
1

Accelerated

Ray Tracing

Thomas Funkhouser

Princeton University

C0S 526, Fall 2012

Ray-Scene Intersection

• Find intersection with front-most primitive in scene

A

B

C

D

E

F

Intersection FindIntersection(Ray ray, Scene scene)

{

 min_t = infinity

 min_primitive = NULL

 For each primitive in scene {

 t = Intersect(ray, primitive);

 if (t < min_t) then

 min_primitive = primitive

 min_t = t

 }

 }

 return Intersection(min_t, min_primitive)

}

Ray-Scene Intersection

Acceleration techniques
 Bounding volume hierarchies

 Spatial partitions

» Uniform grids

» Octrees

» BSP trees

Beyond rays
 Beam tracing

 etc.

Bounding Volumes

• Check for intersection with simple shape first
 If ray doesn’t intersect bounding volume,

then it doesn’t intersect its contents

Bounding Volume Hierarchies I

• Build hierarchy of bounding volumes
 Bounding volume of interior node contains all children

1

2 3

A

B

C

D

E

F

3

2

1

A B E F D

C

Bounding Volume Hierarchies

• Use hierarchy to accelerate ray intersections
 Intersect node contents only if hit bounding volume

1

2 3 C

A B E F D A

B

C

D

E

F

3

2

1
1

2

A B

C 3

2

Bounding Volume Hierarchies III

FindIntersection(Ray ray, Node node)

{

 // Find intersections with child node bounding volumes

 ...

 // Sort intersections front to back

 ...

 // Process intersections (checking for early termination)

 min_t = infinity;

 for each intersected child i {

 if (min_t < bv_t[i]) break;

 shape_t = FindIntersection(ray, child);

 if (shape_t < min_t) { min_t = shape_t;}

 }

 return min_t;

}

• Sort hits & detect early termination

Ray-Scene Intersection

Acceleration techniques
 Bounding volume hierarchies

 Spatial partitions

» Uniform grids

» Octrees

» BSP trees

Beyond rays
 Beam tracing

 etc.

Uniform Grid

• Construct uniform grid over scene
 Index primitives according to overlaps with grid cells

A

B

C

D

E

F

Uniform Grid

• Trace rays through grid cells
 Fast

 Incremental

A

B

C

D

E

F
Only check primitives

in intersected grid cells

Uniform Grid

• Potential problem:
 How choose suitable grid resolution?

A

B

C

D

E

F

Too little benefit

if grid is too coarse

Too much cost

if grid is too fine

Ray-Scene Intersection

Acceleration techniques
 Bounding volume hierarchies

 Spatial partitions

» Uniform grids

» Octrees

» BSP trees

Beyond rays
 Beam tracing

 etc.

3

Octree

• Construct adaptive grid over scene
 Recursively subdivide box-shaped cells into 8 octants

 Index primitives by overlaps with cells

A

B

C

D

E

F
Generally fewer cells

Octree

• Trace rays through neighbor cells
 Fewer cells

 More complex neighbor finding

A

B

C

D

E

F
Trade-off fewer cells for

more expensive traversal

Ray-Scene Intersection

Acceleration techniques
 Bounding volume hierarchies

 Spatial partitions

» Uniform grids

» Octrees

» BSP trees

Beyond rays
 Beam tracing

 etc.

Binary Space Partition (BSP) Tree

• Recursively partition space by planes
 Every cell is a convex polyhedron

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

Binary Space Partition (BSP) Tree

• Simple recursive algorithms
 Example: point finding

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

P 1

3

Binary Space Partition (BSP) Tree

• Trace rays by recursion on tree
 BSP construction enables simple front-to-back traversal

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

P 1

2

4

3

4

Binary Space Partition (BSP) Tree

RayTreeIntersect(Ray ray, Node node, double min, double max)

{

 if (Node is a leaf)

 return intersection of closest primitive in cell, or NULL if none

 else

 dist = distance of the ray point to split plane of node

 near_child = child of node that contains the origin of Ray

 far_child = other child of node

 if the interval to look is on near side

 return RayTreeIntersect(ray, near_child, min, max)

 else if the interval to look is on far side

 return RayTreeIntersect(ray, far_child, min, max)

 else if the interval to look is on both side

 if (RayTreeIntersect(ray, near_child, min, dist)) return …;

 else return RayTreeIntersect(ray, far_child, dist, max)

}

Other Accelerations

• Screen space coherence
 Check last hit first

 Beam tracing

 Pencil tracing

 Cone tracing

• Memory coherence
 Large scenes

• Parallelism
 Ray casting is “embarassingly parallelizable”

• etc.

Other Accelerations

• Screen space coherence
 Check last hit first

Beam tracing

 Pencil tracing

 Cone tracing

• Memory coherence
 Large scenes

• Parallelism
 Ray casting is “embarassingly parallelizable”

• etc.

Beam Tracing

• Trace “bundle of rays” all at once

Trace beams (bundles of rays) from source

Beam Tracing

• Specular reflections

Beam Tracing Method

Cell Adjacency Graph

 Spatial Subdivision

Stationary
Sources

Source
Audio

Beam Trees

 Beam Tracing

Propagation Paths

 Path Generation

 Auditory Display

Moving
Receiver

Off-Line

Interactive

3D Environment

Spatialized Audio

5

Beam Tracing Method

• Input is source, receiver, and 3D environment

Step 1: Spatial Subdivision

• Partition space into convex polyhedral cells

Step 2: Beam Tracing

• Trace beams through cell adjacency graph

source

Step 2: Beam Tracing

• Trace beams through cell adjacency graph

source

Step 2: Beam Tracing

• Trace beams through cell adjacency graph

source

Step 2: Beam Tracing

• Trace beams through cell adjacency graph

source

6

Step 2: Beam Tracing

• Trace beams through cell adjacency graph

source

Step 2: Beam Tracing

• Trace beams through cell adjacency graph

source

Step 2: Beam Tracing

• Trace beams through cell adjacency graph

source

Step 2: Beam Tracing

• Store all beams in a tree data structure

source

Beam tree encodes regions reached by
different sequences of scattering from source

transmission

transmission

transmission

reflection

diffraction

Step 3: Path Generation

• For each beam containing receiver ...

source

receiver

Step 3: Path Generation

• Lookup propagation sequence in beam tree

source

receiver

7

Step 3: Path Generation

• Construct shortest path along sequence

source

receiver

Step 3: Path Generation

• Solve equal angle constraints for diffractions

source

receiver

Step 4: Auralization

• Apply filter for each propagation path

source

receiver

Step 4: Auralization

• Combine paths to model early response

source

receiver

Beam Tracing Method

Cell Adjacency Graph

 Spatial Subdivision

Stationary
Sources

Source
Audio

Beam Trees

 Beam Tracing

Propagation Paths

 Path Generation

 Auditory Display

Moving
Receiver

Off-Line

Interactive

3D Environment

Spatialized Audio

Beam Tracing Demo

8

Experimental Results

• Test propagation path update rates in

large environments with several reflections

Beam Tracing Results

• Beam tree does not necessarily grow with global

complexity of environment

0

100000

200000

300000

400000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Polygons in Environment

#
 B

e
a
m

s
 T

ra
c
e
d

(u
p

 t
o

 8
 r

e
fl

e
c
ti

o
n

s
)

Path Generation Results

• Propagation paths updated interactively …

even for large environments

0

0.1

0.2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Polygons in Environment

P
a

th
 G

e
n

e
ra

ti
o

n
 T

im
e

(i
n

 s
e

c
o

n
d

s
)

10,057 input polygons
8 specular reflections
6 updates per second

195MHz CPU (1998)

Path Generation Video

Path Generation Demo Auralization Video

Specular reflection only

data/movies/paths.bat
data/movies/vworks.bat

9

Auralization Video Auralization Video II

Diffraction and specular reflection

Diagnostic Results

Paths

Power Power + Paths

Summary

• Intersection acceleration techniques are important
 Bounding volume hierarchies

 Spatial partitions

• General concepts
 Sort objects spatially

 Make trivial rejections quick

 Utilize coherence when possible

• Useful for sound propagation too!

Expected time is sub-linear in number of primitives

