

Lecture Outline

Introduction Applications Problems • Feature detection

Applications

Examples:

- Computer graphics
- Geometric modeling
- Archaeology
- Urban planning
- Paleontology
- Molecular bio
- Medicine
- Art

Applications

Examples:

調へ

調へ

- > Computer graphics
- Geometric modeling
- Archaeology
- Urban planning
- Paleontology
- Molecular bio
- Medicine
- Art

Applications

Examples:

- Computer graphics
- ➤ Geometric modeling
- Urban planning
- Molecular bio
- Medicine

国間

個問

Applications

Examples:

- Computer graphics
- Geometric modeling
- > Archaeology
- Urban planning
- Molecular bio
- Medicine

田間

Reconstructing Frescoes from Thera (Weyrich, Brown, Rusinkiewicz, et al.)

Applications

Examples:

- Computer graphics
- Geometric modeling
- Archaeology
- > Urban planning• Paleontology
- Molecular bio
- Medicine

Applications

Examples:

- Computer graphics
- Geometric modeling
- Archaeology
- Urban planning
- Paleontology
- ➤ Molecular bio
- Medicine
- Art

周期

Applications

Examples:

- Computer graphics
- Geometric modeling
- Archaeology
- Urban planning
- Paleontology
- Molecular bio
- Medicine
- ≻ Art

Lecture Outline

Shape Analysis Problems

Examples:

- Feature detection
- Segmentation
- Labeling
- Registration
- Matching
- Recognition
- Classification
- Clustering
- Retrieval

演員

国間

Point Features

Applications:

- Maintaining shape features as process mesh
- > Matching shape features as align meshes
- Reasoning about part decomposition
- Visualization
- etc.

Point Feature Detection

Goals:

- Invariant to transformations
- Robust to small surface deviations (holes, noise, etc.)
- Common across different surfaces in same class
- Semantic?

国間

Point Feature Detection

Point Feature Detection

Some relevant properties Average geodesic distance Gauss curvature Differences of curvature Shape diameter function etc.

国間

 \diamond

Key question

How should we ask people which points are salient?

Key question

国へ

国へ

How should we ask people which points are salient?

• "Please select salient points"

Key question

How should we ask people which points are salient?

- "Please select salient points"
- Please select a pattern of points from which another person can recognize the object's class by viewing only those points

Key question

周期

個歌

How should we ask people which points are salient?

国間

198

- "Please select salient points"
- Please select a pattern of points from which another person can recognize the object's class by viewing only those points

Key question

How should we ask people which points are salient?

- "Please select salient points"
- Please select a pattern of points from which another person can recognize the object's class by viewing only those points

We asked people to:

• Please select points that you think other people will select

Based on the "focal point" theory of [Schelling60]

• A solution that people tend to use in the absence of communication, because it seems natural, special or relevant to them

Relation with geometric properties?

Local properties

- Curvatures
- Mesh Saliency
- HKS at small t

Global properties

- HKS at large t
- SDF [Shapira 08]
- SymmetrySegment Center
- Segment CenteAGD
- AGL
- Etc.

Principal Curvatures

- The curvature at a point varies between some minimum and maximum these are the *principal curvatures* κ_1 and κ_2
- They occur in the *principal directions* d_1 and d_2 which are perpendicular to each other

国間

What Does Curvature Tell Us?

Planar points:

- Zero Gaussian curvature and zero mean curvature
- Tangent plane intersects surface at infinity points

What Does Curvature Tell Us?

Parabolic points:

- Zero Gaussian curvature, non-zero mean curvature
- Tangent plane intersects surface along 1 curves

国へ

What Does Curvature Tell Us?

Elliptical points:

- Positive Gaussian curvature
- Convex/concave depending on sign of mean curvature
- Tangent plane intersects surface at 1 point

開

What Does Curvature Tell Us?

Hyperbolic points:

- Negative Gaussian curvature
- Tangent plane intersects surface along 2 curves

What Does Curvature Tell Us?

Mesh Saliency:

調測

- Motivated by models of perceptual salience
- Difference between mean curvature blurred with σ and blurred with 2σ

国間

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Tensor voting

- Extract points {q_i} in neighborhood
- Compute covariance
 matrix M
- Analyze eigenvalues and eigenvectors of M (via SVD)
- Eigenvectors are Principal Axes

Principal Component Analysis (PCA)

Tensor voting

- Extract points {q_i} in neighborhood
- Compute covariance matrix M
- Analyze eigenvalues and eigenvectors of M (via SVD)

$\mathbf{M} = \mathbf{U}\mathbf{S}\mathbf{U}^{\mathsf{T}}$ $\mathbf{S} = \begin{bmatrix} \lambda_a & 0 & 0\\ 0 & \lambda_b & 0\\ 0 & 0 & \lambda_c \end{bmatrix} \mathbf{U} = \begin{bmatrix} A_a & A_b & A_c \\ B_a & B_b & B_c \\ C_a & C_b & C_c \end{bmatrix}$

What Does PCA Tell Us?

Provides estimate of normal direction

• Eigenvector (principal axis) associated with smallest eigenvalue

調へ