Polygonal Meshes

Thomas Funkhouser Princeton University COS 526, Fall 2012

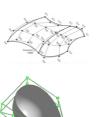
Digital Geometry Processing

Processing of 3D surfaces

- Creation, acquisition
- Storage, transmission
- Editing, animation, simulation
- Manufacture

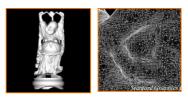
Applications

- Movies, games
- · Computer-aided design
- Medicine, biology
- Art, history



Digital Geometry Processing

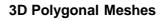
- Many possible surface representations
- Polygonal meshes
- Parametric surfaces
- Subdivision surfaces
- Implicit surfaces
- etc.



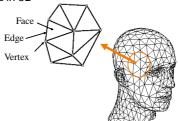
Digital Geometry Processing

Let's focus on 3D polygonal meshes • Simple, common representation

- Rendering with hardware support
- Output of many acquisition tools
- Input to many simulation/analysis tools


3D Polygonal Meshes

Set of polygonal faces representing a 2D surface embedded in 3D



Zorin & Schroeder, SIGGRAPH 99, Course Notes

Set of polygonal faces representing a 2D surface embedded in 3D

Zorin & Schroeder, SIGGRAPH 99, Course Notes

Outline

Acquisition Processing Representation

Outline

Representation

Acquisition -Processing

Polygonal Mesh Acquisition

Interactive modeling

- Polygon editors
- Interchange formats

Scanners

- Laser range scanners
- · CAT, MRI, etc. (isosurfaces)

Simulations

Physical processes

Polygonal Mesh Acquisition

- Interactive modeling
 - ➢ Polygon editors
- Interchange formats

Scanners

- Laser range scanners
- · CAT, MRI, etc. (isosurfaces)

Simulations

Physical processes

Polygonal Mesh Acquisition

Interactive modeling

- Polygon editors
- > Interchange formats

Scanners

- Laser range scanners
- · CAT, MRI, etc. (isosurfaces)

Simulations

Physical processes

Polygonal Mesh Acquisition

Interactive modeling

- Polygon editors
- Interchange formats

Scanners

- > Laser range scanners
- · CAT, MRI, etc. (isosurfaces)

Simulations

Physical processes

Digital Michelangelo Project Stanford

Polygonal Mesh Acquisition

Interactive modeling

- Polygon editors
- Interchange formats

Scanners

- Laser range scanners
- · CAT, MRI, etc. (isosurfaces)

Simulations

Physical processes

Large Geometric Model Repository Georgia Tech

Polygonal Mesh Acquisition

Interactive modeling

- Polygon editors
- Interchange formats

Scanners

- Laser range scanners
- · CAT, MRI, etc. (isosurfaces)

Simulations

Physical processes

Outline

Acquisition

Processing -

Representation

Polygonal Mesh Processing

Storage

- Compression
- Transmission

Analysis

- Parameterization
- Differential geometry
- Feature detection
- Segmentation

Editing

- · Smoothing, sharpening, etc.
- Deformation
- Completion

Polygonal Mesh Processing

Storage

- Compression
- Transmission

Analysis

- Parameterization
- Differential geometry
- Feature detection
- Segmentation

Editing

- Smoothing, sharpening, etc.
- Deformation
- Completion

7

(Simplification) Garla

Polygonal Mesh Processing

Storage

- Compression
- > Transmission

Analysis

- Parameterization
- Differential geometry
- Feature detection
- Segmentation

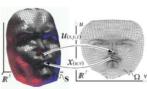
Editing

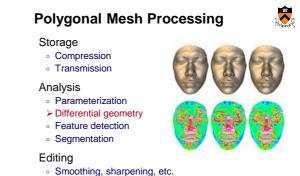
- · Smoothing, sharpening, etc.
- Deformation
- Completion

Polygonal Mesh Processing

Storage

• Compression


• Transmission


Analysis

- > Parameterization
- Differential geometry
- Feature detection
- Segmentation

Editing

- Smoothing, sharpening, etc.
- Deformation
- Completion

Polygonal Mesh Processing

Storage

- Compression
- Transmission

Analysis

- Parameterization
- Differential geometry
- > Feature detection
- Segmentation

Editing

- Smoothing, sharpening, etc.
- Deformation
- Completion

Storage

- Completion

Sheffer

Polygonal Mesh Processing

Storage

- Compression
- Transmission

Analysis

- Parameterization
- Differential geometry
- Feature detection
- Segmentation

Editing

- > Smoothing, sharpening, etc.
- Deformation
- Completion

Smoothing

Desbrun

• Transmission

- Parameterization
- Differential geometry
- Feature detection
- Segmentation

Editing

- Smoothing, sharpening, etc.
- Deformation
- Completion

Sheffer

Analysis

Novatnek et al.

Sheffer

Polygonal Mesh Processing

Deformation

Completion

- Parameterization
- Differential geometry
- Feature detection
- ➤ Segmentation

Editing

- · Smoothing, sharpening, etc.
- Deformation
- Compression • Transmission Analysis

Polygonal Mesh Processing

Storage

- Compression
- Transmission

Analysis

- Parameterization
- Differential geometry
- Feature detection
- Segmentation

Editing

- Smoothing, sharpening, etc.
- Deformation
- Completion

Podolak

Polygon Mesh Representation

Data structures determine algorithms

· Data structure must support key operations of algorithm efficiently

Examples:

- Drawing a mesh
- Removing a vertex
- · Computing per-vertex normals

Different data structures for different algorithms

Outline

Processing Representation -

Acquisition

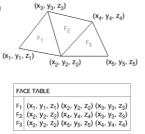
Important properties of mesh representation?

Polygon Mesh Representation

Important properties of mesh representation?

- Efficient traversal of topology
- Efficient use of memory

-


- Possible data structures
- · List of independent faces
- Vertex and face tables
- Adjacency lists
- Winged edge
- Half edge
- etc.

Independent Faces

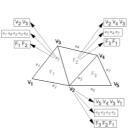
Each face lists vertex coordinates

- Redundant vertices
- No topology information
 (x

Vertex and Face Tables

Each face lists vertex references • Shared vertices • Still no topology information • (x_3, y_3, z_3) • (x_4, y_4, z_4) • (x_1, y_1, z_1) • (x_2, y_2, z_2) • (x_5, y_5, z_5) • (x_1, y_1, z_1) • (x_2, y_2, z_2) • (x_5, y_5, z_5) • (x_1, y_1, z_1) • (x_2, y_2, z_2) • (x_5, y_5, z_5) • (x_5, y_5, z_5) • (x_5, y_5, z_5) • (x_5, y_5, z_5)

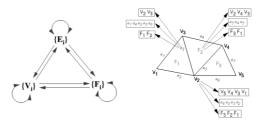
Adjacency Lists

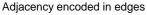

7

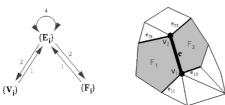
Store all vertex, edge, and face adjacencies

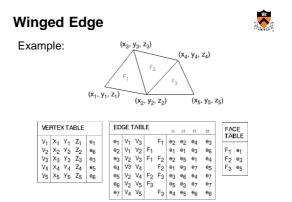
Efficient topology traversal

Encient topole
 Extra storage

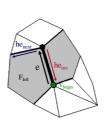



Partial Adjacency Lists


Can we store only some adjacency relationships and derive others?



- All adjacencies in O(1) time
- Little extra storage (fixed records)
- Arbitrary polygons



Half Edge

Adjacency encoded in edges


- All adjacencies in O(1) time
- $\circ~$ Little extra storage (fixed records)
- Arbitrary polygons

Similar to winged-edge, except adjacency encoded in half-edges

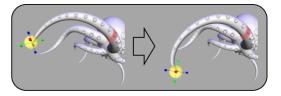
Summary

- Do polygonal mesh reps have these properties?
- Easy to acquire
- Accurate
- Concise
- $\circ~$ Efficient display
- Efficient intersections
- Efficient deformations
- Efficient topology changes
- Guaranteed validityGuaranteed smoothness
- Intuitive editing controls

Summary

Polygonal mesh overview

- Acquisition
- Processing


Summary

• Representation

Next time: Laplacian Surface Editing

