Introduction to

Motivation

Thomas Funkhouser
Large repositories of 3D data are becoming available

Computer Graphics

Medicine

Cultural Heritage

Molecular Biology

Computer Vision

Lecture Outline

Introduction
Applications
Problems

- Feature detection

Lecture Outline

Introduction
Applications \longleftarrow
Problems

- Feature detection

Applications

Examples:

- Computer graphics
- Geometric modeling
- Archaeology
- Urban planning
- Paleontology
- Molecular bio

Applications

Examples:
$>$ Computer graphics

- Geometric modeling
- Archaeology
- Urban planning
- Paleontology
- Molecular bio
- Medicine
- Art

Applications

Examples:

- Computer graphics
$>$ Geometric modeling
- Archaeology
- Urban planning
- Paleontology
- Molecular bio
- Medicine
- Art

Applications
 眏

Examples:

- Computer graphics
- Geometric modeling
> Archaeology
- Urban planning
- Paleontology
- Molecular bio
- Medicine
- Art

Reconstructing Frescoes from Thera (Weyrich, Brown, Rusinkiewicz, et al.)

Applications

Examples:

- Computer graphics
- Geometric modeling
- Archaeology
$>$ Urban planning
- Paleontology
- Molecular bio
- Medicine
- Art

Shape Analysis Problems

Examples:

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Recognition
- Classification
- Clustering
- Retrieval

Shape Analysis Problems

Examples:

- Feature detection
- Segmentation
- Labeling
> Registration
- Matching
- Retrieval
- Recognition
- Classification
- Clustering

Shape Analysis Problems

Examples:

- Feature detection
- Segmentation
- Labeling
- Registration
$>$ Matching
- Retrieval
- Recognition
- Classification
- Clustering

"How can we compute a measure of geometric similarity?"

Shape Analysis Problems

Examples:

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
> Classification
- Clustering

Query

Classes
"How can we determine the class of a 3D model?"

Shape Analysis Problems

Examples:

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Retrieval
- Recognition
- Classification

$>$ Clustering

[^0]

Features

Point Features

Applications:

- Maintaining shape features as process mesh
- Matching shape features as align meshes
- Reasoning about part decomposition
- Visualization
- etc.

Point Features杯

Applications:

- Maintaining shape features as process mesh
$>$ Matching shape features as align meshes
- Reasoning about part decomposition
- Visualization
- etc.

Point Feature Detection

판

Goals:

- Invariant to transformations
- Robust to small surface deviations (holes, noise, etc.)
- Common across different surfaces in same class
- Semantic?

Point Feature Detection
Algorithmic methods to detect feature points?

Point Feature Detection

Multiscale methods
Many methods consider scale-space persistence

Zou08

How should we ask people which points are salient?

Point Feature Detection

 뭇Some relevant properties Average geodesic distance Gauss curvature
Differences of curvature Shape diameter function etc.

Feature Point Study
Ask people on the Amazon Mechanical Turk

Key question

How should we ask people which points are salient?

- "Please select salient points"

Key question

Key question

How should we ask people which points are salient?

- "Please select salient points"
- Please select a pattern of points from which another person can recognize the object's class by viewing only those points

How should we ask people which points are salient?

- "Please select salient points"
- Please select a pattern of points from which another person can recognize the object's class by viewing only those points

Key question

How should we ask people which points are salient?

- "Please select salient points"

Schelling approach

We asked people to:

- Please select points that you think other people will select

Based on the "focal point" theory of [Schelling60]

- A solution that people tend to use in the absence of communication, because it seems natural, special or relevant to them person can recognize the object's class by viewing only those points

Schelling Feature Points

Schelling feature points

Schelling Feature Points

Schelling feature point distributions

Relation with geometric properties?

Local properties

- Curvatures
- Mesh Saliency
- HKS at small t

Global properties

- HKS at large t
- SDF [Shapira 08]
- Symmetry
- Segment Center
- AGD
- Etc.

Relation with geometric properties?

Local properties

- Curvatures
- Mesh Saliency
- HKS at small t Global properties
- HKS at large t
- SDF [Shapira 08]
- Symmetry
- Segment Center
- AGD
- Etc.

Relation with geometric properties?

Relation with geometric properties?

Relation with geometric properties?

Principal Curvatures

The curvature at a point varies between some minimum and maximum－these are the principal curvatures κ_{1} and κ_{2}
They occur in the principal directions d_{1} and d_{2} which are perpendicular to each other

Gaussian and Mean Curvature

畐

Gauss Curvature

$$
K=\kappa_{1} \kappa_{2}
$$

Mean Curvature
$\mathrm{H}=1 / 2\left(\kappa_{1}+\kappa_{2}\right)$

Principal Curvatures $\stackrel{\text { 踶 }}{5}$

Minimum Curvature
κ_{1}

Maximum Curvature κ_{2}

What Does Curvature Tell Us？

Planar points：
－Zero Gaussian curvature and zero mean curvature
－Tangent plane intersects surface at infinity points

What Does Curvature Tell Us？

$\stackrel{\text { 輱 }}{0}$

Parabolic points：
－Zero Gaussian curvature，non－zero mean curvature
－Tangent plane intersects surface along 1 curves

What Does Curvature Tell Us？

Elliptical points：

－Positive Gaussian curvature
－Convex／concave depending on sign of mean curvature
－Tangent plane intersects surface at 1 point

What Does Curvature Tell Us?

Hyperbolic points:

- Negative Gaussian curvature
- Tangent plane intersects surface along 2 curves

What Does Curvature Tell Us?

Mesh Saliency:

- Motivated by models of perceptual salience
- Difference between mean curvature blurred with σ and blurred with 2σ

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Tensor voting

- Extract points $\left\{q_{i}\right\}$ in neighborhood
- Compute covariance matrix M
- Analyze eigenvalues and eigenvectors of M (via SVD)
- Eigenvectors are Principal Axes

$$
\mathbf{M}=\frac{1}{n} \sum_{i=1}^{n}\left[\begin{array}{ccc}
q_{i}^{x} q_{i}^{x} & q_{i}^{x} q_{i}^{y} & q_{i}^{x} q_{i}^{z} \\
q_{i}^{y} q_{i}^{x} & q_{i}^{y} q_{i}^{y} & q_{i}^{y} q_{i}^{z} \\
q_{i}^{z} q_{i}^{x} & q_{i}^{z} q_{i}^{y} & q_{i}^{z} q_{i}^{z}
\end{array}\right]
$$

Covariance Matrix

$\mathbf{M}=\mathbf{U S U}^{t}$

Eigenvalues \& Eigenvectors

Principal Component Analysis (PCA)
Tensor voting

- Extract points $\left\{q_{i}\right\}$ in neighborhood
- Compute covariance matrix M
- Analyze eigenvalues and eigenvectors of M (via SVD)

Covariance Matrix

Eigenvalues \& Eigenvectors

Principal Component Analysis (PCA)
Eigenvectors are
"Principal Axes of Inertia"
Eigenvalues are variances of the point distribution in those directions

What Does PCA Tell Us？
Provides estimate of normal direction
－Eigenvector（principal axis）associated with smallest eigenvalue

What Does PCA Tell Us？

Helps us construct a
local coordinate frame
for every point
－Map \hat{e}_{1} to X axis
－Map \hat{e}_{2} to Y axis
－Map \hat{e}_{3} to Z axis

What Does PCA Tell Us？

Helps differentiate nearly plane－like， from stick－like， from sphere－like， etc．

What Does PCA Tell Us？
 装

Helps differentiate nearly plane－like， from stick－like， from sphere－like， etc．

[^0]: "How can we learn classes of 3D models automatically?"

