On general
triangle meshes these abstract dual cells may have sides with
negative length and may even have a negative area. However,
if the triangle mesh is intrinsically Delaunay, then the cells
are simply the Voronoi cells of the vertices. A derivation of
this Laplacian can be found in [VL08,DHLM05]. A nice ex-
position presented in [WBH∗07] ties this viewpoint in with
the presentation of the geometric Laplacians given above.

In closely related work, Glickenstein [Gli05] focuses on
the orthogonal duality structures that can be defined on M
when the vertices are given distinct weights. The Laplacian
of the discrete exterior calculus is thus presented as a par-
ticular case of a family of mesh Laplacians; the case when
all the vertices are equally weighted. The dual cells studied
by Glickenstein are related to the power diagram of a set of
weighted vertices in the same way as the circumcentric dual
cells are related to the Voronoi diagram.

6.6. Spectral properties of mesh Laplacians

We present here some notable properties of the eigenvectors
of a mesh Laplacian operator. We begin by noting in Sec-

tion 6.6.1 that the order in which the mesh vertices are in-
dexed has no consequence on the eigenvectors. This obser-
vation applies to any mesh operator, not just the Laplacians.
We then discuss in Section 6.6.2 a property that is particu-
lar to eigenfunctions of a Laplacian, and in Section 6.6.3 the
characteristics of the Fiedler vector.

6.6.1. Mesh indexing independence and symmetries

We represent a function on a mesh M as a vector of values at
the vertices. The order in which we choose to list the vertices
is arbitrary, but it determines the matrix representation of
a linear operator that acts on mesh functions. However, the
spectral decomposition of the linear operator is not affected
by this choice.

Indeed, for any permutation of the n indices of M , there
is an associated permutation matrix P which is obtained by
performing the same permutation on the columns of the n×
n identity matrix. Note that P is an orthogonal matrix. If f
is a function represented with the original ordering of the
vertices, then f̃ = P f will be its representation in the new
ordering. A linear operator L is represented by a matrix and
it transforms as

L̃ = PLPᵀ.

Now if

Lv = λv,

then

L̃ṽ = (PLPᵀ)(Pv) = PLv = Pλv = λṽ. (15)

We see that the transformed eigenvector becomes an eigen-
vector of the transformed operator and the eigenvalue re-
mains the same.

Equation (15) has interesting implications with respect to
symmetries of M . If P leaves L invariant, i.e. PLPᵀ = L, we
say that P represents a symmetry of M with respect to L. In
this case, Equation (15) implies that v and ṽ are both eigen-
vectors of L with the same eigenvalue. If the corresponding
eigenvalue has multiplicity one, then Pv = v. Thus v cap-
tures the symmetry expressed by P. On highly symmetric
meshes, such eigenvectors can have attractive visualizations,
as shown in Figure 11.

6.6.2. Nodal domains

An interesting property of the Laplacians is the relation be-
tween their eigenfunctions and the number of nodal domains
that they possess. A nodal set associated with an eigenfunc-
tion is defined as the set composed of points at which the
eigenfunction takes on the value zero, and it partitions the
surface into a set of nodal domains, each taking on positive
or negative values in the eigenfunction. Examples of these
structures are shown in Figure 3. The nodal sets and domains
are bounded by the following theorem [JNT01]:
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(a) (b)

Figure 11: (a) The spherical mesh is created by projecting
the vertices of a subdivided icosahedron onto the sphere. (b)
An eigenvector associated with an eigenvalue of multiplicity
one must be invariant under all transformations which leave
the operator invariant. In this case the symmetry group of the
icosahedron is comprised entirely of such transformations.

Theorem 6.1 (Courant’s Nodal Domain Theorem) Let the
eigenfunctions of the Laplace operator be labelled in in-
creasing order. Then, the i-th eigenfunction can have at most
i nodal domains, i.e., the zero set of the i-th eigenfunction
can separate the domain into at most i connected compo-
nents.

This theorem only gives an upper bound for the number of
nodal domains. The direct relation between a specific eigen-
function and its nodal domains is not clear. One possible ap-
plication of nodal domains is pointed out by Dong et al. for
spectral mesh quadrangulation [DBG∗06], explained in Sec-
tion 10.2.1. By carefully selecting a suitable eigenfunction,
they take advantage of the partitioning given by the nodal
domains and remesh an input surface.

Discrete analogues of Courant’s Nodal Domain Theorem
are known [DGLS01]. In fact, these results are applicable
to a larger class of discrete operators, called the discrete
Schrödinger operators, which we define in Section 7.1.

6.6.3. The Fiedler vector

By Theorem 5.3 and Equation (4), we can characterize the
Fiedler vector v2(K) of a connected graph, the eigenvector
associated with the smallest non-zero eigenvalue of K, as
follows,

v2(K) = argminuᵀ1=0, ‖u‖2=1

n

∑
i, j=1

wi j(ui−u j)
2.

This extremal property of the Fiedler vector reveals its use-
fulness in providing a heuristic solution to the NP-hard min-
imum linear arrangement (MLA) problem. MLA seeks a
permutation π : V → {1,2, . . . ,n} of the vertices of a graph
G = (V,E) so as to minimize

n

∑
i, j=1

wi j|π(i)−π( j)|.

Another example is the well-known normalized cut (NCut)
problem, which is also NP-hard. Given a graph G = (V,E),
with edge weights w : E → R+, NCut seeks a bipartition of
V into disjoint subsets A and B which minimizes the normal-
ized cut criterion,

NCut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)
assoc(B,V )

,

where cut(A,B) = ∑i∈A, j∈B wi j defines the graph cut,
assoc(A,V ) = ∑i∈A,k∈V wik is the total connection from
nodes in A to all the nodes in the graph, and assoc(B,V )
is similarly defined. It has been shown that when relaxing
NCut into the real value domain, the Fiedler vector of the
Tutte Laplacian for G provides a solution [SM00].

7. Other operators for spectral methods

The spectral characteristics and sparsity of the mesh Lapla-
cian operators make them ideally suited for many spectral
mesh processing applications. However, many other opera-
tors have also demonstrated their utility, in particular in the
fields of computer vision and machine learning where the
input data can take an abstract form and do not reside on an
apparent surface. We now present a few such examples.

7.1. Discrete Schrödinger operator

In quantum mechanics, the Schrödinger operator and
Schrödinger equation play a central role as the latter models
how the quantum state of a physical system changes in time.
The discrete Schrödinger operator is defined by supple-
menting the discrete Laplacian with a potential function,
which is again a term arising from the study of electrical
networks. The potential function is a real function, taking
on both negative and positive values, defined on the vertices
of a graph. Specifically, for a given graph G = (V,E), H is a
discrete Schrödinger operator for G if

Hi j =


a negative real number if (i, j) ∈ E,
any real number if i = j,
0 otherwise.

Such operators have been considered by Yves Colin de
Verdière [dV90] in the study of a particular spectral graph
invariant, as well as by Davies et al. al. [DGLS01] who have
proved discrete analogues of Courant’s nodal domain theo-
rem [JNT01].

A special sub-class of discrete Schrödinger operators,
those having exactly one negative eigenvalue, have drawn
particular attention. Lovász and Schrijver [LS99] have
proved that if a graph G is planar and 3-connected, then
any matrix M in that special sub-class for G with co-rank
3 (dimensionality of the null-space of M) admits a valid
null-space embedding on the unit sphere. The null-space
embedding is obtained by the three eigenvectors corre-
sponding to the zero eigenvalue of M. This result has
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subsequently been utilized by Gotsman et al. [Got03] to
construct valid spherical mesh parameterizations.

7.2. Higher-order operators

In the fields of computer vision and machine learning, spec-
tral methods usually employ a different operator, the so-
called affinity matrix [SM00, Wei99]. Each entry Wi j of an
affinity matrix W represents a numerical relation, the affin-
ity, between two data points i and j, e.g., pixels in an im-
age, vertices in a mesh, or two face models in the context
of face recognition. Note that the affinity matrix differs from
the Laplacian in that affinities between all data pairs are de-
fined. Therefore this matrix is not sparse in general. In prac-
tice, this non-sparse structure implies more memory require-
ments and more expensive computations.

7.2.1. Gram matrices

A particularly important class of affinity matrices are the so-
called Gram matrices, which are frequently encountered in
machine learning. By definition, an n× n Gram matrix is
a matrix of inner products for a given set of n-dimensional
vectors. Specifically, let v1, v2, . . ., vk be such a set of vec-
tors, then their associated Gram matrix is given by G∈Rn×n

where Gi j =
〈
vi,v j

〉
. If we denote by V the n× k matrix

whose columns are the vi’s, then G = VV T.

The use of Gram matrices in machine learning is typi-
cally associated with the application of the “kernel trick”
[HLMS04]. In this context, the Gram matrix is derived by
applying a kernel function to pairwise distances between a
set of data points. For example, when a Gaussian kernel is
used, we obtain a Gram matrix W with

Wi j = e−||xi−x j||2/2σ
2

where the Gaussian width σ is a free parameter. Further-
more, a normalized affinity matrix N can be obtained,

N = D−1/2WD−1/2,

where the degree matrix D is defined as before.

While some authors advocate the use of the normal-
ized affinity matrix, e.g., for spectral clustering [NJW02,
vLBB05], others employ the unnormalized W ; subtle dif-
ferences between the two have been studied [vLBB05].
In practice, different ways of defining the affinities exist
for mesh processing. One possibility is to use vertex-to-
vertex distances in the graph implied by the mesh connec-
tivity [LZvK06, JZvK07]. This is often a way to approxi-
mate geodesic distances. Other approaches have also been
proposed, e.g., refining the graph distances by considering
the more global traversal distances. These consist in defin-
ing the affinity between two vertices as the number of paths
in the graph between these two elements [SFYD04].

7.2.2. Dissimilarity-based multidimensional scaling

Multidimensional scaling or MDS is a set of related tech-
niques often employed in data visualization for exploring
similarities or dissimilarities in data [CC94]. In classical
MDS, low-dimensional spectral embeddings, typically
2D, are constructed to facilitate visualization of high-
dimensional data. Given some n× n pairwise dissimilarity
distance matrix M, e.g., one which measures squared
geodesic distances between mesh vertices [ZKK02], double
centering and normalization results in the matrix,

B =−1
2

JMJ,

where

J = I− 1
n

11ᵀ

and 1 is the column vector of 1’s. It can be shown that the
Euclidean distances between points in the spectral embed-
ding obtained by the eigenvectors of B closely approximate
the distances in M. The related theory is given in part by
Theorem 5.5. MDS, in combination with geodesic distances,
has been used to obtain bending-invariant shape signa-
tures [EK03] and low-distortion texture mapping [ZKK02].

7.2.3. Non-sparse Laplacian

The affinity matrix, which is analogous to a graph adjacency
matrix, can also be used to define a non-sparse Laplacian,
for lack of a better term. The non-sparse Laplacian is given
by D−W , where D and W are as defined in previous sec-
tions. Basically, this operator can be seen as giving the over-
all structure of a Laplacian to the affinity matrix. Shi and
Malik [SM00] employ a normalized version of this operator
to perform image segmentation based on normalized cuts.

In much of the machine learning literature, the non-sparse
Laplacian with W defined as in Section 7.2.1 is called
the graph Laplacian, e.g., in [BN05]. In this latter work,
convergence of the non-sparse Laplacian to the Laplace-
Beltrami operator is proven. Specifically, the non-sparse
(graph) Laplacian is defined on a cloud of points sampled
near a manifold. Under certain conditions and as the sam-
pling rate goes to infinity, the non-sparse Laplacian can be
shown to approach the Laplace-Beltrami operator of the un-
derlying manifold.

8. Use of different eigenstructures

The eigendecomposition of a linear mesh operator provides
a set of eigenvalues and eigenvectors, which can be directly
used by an application to accomplish different tasks. More-
over, the eigenvectors can also be used as a basis onto which
a signal defined on a triangle mesh is projected. The result-
ing coefficients can be further analyzed or manipulated. In
this section, we expand our discussion on these issues.
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8.1. Use of eigenvalues

Drawing analogies from discrete Fourier analysis, one would
treat the eigenvalues of a mesh Laplacian as measuring the
frequencies of their corresponding eigenfunctions [Tau95].
However, it is not easily seen what the term frequency
means exactly in the context of eigenfunctions that oscil-
late irregularly over a manifold. Furthermore, since differ-
ent meshes generally possess different operators and thus
different eigenbases, using the magnitude of the eigenval-
ues to pair up corresponding eigenvectors between the two
meshes for shape analysis, e.g., correspondence, is unreli-
able [JZ06]. Despite of these issues, much empirical success
has been obtained using eigenvalues as global shape descrip-
tors for graph [SMD∗05] and shape matching [JZ07]. These
applications are described in more detail in Section 10.1.

Besides directly employing the eigenvalues as graph or
shape descriptors, spectral clustering methods use the eigen-
values to scale the corresponding eigenvectors so as to ob-
tain some form of normalization. Caelli and Kosinov [CK04]
scale the eigenvectors by the squares of the corresponding
eigenvalues, while Jain and Zhang [JZ07] provide justifica-
tion for using the square root of the eigenvalues as a scaling
factor. The latter choice is consistent with the scaling used in
spectral clustering [NJW02], normalized cuts [SM00], and
multidimensional scaling [CC94].

8.2. Use of eigenvectors

Eigenvectors are typically used to obtain an embedding of
the input shape in the spectral domain. After obtaining the
eigendecomposition of a specific operator, the coordinates
of vertex i in a k-dimensional embedding are given by the
i-th row of matrix Vk = [v1, . . . ,vk], where v1, . . . ,vk are the
first k eigenvectors from the spectrum (possibly after scal-
ing). Whether the eigenvectors should be in ascending or de-
scending order of eigenvalues depends on the operator that is
being used. In the case of Gram matrices, eigenvectors cor-
responding to the largest eigenvalues are used to compute
spectral embeddings. While for the various Laplacian oper-
ators, the opposite end of the spectrum is considered.

For example, spectral clustering makes use of such em-
beddings. Ng et al. [NJW02] present a method where the
entries of the first k eigenvectors corresponding to the
largest eigenvalues of a normalized affinity matrix (see Sec-
tion 7.2.1) are used to obtain the transformed coordinates
of the input points. Additionally, the embedded points are
projected onto the unit k-sphere. Points that possess high
affinities tend to be grouped together in the spectral domain,
where a simple clustering algorithm, such as k-means, can
reveal the final clusters. Furthermore, the ability of the spec-
tral methods to unfold nonlinearity in the input data has been
demonstrated via numerous examples, including data sets
similar to the one shown in Figure 7.

8.3. Use of eigenprojections

If a mesh operator possesses a set of orthogonal eigenvec-
tors, given by the columns of matrix V , then any discrete
function defined on the mesh vertices, given by a vector x,
can be transformed into the spectral domain by

x̃ = Vᵀx,

where x̃ contains the obtained spectral coefficients. This can
be seen as a change of basis for x. As well, the transform is
energy-preserving in that the Euclidean 2-norm is preserved:
‖x̃‖2 = ‖x‖2. The inverse transform is obtained by

x = V x̃.

These spectral transforms are closely related to the
Fourier transform that is the foundation of signal processing
theory. In geometry processing, the signal considered is
often the embedding function that specifies the 3D coordi-
nates of each vertex. This signal is commonly referred to as
the geometry of the mesh. Thus the geometry signal is an
n×3 matrix P whose ith row is the transpose of the position
vector of the ith vertex.

The resulting coefficients P̃ = VᵀP are then a represen-
tation of the mesh geometry in the spectral domain. A rota-
tion of the mesh yields a corresponding rotation of the spec-
tral coefficients. In other words, the spectral transform com-
mutes with rotations. Indeed, if R is a 3× 3 rotation matrix,
then P′ = PRᵀ is the geometry of the rotated mesh and we
have

P̃′ = VᵀP′ = VᵀPRᵀ = P̃Rᵀ.

If the operator is a Laplacian, translations of the mesh in the
spatial domain do not affect the spectral coefficients since
constant signals lie in the kernel of the operator.

As in the case of Fourier analysis, the intuition is that
when the signal is transformed into the spectral domain, it
might be easier to carry out certain tasks because of the re-
lation of the coefficients to low and high frequency informa-
tion. For example, the projections of P with respect to the
eigenvectors of the graph Laplacian can be used for mesh
compression [KG00]. That is, a set of the transformed co-
efficients from the high-frequency end of the spectrum can
be removed without affecting too much the approximation
quality of the mesh, when it is reconstructed by the inverse
transform.

For spectral watermarking of meshes [OTMM01] how-
ever, it is the low-frequency end of the spectrum that is to
be modulated. This way, the watermark is less perceptible
and the watermarked mesh can become resilient against such
attacks as smoothing. We elaborate more on these in Sec-
tion 10.3. The observation that the human eye is less sen-
sitive to low-frequency errors in geometric shape was first
made by Sorkine et al. [SCOT03] in their work on high-pass
quantization for mesh compression. This work, along with
related developments, can be found in [Sor05].
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9. Efficient computations

Since spectral methods all require the construction of a (pos-
sibly non-sparse) mesh operator and its eigendecomposition,
efficiency is a concern for large meshes. In this section, we
survey several speed-up techniques.

For some operators, such as the FEM operator, the gener-
alized eigenvalue problem, discussed in Section 9.1, is use-
ful for computing the spectrum without the need to construct
an explicit representation of the operator. When it comes to
actual computation, methods that either compute a good ap-
proximation of the eigenvectors or that exploit the structure
of a specific type of matrices have been proposed. When us-
ing a mesh Laplacian, it is natural to exploit its sparsity. One
method proposed to accomplish this makes use of a multi-
scale approach, as described in Section 9.2. An alternative,
which allows one to compute a specific set of eigenvectors,
is to introduce a spectral shift into the operator. This can be
combined with iterative methods to speed up the computa-
tion, as described in Section 9.3. On the other hand, to com-
pute the eigendecomposition of dense affinity matrices, the
Nyström method [FBCM04] can be employed. It is based on
computing approximate eigenvectors given by a number of
sampled elements; see Section 9.4. Thus, it also avoids the
construction of the full matrix describing the operator.

9.1. The generalized eigenvalue problem

Numerical eigensolvers are usually much more efficient at
producing a spectral decomposition if the matrix is sym-
metric. If the matrix has the form (2), with B a diagonal
matrix, then the solver can be given the symmetric matrix
O = B−1/2SB−1/2 which is similar to L and thus has the
same eigenvalues. As described in Section 6.2.2, the eigen-
vectors of O will need to be adjusted by a factor of B−1/2 to
obtain eigenvectors of L.

However, if B is not diagonal, as is the case with the mass
matrix associated with the FEM operator, F = B−1C, then
computing B−1/2 is not a viable option. In fact, there is no
need to compute B−1 at all. Instead, one solves the general-
ized eigenvalue problem,

C f = λB f, (16)

and the matrix F is never explicitly constructed. Equa-
tion (16) can be handled by most popular solvers and it is
equivalent to F f = λ f.

9.2. Exploiting sparsity

Koren et al. [KCH02] propose ACE, or Algebraic multi-
grid Computation of Eigenvectors, a multi-scale method to
accelerate the computation of eigenvectors of Laplacians.
The method proceeds in two steps: coarsening and refine-
ment. An initial high-dimensional problem is progressively
reduced to lower and lower dimensions by applying the

coarsening step, which creates less complex instances of the
problem. The exact solution of one of these low-dimensional
versions of the problem is then computed. Furthermore, the
refinement step progressively translates the solution of the
problem in lower dimensions to higher ones, usually per-
forming some adjustments to the solution, until a solution to
the problem in the original dimension is obtained.

However, the design of the coarsening and refinement
steps is usually application-dependent, since both steps rely
on exploiting a special feature of the problem being solved
and need to preserve the essence of the initial problem. In the
case of Laplacian operators, the sparsity of the related matri-
ces is what allows to speed up the computation of eigenvec-
tors by means of a multi-scale method.

To carry out the coarsening and refinement steps, the key
concept introduced by Koren et al. [KCH02] is that of an
interpolation matrix A, which is an n×m matrix that inter-
polates m-dimensional vectors y into n-dimensional ones x,
given by x = Ay. The interpolation matrix is employed to
obtain a coarsened Laplacian matrix given by Lc = AᵀLA,
where L is the original Laplacian. The same interpolation
matrix is then used for the refinement step, computing the
eigenvectors of the problem at higher and higher resolutions.

The interpolation matrix is created either by contracting
edges on the underlying graph, or by performing a weighted
interpolation of a node from several nodes in the coarser ver-
sion of the problem. The contractions or weighted interpola-
tions are what define the entries of the interpolation matrix,
which can be very sparse, when computed by the contrac-
tions, or less sparse but conveying a more accurate interpo-
lation, when weighted interpolations are used. Determining
which method should be preferentially used depends mainly
on whether the underlying graphs are homogeneous or not.

9.3. Spectral shift and iterative methods

Iterative algorithms compute the eigenvectors of large sparse
matrices in a more efficient manner [TB97]. However, these
methods only allow to obtain the leading eigenvectors of a
matrix. In order to compute eigenvectors associated to a spe-
cific set of eigenvalues, it is necessary to modify the eigen-
problem being solved. Dong et al. [DBG∗06] and Vallet and
Lévy [VL08] accomplish that by utilizing a spectral shift.

The original problem Lv = λv is modified to the form

(L−σI)v = (λ−σ)v

so that when this eigenproblem is solved, the eigenvectors
that are obtained correspond to eigenvalues close to σ. This
is valid due to the fact that, if v is an eigenvector of L with
associated eigenvalue λ, then it is also an eigenvector of L−
σI with associated eigenvalue λ−σ.

Moreover, to compute the eigenvectors associated with
the smallest eigenvalues instead of the leading ones, Val-
let and Lévy [VL08] also resort to the idea of swapping the
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spectrum of a matrix by inverting it. This comes from the
observation that the leading eigenvalues of the eigenprob-
lem L−1v = (1/λ)v are the smallest eigenvalues of Lv = λv,
with the same set of eigenvectors v. This is combined with
the spectral shift to obtain the shift-invert spectral transform,
which can be used to split the computation of the eigenvec-
tors of large matrices into multiple bands. Each band can be
computed in linear time, and this process can be further ac-
celerated by the use of out-of-core factorization methods.

9.4. Nyström approximation

In order to compute the eigendecomposition of large affin-
ity matrices, one technique that can be used to approximate
the leading eigenvectors of sampled matrices is the Nyström
method [FBCM04]. Given a set of mesh verticesZ of size n,
whose affinities are given in the matrix W ∈ Rn×n, the first
step in Nyström’s method is to divide the set Z into a subset
of samples X of size l, with l� n, and a subset Y of size m,
which contains the remaining points.

Next, the affinities between the points in the subsets X
and Y are stored in the matrices A ∈ Rl×l and C ∈ Rm×m,
respectively. The cross-affinities between points of X and Y
are stored in matrix B ∈ Rl×m. Thus, the matrix W can be
written in the following block form

W =
[

A B
Bᵀ C

]
.

After obtaining the eigendecomposition of the matrix A,
given by A = UΛUᵀ, the columns of Ū , expressed below,
are the approximation for the l leading eigenvectors of W ,
that is, the l eigenvectors related to the largest eigenvalues.
Ū is given by Nyström’s method as

Ū =
[

U
BᵀUΛ

−1

]
.

Therefore, only the affinities A between the sampled
points and the cross-affinities B need to be computed in order
to obtain the approximation. Moreover, the original matrix
W can be reconstructed by using the approximated eigen-
vectors. The approximation of W is given by

W̄ = ŪΛŪᵀ =
[

A B
Bᵀ BᵀA−1B

]
.

The quality of this approximation is given by the quantity
‖W −W̄‖, which is equivalent to computing only the norm
of the Schur complement ‖C−BᵀA−1B‖. However, it is ex-
pensive to directly compute this quantity since it requires
the large matrix C. Methods that compute an indirect quality
measure should usually be employed.

The overall complexity of this method is O(l3) for com-
puting the eigendecomposition of matrix A, and O(ml2) for
obtaining the approximated eigenvectors via extrapolation.

Therefore, the problem of computing the leading eigenvec-
tors is reduced from O(n3) to only O(ml2 + l3), recalling that
l� n. In practical applications such as spectral image seg-
mentation [FBCM04], spectral mesh segmentation [LJZ06,
ZL05], and spectral shape correspondence [JZvK07] and re-
trieval [JZ07], l can be as small as less than 1% of n while
still ensuring satisfactory results.

Nevertheless, there are a few issues which emerge with
the use of Nyström’s method. First of all, the approximated
eigenvectors are not orthogonal. Fowlkes et al. [FBCM04]
present two techniques for re-orthogonalization, depending
on whether the affinity matrix A is positive definite or indef-
inite. However, this step may introduce additional numeri-
cal errors. Moreover, the accuracy of the eigenvectors ob-
tained by Nyström’s method is determined by the sampling
technique employed. Different schemes were proposed, e.g.,
random sampling [FBCM04], max-min farthest point sam-
pling [dST04], and greedy sampling based on maximizing
the trace of the matrix BᵀA−1B [LJZ06]. However, these
schemes all judge the quality of a sampling by the approx-
imation quality of the eigenvectors obtained, measured by
standard matrix norms, and they do not take into considera-
tion the application at hand.

10. Applications

In this section, we survey applications which apply the spec-
tral approach. Although our focus will be on spectral meth-
ods for mesh processing and analysis, highly relevant and
representative problems and techniques from other fields
will also be covered for completeness.

Let us first list in Table 1 the relevant references grouped
by applications. Most of these references will be discussed
in detail in subsequent sections. Others have been discussed
in other parts of the paper, where appropriate.

10.1. Use of eigenvalues

Although most applications in the field of geometry pro-
cessing employ eigenvectors to accomplish different tasks,
eigenvalues have been successfully used to address certain
problems, such as graph and shape indexing.

• Graph indexing:
The use of graph spectra for indexing is well known in
computer vision and machine learning, e.g., see a re-
cent comparative study in [ZW05]. However, one should
note the existence of iso-spectral graphs, graphs that are
topologically different yet possessing the same spectra
[CK04]. Recently, Shokoufandeh et al. [SMD∗05] make
use of eigenvalues for indexing graphs that represent hi-
erarchical structures, such as shock graphs that define im-
age silhouettes. The eigenvalues provide a measure indi-
cating which graphs are similar and should be compared
with a more expensive matching algorithm. Basically, the
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Application References
Clustering [NJW02], [VM03], [BN03],

[KVV00], [vLBB05],
[vL06], [BH03], [MP04]

Graph drawing [Hal70], [PST00], [KCH02]
[DPS02], [Kor03]

Graph indexing [SMD∗05]
Graph matching [Ume88], [SB92], [CK04]
Graph partitioning [ST96], [SM97], [PF98],

[Wei99], [AKY99],
Matrix reordering [BPS93]
Mesh compression [KG00], [KG01], [ZB04],

[Zha04], [BCG05]
Mesh parameterization [GGS03], [ZSGS04]

[MTAD08]
Mesh reordering [IL05], [LZvK06]
Mesh segmentation [LZ04], [KLT05], [ZL05]

[dGGV08]
Mesh smoothing [VL08]
Remeshing [DBG∗06]
Shape correspondence [LH05], [JZ06], [JZvK07]

[MCBH07]
Shape indexing [EK03], [RWP06], [JZ07]

[Rus07]
Surface reconstruction [KSO04]
Symmetry detection [OSG08]
Texture mapping [ZKK02]
Watermarking [OTMM01], [OMT02]

Table 1: Applications addressed by spectral methods.

index is defined as the sum of eigenvalues of the adja-
cency matrix of the graph, which allows to obtain a low-
dimensional index. However, in order to also reflect local
properties of the graph, one term corresponding to the sum
of eigenvalues is stored for each subtree of the graph.

• Shape indexing:
For 3D shape indexing, Jain and Zhang [JZ07] propose
to use the leading eigenvalues of an affinity matrix con-
structed using approximated geodesic distances over the
shape surfaces. The similarity between two models is
given by the χ

2-distance between the selected k eigen-
values of the two models, where k is usually very small,
for example, 6. This comparison between the first eigen-
values intuitively corresponds to comparing the variation
of the models in each of the first k nonlinear princi-
pal components. As argued before, the bending invari-
ance of geodesic distances should facilitate the retrieval
of articulated shapes. This has indeed been confirmed
by their experiments on the McGill articulated shape
database [McG]. The simple eigenvalue-based descrip-
tor did outperform two of the best shape descriptors, the
spherical harmonics descriptor [MKR03] and the light

field descriptor [CTSO03], even when they are applied to
the bending-normalized spectral embeddings.

Reuter et al. [RWP06] elect to use the eigenvalues
of the Laplace-Beltrami operator for shape indexing.
Recently, Rustamov [Rus07] also relies on the Laplace-
Beltrami operator and constructs spectral embeddings
using its eigenvectors. Normalization with respect to
bending is also achieved by using this operator and a
slightly modified version of the shape distribution de-
scriptor [OFCD02] is used for indexing and classification.

10.2. Use of eigenvectors

In this section, we survey eigenvector-based methods and
classify them according to the dimensionality of the spec-
tral embeddings used.

10.2.1. 1D embedding

Embedding in one dimension consists in producing a linear
sequence of mesh elements based on the order given by the
entries of one eigenvector. The Fiedler vector has been ex-
tensively used in a number of different applications to obtain
a linear ordering of mesh vertices or faces. However, other
applications also select different eigenvectors to obtain a lin-
ear sequencing of mesh elements.

• Sparse matrix reordering:
Barnard et al. [BPS93] use the Fiedler vector to reduce
the envelope of sparse matrices. By reordering a ma-
trix and optimizing its envelope, the locality of its ele-
ments is increased and the the resulting matrix will be-
come more “banded”. Several numerical algorithms can
improve their performance when applied to a reordered
matrix. The Fiedler vector is selected due to its property
of minimizing the 2-sum in a continuous relaxation of the
problem [MP93].

• Mesh sequencing:
Isenburg and Lindstrom [IL05] introduce the concept
of streaming meshes. The idea is to process very large
meshes that do not fit in main memory by streaming its
components, i.e., transferring blocks of vertices and faces
in an incremental manner from the hard disk to main
memory and back. In this sense, it is highly desirable that
the order in which the vertices and faces are traversed pre-
serves neighboring relations the most, so that only a small
number of mesh elements have to be maintained simulta-
neously in main memory. Therefore, one of the possibili-
ties to obtain such a streaming sequence is also to employ
the Fiedler vector to order the vertices and faces of the
mesh, which provides a linear sequence that heuristically
minimizes vertex separation.

In this context of obtaining a good ordering of mesh
elements, Liu et al. [LZvK06] investigate how the embed-
dings given by an eigenvector of an affinity matrix dif-
fer from the ones given by the Laplacian matrix or other
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possible heuristics. These embeddings are evaluated in
terms of various measures related to the interdependence
of mesh elements, the best known ones being span and
width of vertices and faces. Experiments show that the
embeddings given by the affinity matrix provide a better
trade-off between these two measures, when compared to
other approaches.

• Image segmentation:
In the case of image segmentation, instead of the Fiedler
vector, the eigenvector related to the largest eigenvalue
of an affinity matrix has also been used in a great num-
ber of works, since it essentially provides a heuristic
method for obtaining satisfactory graph partitions [ST96].
Weiss [Wei99] presents a unified view of four well-known
methods that follow this approach, such as the work of Shi
and Malik [SM00] and Perona and Freeman [PF98].

These methods firstly define an affinity matrix W
based on the distances between pixels in the image, which
are seen as nodes in a graph. Next, the eigenvector related
to the eigenvalue that is largest in magnitude or, equiva-
lently, the second smallest eigenvector, in the case of the
method of Shi and Malik [SM00], is computed. In the lat-
ter case, the matrix considered is the non-sparse Lapla-
cian D−W . Finally, the entries of this specific eigenvec-
tor are used to convey a partition of the pixels into two
groups. Either the signs of the entries of the eigenvector
or a thresholding of these entries is used to obtain a bi-
nary partition of the pixels. The essence of this approach
is that this specific eigenvector is a continuous solution
to the discrete problem of minimizing the normalized cut
between two sets of nodes in a graph.

• Spectral clustering for surface reconstruction:
Kolluri et al. [KSO04] follow basically the same approach
for the reconstruction of surfaces from point clouds. Af-
ter constructing a Delaunay tetrahedralization based on
the input points, the tetrahedra are divided into two sets
by a spectral graph partitioning method, which provides
the indication of which tetrahedra are inside of the origi-
nal object and which are outside. Finally, this labeling of
tetrahedra defines a watertight surface. The partitioning of
the tetrahedra is also given by the signs of the entries of
the smallest eigenvector of a pole matrix, which is similar
to a Laplacian.

• Mesh segmentation:
In a different setting, Zhang and Liu [ZL05] propose a
mesh segmentation approach based on a recursive 2-way
spectral clustering method. An affinity matrix encodes
distances between mesh faces, which are a combination
of geodesic and angular distances, that provide informa-
tion for a visually meaningful segmentation. Next, only
the first two largest eigenvectors are computed. This pro-
vides a one-dimensional embedding of faces given by the
quotient of the entries of the two eigenvectors. Finally, the
most salient cut in this embedding is located, given by a

part salience measure. The cut provides a segmentation
of the faces into two parts. This process is recursively re-
peated in order to obtain a hierarchical binary partitioning
of the mesh.

• Spectral mesh quadrangulation:
Dong et al. [DBG∗06] propose to use one specific eigen-
vector of the geometric Laplacian to guide a remeshing
process. Firstly, a suitable eigenfunction of the mesh has
to be selected, which possesses a desired number of criti-
cal points. The critical points are points of minima, max-
ima, or saddle points. Next, the Morse-Smale complex is
extracted from the mesh based on this eigenvector. The
complex is obtained by connecting critical points with
lines of steepest ascend/descend, and partitions the mesh
into rectangular patches, which are then refined and pa-
rameterized, conveying a quadrangular remeshing of the
original model. One of the key points of this method is in
selecting an eigenfunction that provides an adequate par-
tition of the mesh. This is achieved by computing all the
eigenvectors of a simplified version of the mesh, choosing
from these eigenvectors the most suitable for the remesh-
ing task, and then computing the corresponding eigenvec-
tor in the full-resolution mesh by applying a spectral shift
to the underlying matrix.

10.2.2. 2D and 3D embeddings

Instead of using only one eigenvector given by the eigende-
composition of a specific operator, the next possible step is
to use two or three eigenvectors, to obtain a planar or three-
dimensional embedding of the mesh.

• Graph drawing:
Methods that provide such embeddings have been suc-
cessfully applied in the field of graph drawing, where the
main goal is to obtain a disposition of nodes and edges on
a plane or volume which looks organized and is aesthet-
ically pleasing. Early graph drawing algorithms already
proposed to use the Laplacian matrix, as in the work of
Tutte [Tut63], whose method actually dates back to the
work of Fáry [Far48]. However, in Tutte’s method, the
eigenvectors of the Laplacian matrix are not computed.
Instead, the positions of the nodes of a graph are obtained
by solving a linear system based on this matrix.

Hall [Hal70] later proposed to use the eigenvectors of
the Laplacian matrix to embed the nodes of a graph in a
space of arbitrary dimension. The entries of the k eigen-
vectors related to the first smallest non-zero eigenvalues
are used as the coordinates of a node (a k-dimensional em-
bedding). This method has been recently applied in dif-
ferent domains to provide planar embeddings of graphs.
For example, Pisanski and Shawe-Taylor [PST00] use
this method to obtain pleasing drawings of symmetrical
graphs, such as fullerene molecules in chemistry. Ko-
ren et al. [KCH02, Kor03] employ the ACE algorithm
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(Section 9.2) to accelerate Hall’s method in order to ob-
tain drawings of large graphs.

• Planar mesh parameterization via MDS:
Zigelman et al. [ZKK02] use a variant of MDS to obtain a
planar mesh embedding and then map a given texture on
this planar surface. In this work, a geodesic distance ma-
trix is computed by fast marching. Next, the matrix is cen-
tered and its eigendecomposition is computed. The two
eigenvectors which are related to the two largest eigenval-
ues are used to provide a planar embedding of the mesh.
The flattening thus obtained heuristically minimizes dis-
tortions, which is desirable for texture mapping. However,
the absence of triangle fold-overs is not guaranteed.

Following a similar approach, Zhou et al. [ZSGS04]
employ MDS based on geodesic distances to obtain a pa-
rameterization and then a chartification of a given mesh.
By growing patches around representative points, which
are determined according to the spectral embedding, the
mesh is divided into charts. The representatives that are
selected are points that are well-spaced over the mesh and
that are also points of minima or maxima, according to
their coordinates in the spectral embedding.

• MDS for mesh segmentation:
MDS is also used by Katz et al. [KLT05] in mesh segmen-
tation, due to its potential of obtaining a pose-invariant
embedding [EK03]. Three eigenvectors are selected to ob-
tain a 3D embedding. Next, feature points are located in
this normalized space, which guide the segmentation al-
gorithm that partitions the mesh into meaningful parts.

• Spherical mesh parameterization:
Gotsman et al. [GGS03] describe how a spherical param-
eterization of a mesh can be obtained from the eigenvec-
tors of Colin de Verdière matrices. Each graph has a class
of these matrices associated with it. By using the entries
of three eigenvectors of such a matrix as the coordinates
of the mesh vertices, a valid spherical embedding is ob-
tained. By solving a non-linear system based on a Lapla-
cian or a similar operator, a Colin de Verdière matrix is
generated and the three eigenvectors that give the valid
embedding (which are associated to repeated eigenvalues)
are simultaneously computed.

• Spectral conformal parameterization:
Mullen et al. [MTAD08] have brought spectral techniques
to the task of efficiently computing a quality conformal
parameterization of a surface mesh patch. A problem with
previous linear methods for conformal parameterization
is that a couple of boundary vertices needed to be fixed
in order to avoid the trivial solution when minimizing the
conformal energy. The quality of the resulting parameter-
ization can depend significantly on the choice of these
constraint vertices. The insight of Mullen et al. is that
the Fiedler vector of a well crafted generalized eigenvalue
problem yields an appropriate solution without the need

to explicitly constrain specific boundary points. They find
such a Fiedler vector from the equation

LC u = λBu,

where u is the parameterization being sought, LC is the
quadratic form for the conformal energy, and B is a degen-
erate diagonal binary matrix whose nonzero entries corre-
spond to the boundary vertices. An appeal to the Courant-
Fisher theorem (Theorem 5.3) reveals that the Fiedler vec-
tor seeks to minimize the conformal energy, while appro-
priately constraining the boundary vertices.

• Mesh segmentation:
Recently, Liu and Zhang [LZ07] proposed an algorithm
for mesh segmentation via recursive bisection where at
each step, a sub-mesh embedded in 3D is spectrally pro-
jected to 2D and then a contour is extracted from the pla-
nar embedding. Two operators are used in combination to
compute the projection: the well-known graph Laplacian
and a geometric operator designed to emphasize concav-
ity. The two embeddings reveal distinctive shape seman-
tics of the 3D model and complement each other in cap-
turing the structural or geometrical aspects of a segmenta-
tion. Transforming the shape analysis problem to the 2D
domain also facilitates segmentability analysis and sam-
pling, where the latter is needed to identify two samples
residing on different parts of the sub-mesh. These two
samples are used by the Nyström method in the construc-
tion of a 1D face sequence for finding an optimal cut, as
in [ZL05].

10.2.3. Higher-dimensional embedding

Since a set of n eigenvectors can be obtained from the eigen-
decomposition of an n× n matrix, it is natural to intend to
use more eigenvectors simultaneously to extract more infor-
mation from the eigendecomposition.

• Clustering and mesh segmentation:
One of the most well-known techniques in this regard
is spectral clustering [BN03, KVV00, NJW02]. Inter-
ested readers should refer to the recent survey by von
Luxburg [vL06] and the comparative study by Verma and
Meilă [VM03]. The approach by Ng et al. [NJW02] has
already been outlined in Section 8.2. Other approaches
differ only slightly from the core solution paradigm, e.g.,
in terms of the operator used and the dimensionality of the
embedding. Some works, e.g., [AKY99, NJW02, VM03],
seem to suggest that clustering based on multiple eigen-
vectors tends to produce better results compared with
recursive approaches using individual eigenvectors.

Although the reasons for the empirical success of
spectral clustering are still not fully understood, Ng et
al. [NJW02] provide an analysis in terms of matrix per-
turbation theory to show that the algorithm is expected
to work well even in situations where the cluster struc-
ture in the input data is far from an ideal case. There are
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other possible interpretations of spectral clustering, e.g.,
in terms of graph cuts or random walks [vL06].

The ubiquity of the clustering problem makes spec-
tral clustering an extremely useful technique. Besides
the work of Kolluri et al. [KSO04] mentioned in Sec-
tion 10.2.1, Liu and Zhang [LZ04] perform mesh segmen-
tation via spectral clustering. Basically, an affinity matrix
is constructed as in [ZL05]. Next, the eigenvectors given
by the eigendecomposition of this matrix guide a cluster-
ing method, which provides patches of faces that define
the different segments of the mesh returned by the seg-
mentation algorithm. It is shown by example that it can
be advantageous to perform segmentation in the spectral
domain, e.g., in terms of higher-quality cut boundaries as
evidenced by the Polarization Theorem (Theorem 5.6 in
Section 5). The downside however is the computational
cost. In a follow-up work [LJZ06], Nyström approxima-
tion is applied to speed-up spectral mesh segmentation.

Recently, de Goes et al. [dGGV08] present a hierar-
chical segmentation method for articulated bodies. Their
approach relies on the diffusion distance, which is a multi-
scale metric based on the heat kernel (Section 2.1) and
computed from the eigenvectors of the Laplace-Beltrami
operator. The diffusion distance is used to compute a bi-
jection between medial structures and segments of the
model. The medial structures yield a means to further re-
fine the segmentation in an iterative manner and provide a
full hierarchy of segments for the shape.

Huang et al. [HWAG09] also perform hierarchical
shape decomposition via spectral analysis. However, the
operator they use encapsulates shape geometry beyond the
static setting. The idea is to define a certain deformation
energy and use the eigenvectors of the Hessian of the de-
formation energy to characterize the space of possible de-
formations of a given shape. The eigenmodes correspond-
ing to the low-end of the spectrum of the Hessian capture
low-energy or in their formulation, more rigid deforma-
tions, called “typical” deformations. The optimal shape
decomposition they compute is one whose optimal artic-
ulated (piecewise rigid) deformation defined on the parts
of the decomposition best conforms to the basis vectors
of the space of typical deformations. As a result, their
method tends to identify parts of a shape which would
likely remain rigid during the “typical” deformations.

• Shape correspondence and retrieval:
Elad and Kimmel [EK03] use MDS to compute bending-
invariant signatures for meshes. Geodesic distances be-
tween mesh vertices are computed by fast marching. The
resulting spectral embedding effectively normalizes the
mesh shapes with respect to translation, rotation, as well
as bending transformations. The similarity between two
shapes is then given by the Euclidean distance between
the moments of the first few eigenvectors, usually less

than 15, and these similarity distances can be used for
shape classification.

Inspired by works in computer vision on spectral point
correspondence [SB92], Jain and Zhang [JZvK07] rely
on higher-dimensional embeddings based on the eigen-
vectors of an affinity matrix to obtain point correspon-
dence between two mesh shapes. The first k eigenvectors
of the affinity matrix encoding the geodesic distances be-
tween pairs of vertices are used to embed the model in a
k-dimensional space; typically k = 5 or 6. After this pro-
cess is performed for two models, the two embeddings
are non-rigidly aligned via thin-plate splines and the cor-
respondence between the two shapes is given by the prox-
imity of the vertices after such alignment. Any measure
for the cost of a correspondence, e.g., sum of distances
between corresponding vertices, can be used as a similar-
ity distance for shape retrieval.

One of the key observations made in [JZvK07] is the
presence of “eigenvector switching” due to non-uniform
scaling of the shapes. Specifically, the eigenmodes of sim-
ilar shapes do not line up with respect to the magnitude
of their corresponding eigenvalues, as illustrated in Fig-
ure 12. As a result, it is unreliable to sort the eigenvectors
according to the magnitude of their respective eigenval-
ues, as has been done in all works on spectral correspon-
dence so far. Jain and Zhang [JZvK07] rely on a heuris-
tic to “unswitch” the eigenmodes and thin-plate splines to
further align the shapes in the spectral domain [JZvK07].
Recent work of Mateus et al. [MCBH07] addresses the
issue using an alignment by the EM algorithm instead.

The method by Leordeanu and Hebert [LH05] focuses
on the global characteristics of correspondence compu-
tation and aims at finding consistent correspondences be-
tween two sets of shape or image features, where the spec-
tral approach has also found its utility. They build a graph
whose nodes represent possible feature pairings and edge
weights measure how agreeable the pairings are. The prin-
cipal eigenvector of an affinity matrix W , one correspond-
ing to the largest eigenvalue, is inspected to detect how
strongly the graph nodes belong to the main cluster of
W . The idea is that correct feature correspondences are
likely to establish links among each other and thus form a
strongly connected cluster.

• Graph matching:
Generally speaking, graphs are commonly used to model
shape structures, e.g., skeletal graphs [SSGD03], shock
graphs, or Reeb graphs [HSKK01]. The subsequent graph
matching problem is well studied in the computer vision
community, where a number of spectral approaches have
been proposed, e.g., [Ume88, CK04], adding a geometric
flavor to the problem. As a basic framework, a graph ad-
jacency matrix, which may only encode topological infor-
mation, is eigendecomposed, whereby the graph nodes are
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Figure 12: Eigenvector plots for two similar shapes, both with 252 vertices. The entries in an eigenvector are color-mapped. As
we can see, there is an “eigenvector switching” occurring between the fifth and sixth eigenvectors. Such “switching” is difficult
to detect from the magnitude of the eigenvalues. The first 8 eigenvalues for the two shapes are [205.6, 11.4, 4.7, 3.8, 1.8, 0.4,
0.26, 0.1] and [201.9, 10.9, 6.3, 3.4, 1.8, 1.2, 0.31, 0.25], respectively.

mapped into a low-dimensional vector space. The match-
ing problem is solved in the embedding space.

• Global intrinsic symmetry detection:
Ovsjanikov et al. [OSG08] propose an approach to detect
the intrinsic symmetries of a shape which are invariant up
to isometry preserving transformations. They show that if
the shape is embedded into the signature space defined by
the eigenfunctions of the Laplace-Beltrami operator, then
the intrinsic symmetries are transformed into extrinsic Eu-
clidean symmetries (rotations or reflections). However, it
is possible to restrict the search of symmetries only to re-
flections, avoiding the search of rotational symmetries, a
task that can be hard in high-dimensional space. This re-
sult allows to obtain the intrinsic symmetries by first com-
puting the eigenvalues of the operator, then embedding the
shape into the signature space, and finally finding point-
to-point correspondences of symmetric points.

10.3. Use of eigenprojections

Instead of directly using the entries of the eigenvectors to
provide an embedding for a given model, the eigenvectors
can also be used as a basis to transform signals defined on
the vertices of the mesh. One example of such a signal is
the actual geometry of the mesh (the 3D coordinates of its
vertices). The set of eigenvectors given by the eigendecom-
position can be used to project these signals into the spectral
space, where a specific problem might be easier to solve.

• Geometry compression:
Karni and Gotsman [KG00] propose an approach to com-
press the geometry of triangle meshes. Firstly, the set of
eigenvectors of the Tutte Laplacian is computed. Next,
the mesh vertex coordinates are projected into the spec-
tral space spanned by the computed eigenvectors. Part of
the coefficients obtained by this transformation is elim-
inated in order to reduce the storage space required for
mesh geometry. The coefficients related to the eigenvec-
tors associated to larger eigenvalues are firstly removed,
which would correspond to high frequency detail, when
following an analogy with Fourier analysis.

The main drawback of this method is that many eigen-
vectors need to be computed. Karni and Gotsman pro-

pose to partition the mesh into smaller sets of vertices. Al-
though that alleviates the problem of computing the eigen-
vectors for large matrices, it still requires a good partition-
ing of the mesh for the efficiency of the compression, and
artifacts along the partition boundaries are evident when
higher compression rates are employed.

• Watermarking:
Ohbuchi et al. [OTMM01, OMT02] also employ the
eigenprojection approach, but to insert watermarks into
triangle meshes. In this method, the eigenvectors of the
Kirchhoff operator are used as the basis for the projection.
After transforming the geometry of the mesh and obtain-
ing the spectral coefficients, a watermark is inserted into
the model by modifying coefficients at the low-frequency
end of the spectrum. In this way, modifications on the
geometry of the mesh are well-spread over the model
and less noticeable than if they were directly added to
the vertex coordinates. This method also requires the
computation of eigenvectors of the Laplacian operator,
which is prohibitive in the case of large meshes. Mesh
partitioning is again used to address this problem.

• Fourier descriptors:
2D Fourier descriptors have been quite successful as a
means to characterize 2D shapes. Using eigendecompo-
sition with respect to the the mesh Laplacians, one can
compute analogous Fourier-like descriptors to describe
mesh geometry. However, we have not seen such mesh
Fourier descriptors being proposed for shape analysis so
far. There have been methods, e.g., [VS01], which rely on
3D Fourier descriptors for 3D shape retrieval. In this case,
the mesh shapes are first voxelized and 3D Fourier de-
scriptors are extracted from the resulting volumetric data.
We suspect that the main difficulties with the use of mesh
Fourier descriptors for shape matching include computa-
tional costs and the fact that when the eigenmodes vary
between the two mesh shapes to be matched, it becomes
doubtful whether their associated eigenspace projections
can serve as reliable shape descriptors. Also, even when
the shapes are very similar, eigenvector switching, as de-
picted in Figure 12, can occur when the eigenvectors are
ordered by the magnitude of their eigenvalues.
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11. Summary and discussions

In this paper, we describe, motivate, and classify spectral
methods for mesh processing and analysis. Related and rep-
resentative developments from other fields, e.g., computer
vision and machine learning, are also covered. Necessary
theoretical background and illustrative examples are both
provided to facilitate understanding of the various concepts.
Finally, we give a detailed survey of specific spectral meth-
ods developed to solve a diversity of problems.

From a theoretical standpoint, we are still missing an ade-
quate sampling theory for signals defined over 2-manifolds.
We envision this theory to be one whose results and analysis
tools resemble those from the theory of sampling and re-
construction in the regular setting using Fourier transforms.
Fundamental questions concerning the proper definition of
concepts such as frequencies, band-limited surfaces, shift-
invariance, etc., should be addressed.

Take the concept of frequency for example. Our general
belief is that eigenvalues of the mesh Laplacian represent
(squared) frequencies. However, eigenvalues are only able
to indicate global properties of the manifold or global prop-
erties of the associated eigenfunctions. The variability of
eigenfunctions having the same or similar eigenvalues im-
plies that eigenvalues alone cannot provide sufficient char-
acterization of their related eigenfunctions. This has been
the case when we seek a proper ordering of the eigenvec-
tors in order to facilitate robust spectral shape correspon-
dence [JZvK07]. The situation described here differs from
the classical case of the two dimensional Fourier transform
where the eigenfunctions are catalogued by two frequency
values (corresponding to the x and y directions), and the
canonical Fourier basis functions resolve the ambiguity in-
herent in decomposing an eigenspace corresponding to a de-
generate eigenvalue.

Ideally, we would like to find additional characteristic
measures for the eigenfunctions. This, for example, might
help us more easily in locating the right eigenvector for
deriving a high-quality surface quadrangulation automat-
ically [DBG∗06]. As Lévy [L0́6] has eloquently put it,
Laplace-Beltrami eigenfunctions (or eigenfunctions of other
geometric mesh operators) appear to “understand” geome-
try. However, it is not necessarily easy to interpret what the
eigenfunctions are presenting to us. A better understanding
of the eigenvectors and how they relate to the shape of the
underlying manifolds would certainly spark new research
and allow for improvements in the spectral methods.

Other theoretical studies concerning mesh operators and
their eigenstructures include convergence analyses for geo-
metric mesh Laplacians, e.g., Hildebrandt et al. [HPW06]
and Xu [Xu04b], analyses on the sensitivity of the eigen-
structures against shape or connectivity variations, e.g., Dyer
et al. [DZM07], as well as studies on sampling for Nyström
approximation. In this setting, as for the development of a

sampling theory, we are concerned with the interplay be-
tween the continuous and the discrete settings. Also of in-
terest is the robustness of the eigenstructures of different op-
erators under topological changes.

A generalization of the mesh Laplacian operators to
Schrödinger operators introduces a new class of possible op-
erators. However, it is not clear how to easily construct spe-
cific instances of these operators in an efficient manner, e.g.,
the Colin de Verdière matrices for spherical mesh parame-
terization [GGS03], or to explicitly design such an opera-
tor having the property that it is optimal for a specific ap-
plication, e.g., compression or segmentation. Recent devel-
opment on discrete exterior calculus [Hir03] may also shed
light on what other possible discrete operators can be suit-
able for mesh processing.

Another wide avenue for further research is the study of
the theoretical aspects of spectral clustering algorithms. First
of all, the reason for the good results obtained by these algo-
rithms is still not completely understood. Fortunately there
exist a number of studies and analyses which elucidate cer-
tain properties responsible for the exceptional behavior of
these algorithms, e.g., [vL06]. These studies might serve as
a starting point to explain the functioning of spectral cluster-
ing and lead to ideas for more complete explanations. Addi-
tionally, other aspects, such as how to select the dimension-
ality of the spectral embeddings or how to construct affin-
ity matrices more suitable for specific applications, e.g., for
proper handling of part stretching in shape characterization,
still require further attention.
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