Laplacian Meshes

COS 526 – Fall 2012

Slides from Olga Sorkine and Yaron Lipman

Outline

Differential surface representation

- Ideas and applications
 - Compact shape representation
 - Mesh editing and manipulation
 - Membrane and flattening
 - Generalizing Fourier basis for surfaces

.....

Motivation

Meshes are great, but:

- Geometry is represented in a global coordinate system
 - Single Cartesian coordinate of a vertex doesn't say much

Laplacian Mesh Editing

· Meshes are difficult to edit

Motivation

Meshes are difficult to edit

Motivation

- Meshes are difficult to edit

Differential coordinates

- Represent a point *relative* to it's neighbors.Represent *local detail* at each surface point
- better describe the shape
- Linear transition from global to differential
- Useful for operations on surfaces where surface details are important

Differential coordinates

"Local control for mesh morphing", Alexa 01

- Detail = surface smooth(surface)
- Smoothing = averaging

Connection to the smooth case

- The direction of δ_i approximates the normal
- The size approximates the mean curvature

$$\lim_{len(\gamma)\to 0} \frac{1}{len(\gamma)} \int_{\mathbf{v}\in\gamma} (\mathbf{v}_i - \mathbf{v}) ds = H(\mathbf{v}_i) \mathbf{n}_i$$

Laplacian matrix

The mesh

The symmetric Laplacian Ls

Laplacian mesh

Vertex positions are represented by Laplacian coordinates (δ, δ, δ,)

Basic properties

rank(L) = n - c (n - 1 for connected meshes)

• We can reconstruct the xyz geometry from δ up to translation

Reconstruction

Reconstruction

Reconstruction

..........

Cool underlying idea

 Mesh vertex positions are defined by minimizer of an objective function

What we have so far

- _____
- Laplacian coordinates $\boldsymbol{\delta}$
 - Local representation
 - Translation-invariant
- Linear transition from δ to xyz
 - can constrain more that 1 vertex
 - least-squares solution

Editing using differential coordinates

- The editing process from the user's point of view:
- 1) First, a ROI , <u>anchors</u> and a <u>handle vertex</u> should be set.
- Then the edit is Performed By moving this vertex.

Editing using differential coordinates

- The user moves the handle and interactively the surface changes.
- The stationary anchors are responsible for smooth transition of the edited part to the rest of the mesh.
- This is done using increasing weight with geodesic distance in the soft spatial equations.

.

Mesh Editing Example

Mesh Editing Example

Mesh Editing Example

Mesh Editing Example

What else can we do with it?

Parameterization

Feature Preserving Smoothing

. . . · Weighted positional and smoothing constraints

Feature Preserving Smoothing

•• · Weighted positional and smoothing constraints

Smoothed

Detail transfer

"Peel" the coating of one surface and transfer to another

Detail transfer

.....

Detail transfer

Mixing Laplacians

• Taking weighted average of δ_i and δ_i'

Mesh transplanting

Geometrical stitching via Laplacian mixing

Mesh transplanting

Details gradually change in the transition area

Mesh transplanting

Details gradually change in the transition area

The End

.....