

Spectral Meshes

COS 526, Fall 2012

Slides from Olga Sorkine, Bruno Levy, Hao (Richard) Zhang

Motivation

Want frequency domain representation for 3D meshes

- Smoothing
- Compression
- Progressive transmission
- Watermarking
- etc.

Frequencies in a mesh

One possibility = multiresolution meshes • Like wavelets

• Like Fourier

[Hoppe]

-

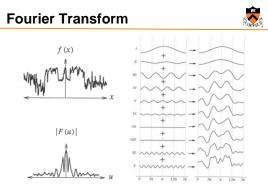
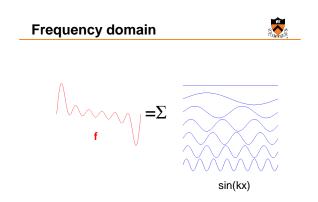
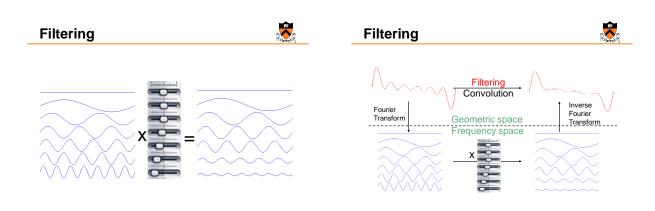
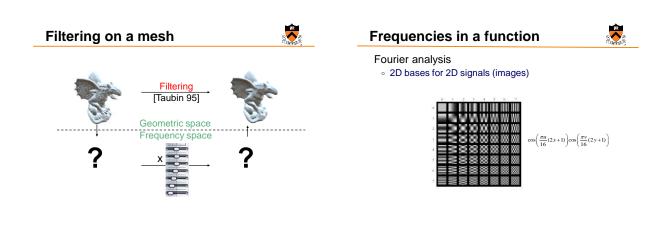


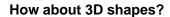
Figure 2.6 Wolberg



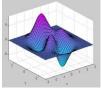
1





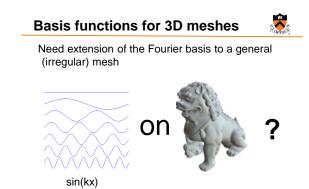


Problem: 2D surfaces embedded in 3D are not (height) functions



Height function, regularly sampled above a 2D domain

General 3D shapes

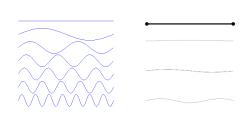


Basis functions for 3D meshes

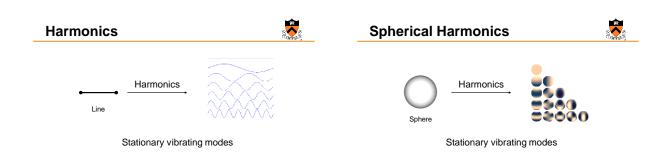
We need a collection of basis functions

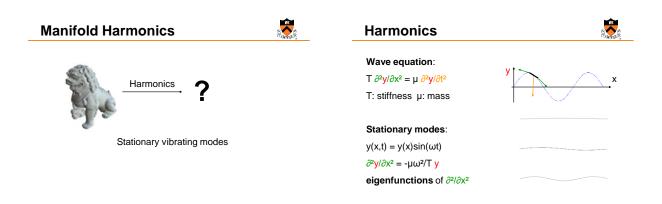
First basis functions will be very smooth, slowly-varying
Last basis functions will be high-frequency, oscillating

We will represent our shape (mesh geometry) as a linear combination of the basis functions



sin(kx) are the stationary vibrating modes = harmonics of a string





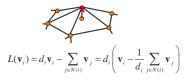
Harmonics

Harmonics are eigenfunctions of $\partial^2/\partial x^2$

On a mesh, $\partial^2/\partial x^2$ is the Laplacian Δ

Frequency domain basis functions for 3D meshes are **eigenfunctions** of the Laplacian

The Mesh Laplacian operator



Measures the local smoothness at each mesh vertex

Laplacian operator in matrix form

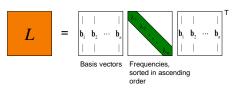
L matrix

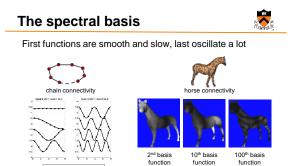
spectral basis of L = the DCT basis

Spectral bases

L is a symmetric n×n matrix

Eigenfunctions of L computed with spectral analysis

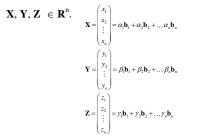




First functions are smooth and slow, last oscillate a lot

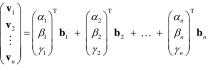
Spectral mesh representation

Coordinates represented in spectral basis:



Spectral mesh representation

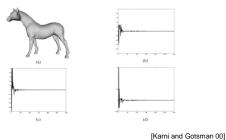
Coordinates represented in spectral basis:



The first components are low-frequency

The last components are high-frequency

Most shape information is in low-frequency components



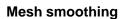
Smoothing

Compression

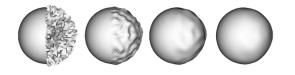
Progressive transmission

Watermarking

etc.



Aim to remove high frequency details



8

Drop the high-frequency components

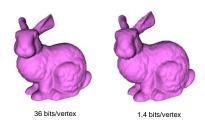
 $\begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_n \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \beta_1 \\ \gamma_1 \end{pmatrix}^{\mathsf{T}} \mathbf{b}_1 + \begin{pmatrix} \alpha_2 \\ \beta_2 \\ \gamma_2 \end{pmatrix}^{\mathsf{T}} \mathbf{b}_2 + \dots + \begin{pmatrix} \alpha_n \\ \beta_n \\ \gamma_n \end{pmatrix}^{\mathsf{T}} \mathbf{b}_n$

High-frequency components!

[Taubin 95]

Mesh compression

Aim to represent surface with fewer bits



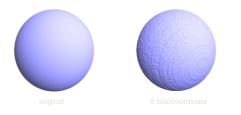
Mesh compression

Most of mesh data is in geometry

- The connectivity (the graph) can be very efficiently encoded
 - » About 2 bits per vertex only
- o The geometry (x,y,z) is heavy!
 - » When stored naively, at least 12 bits per coordinate are needed, i.e. 36 bits per vertex

Mesh compression

What happens if quantize xyz coordinates?



Mesh compression

Quantization of the Cartesian coordinates introduces high-frequency errors to the surface.

High-frequency errors alter the visual appearance of the surface – affect normals and lighting.

Transform the Cartesian coordinates to another space where quantization error will have low frequency in the regular Cartesian space

Quantize the transformed coordinates.

Low-frequency errors are less apparent to a human observer.

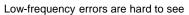
The encoding side:

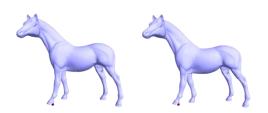
- Compute the spectral bases from mesh connectivity
- Represent the shape geometry in the spectral basis and decide how many coeffs. to leave (K)
- Store the connectivity and the K non-zero coefficients

The decoding side:

- Compute the first K spectral bases from the connectivity
- Combine them using the K received coefficients and get the shape

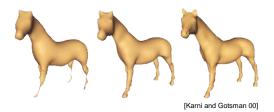
Spectral mesh compression





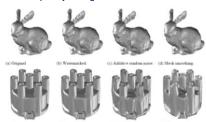
Progressive transmission

First transmit the lower-eigenvalue coefficients (low frequency components), then gradually add finer details by transmitting more coefficients.



Mesh watermarking

Embed a bitstring in the low-frequency coefficients · Low-frequency changes are hard to notice



[Ohbuchi et al. 2003]

- Performing spectral decomposition of a large matrix (n>1000) is prohibitively expensive $(O(n^3))$
 - Today's meshes come with 50,000 and more vertices
 - We don't want the decompressor to work forever!

Possible solutions:

Simplify mesh Work on small blocks (like JPEG)

