Point Sets

Surface Reconstruction From Unorganized Point Sets

COS 526, Fall 2012

Slides from Misha Kazhdan, Fisher Yu, Szymon Rusinkiewicz Ioannis Stamos, Hugues Hoppe, and Piyush Rai

Problem Statement

- Given a set of sample points in three dimensions produce a simplicial surface that captures the "most reasonable shape" the points were sampled from.

Applications

- Computer graphics,
- Medical imaging
- Cartography
- Compression
- Reverse engineering
- Urban modeling
- etc.

Desirable Properties

- Interpolate input points
- Handle arbitrary genus
- Generally smooth
- Retain sharp features
- Watertight surface

Challenges

Possible Approaches?

Possible Approaches

- Explicit Meshing
- Ball pivoting algorithm
- Crust
- etc.
- Implicit Reconstruction
- Hoppe's algorithm
- Moving Least Squares (MLS)
- Poisson surface reconstruction
- etc.
- Surface fitting
- Deformable templates
- etc.

The Ball Pivoting Algorithm

Initial seed triangle

Possible Approaches

\author{

- Explicit Meshing
}
- Ball pivoting algorithm
- Crust
- etc.
- Implicit Reconstruction
- Hoppe's algorithm
- Moving Least Squares (MLS)
- Poisson surface reconstruction
- etc.
- Surface fitting
- Deformable templates
- etc.

The Ball Pivoting Algorithm

- Pick a ball radius, roll ball around surface, connect what it hits

$\xrightarrow{\text { Active edge }}$
- Point on front

The Ball Pivoting Algorithm

Ball pivoting around active edge
$\xrightarrow{\text { Active edge }}$

- Point on front

The Ball Pivoting Algorithm

Ball pivoting around active edge

Active edge

- Point on front

The Ball Pivoting Algorithm

Ball pivoting around active edge
Active edge

- Point on front

The Ball Pivoting Algorithm

Ball pivoting around active edge

Active edge

- Point on front

The Ball Pivoting Algorithm

Ball pivoting around active edge
Active edge

- Point on front
- Internal point

The Ball Pivoting Algorithm
Boundary edge

Ball pivoting around active edge
No pivot found
$\xrightarrow{\text { Active edge }}$

- Point on front
- Internal point

The Ball Pivoting Algorithm

Ball pivoting around active edge
Active edge

- Point on front
- Internal point

The Ball Pivoting Algorithm
Boundary edge

Ball pivoting around active edge
Active edge

- Point on front
- Internal point

The Ball Pivoting Algorithm

Possible problems?

Small Concavities
The Ball Pivoting Algorithm
Possible problems?

The Ball Pivoting Algorithm

Possible problems?

Self-intersection? Watertight?

Possible Approaches

- Explicit Meshing
- Ball pivoting algorithm
- Crust
- etc.
- Implicit Reconstruction
- Hoppe's algorithm
- Moving Least Squares (MLS)
- Poisson surface reconstruction
- etc.
- Surface fitting
- Deformable templates
- etc.

Crust

Aims to find adjacent surface without a parameter specifying feature sizes

Definitions

Definitions

Medial Axis: of surface F is the closure of points that have more than one closest point in F .

Crust in 2D

Input : $\mathrm{P}=$ Set of sample points in the plane Output: $\mathrm{E}=$ Set of edges connecting points in P

The Algorithm
Compute the Voronoi vertices of $\mathrm{P}=\mathrm{V}$
Calculate the Delaunay of (P U V)
Pick the edges (p, q) where both p, q are in P

The Intuition behind Crust

The Voronoi Cells of a dense sampling are thin and long.

The Medial Axis is the extension of Voronoi Diagram for continuous surfaces in the sense that the Voronoi Diagram of S Can be defined as the set of points with more than one closest point in $\mathrm{S} .(\mathrm{S}=$ Sample Point Set $)$

Sample Output

- Some Voronoi vertices lie neither near the surface nor near the medial axis
- Keep the "poles"

Sample Output

Implicit Reconstruction

- Main idea:
- Compute an implicit function $\mathrm{f}(\mathrm{p})$ (negative outside, positive inside)
- Extract surface where $f(p)=0$

Crust in 3D

- Compute the 3D Voronoi diagram of the sample points.
- For each sample point s, pick the farthest vertex v of its Voronoi cell, and the farthest vertex v^{\prime} such that angle $v s v^{\prime}$ exceeds 90 degrees.
- Compute the Voronoi diagram of the sample points and the "poles", the Voronoi vertices chosen in the second step.
- Add a triangle on each triple of sample points with neighboring cells in the second Voronoi diagram.

Possible Approaches

- Explicit Meshing
- Ball pivoting algorithm
- Crust
- etc.
- Implicit Reconstruction
- Hoppe's algorithm
- Moving Least Squares (MLS)
- Poisson surface reconstruction
- etc.
- Surface fitting
- Deformable templates
- etc.

Hoppe et al's Algorithm

1. Tangent Plane Estimation
2. Consistent tangent plane orientation
3. Signed distance function computation
4. Surface extraction

Tangent Plane Estimation

- Principal Component Analysis (PCA)
- Extract points $\left\{q_{i}\right\}$ in neighborhood
- Compute covariance matrix M
- Analyze eigenvalues and eigenvectors of M (via SVD)
$\mathbf{M}=\frac{1}{n} \sum_{i=1}^{n}\left[\begin{array}{ccc}q_{i}^{x} q_{i}^{x} & q_{i}^{x} q_{i}^{y} & q_{i}^{x} q_{i}^{z} \\ q_{i}^{y} q_{i}^{x} & q_{i}^{y} q_{i}^{y} & q_{i}^{y} q_{i}^{z} \\ q_{i}^{z} q_{i}^{x} & q_{i}^{z} q_{i}^{y} & q_{i}^{z} q_{i}^{z}\end{array}\right]$
Covariance Matrix
$\mathbf{M}=\mathbf{U S U}^{t}$
$\mathbf{S}=\left[\begin{array}{ccc}\lambda_{a} & 0 & 0 \\ 0 & \lambda_{b} & 0 \\ 0 & 0 & \lambda_{c}\end{array}\right] \mathbf{U}=\left[\begin{array}{lll}A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z}\end{array}\right]$

Tangent Plane Estimation

Tangent Plane Estimation

- Surface normal is estimated by eigenvector (principal axis) associated with smallest eigenvalue

Tangent Plane Estimation

Tangent Plane Estimation

- Eigenvectors are "Principal Axes of Inertia"
- Eigenvalues are variances of the point distribution in those directions

Consistent Tangent Plane Orientation

- Traverse nearest neighbor graph flipping normals for consistency
- Greedy propagation algorithm (minimum spanning tree of normal similarity)

Signed Distance Function

- $f(p)$ is signed distance to tangent plane of closest point sample

$$
\begin{aligned}
& \{\text { Compute } \mathbf{z} \text { as the projection of } \mathbf{p} \text { onto } T p(\mathbf{x})\} \\
& \mathbf{z} \leftarrow \mathbf{o}_{i}-\left(\left(\mathbf{p}-\mathbf{o}_{i}\right) \cdot \hat{\mathbf{n}}_{i}\right) \hat{\mathbf{n}}_{i} \\
& \text { if } \quad d(\mathbf{z}, X)<\rho+\delta \text { then } \\
& \text { else } \quad f(\mathbf{p}) \leftarrow\left(\mathbf{p}-\mathbf{o}_{i}\right) \cdot \hat{\mathbf{n}}_{i} \quad\{= \pm\|\mathbf{p}-\mathbf{z}\|\} \\
& \text { endif } \quad f(\mathbf{p}) \leftarrow \text { undefined }
\end{aligned}
$$

Surface Extraction

- Extract triangulated surface where $f(p)=0$
- e.g., Marching Cubes

Sample Results

Signed Distance Function

- $f(p)$ is signed distance to tangent plane of closest point sample

Surface Extraction

- Extract triangulated surface where $f(p)=0$ - e.g., Marching Cubes

Sample Results

Sample Results

Moving Least Squares

- Similar, but different implicit function
- Weighted contribution of nearby points

Possible Approaches

- Explicit Meshing
- Ball pivoting algorithm
- Crust
- etc.
- Implicit Reconstruction
- Hoppe's algorithm
- Moving Least Squares (MLS)
- Poisson surface reconstruction
- etc.
- Surface fitting
- Deformable templates
- etc.

Sample Results

Moving Least Squares

MLS

The Indicator Function

- We reconstruct the surface of the model by solving for the indicator function of the shape.

$$
\chi_{M}(p)= \begin{cases}1 & \text { if } p \in M \\ 0 & \text { if } p \notin M\end{cases}
$$

Challenge

- How to construct the indicator function?

Gradient Relationship

- There is a relationship between the normal field and gradient of indicator function

Integration

- Represent the points by a vector field \vec{V}
- Find the function χ whose gradient best approximates \vec{V} :

$$
\min _{\star}\|\nabla \chi-\vec{V}\|
$$

Integration as a Poisson Problem

- Represent the points by a vector field \vec{V}
- Find the function χ whose gradient best approximates \vec{V} :

$$
\min _{x}\|\nabla \mathcal{\chi}-\vec{V}\|
$$

- Applying the divergence operator, we can transform this into a Poisson problem:

$$
\nabla \cdot(\nabla \chi)=\nabla \cdot \vec{V} \quad \Leftrightarrow \quad \Delta x=\nabla \cdot \vec{V}
$$

Implementation

Given the Points:

- Set octree
- Compute vector field
- Compute indicator function
- Extract iso-surface

Implementation: Adapted Octree

Given the Points:

- Set octree

Compute vector field

Implementation: Vector Field

Given the Points:

- Compute vector field
- Define a function space

Implementation: Vector Field

Given the Points:

- Compute vector field
- Define a function space

Implementation: Vector Field

Given the Points:

- Compute vector field
- Splat the samples

Implementation: Vector Field

Given the Points:

- Compute vector field
- Define a function space

Implementation: Vector Field

Given the Points:

- Compute vector field
- Define a function space

Implementation: Vector Field

Given the Points:

- Compute vector field
- Splat the samples

Implementation: Vector Field

Given the Points:

- Compute vector field
- Splat the samples

Implementation: Indicator Function
Given the Points:

- Compute indicator function
- Compute divergence

Implementation: Indicator Function

Given the Points:

- Compute indicator function
- Solve Poisson equation

Implementation: Vector Field

Given the Points:

- Compute vector field
- Splat the samples

Implementation: Indicator Function

Given the Points:

- Compute indicator function
- Solve Poisson equation

Implementation: Surface Extraction

Given the Points:
Compute vector field

- Extract iso-surface

Michelangelo's David

- 215 million data points from 1000 scans
- 22 million triangle reconstruction
- Maximum tree depth of 11
- Compute Time: 2.1 hours
- Peak Memory: 6600MB

David - Chisel marks

Scalability - Buddha Model

Stanford Bunny

FFT Reconstruction Comparison

FFT Reconstruction Comparison

- FFT: Fixed resolution

FFT Reconstruction Comparison

- FFT: Fixed resolution

FFT Reconstruction Comparison

- Poisson: Adaptive resolution

FFT Reconstruction Comparison

- Poisson: Adaptive resolution

Questions?

