Image Composition

COS 526 Princeton University

Modeled after lecture by Alexei Efros. Slides by Efros, Durand, Freeman, Hays, Fergus, Lazebnik, Agarwala, Shamir, and Perez.

Image Composition

Jurassic Park

Image Blending

1. Extract Sprites (e.g using Intelligent Scissors in Photoshop)

Composite by David Dewey

2. Blend them into the composite (in the right order)

Slide credit: A. Efros

Image Composition

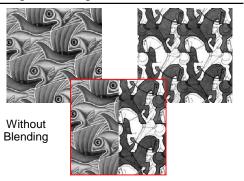
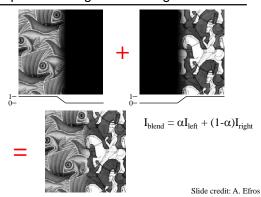
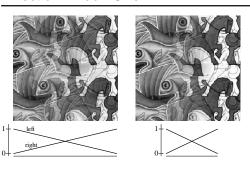

Laplacian pyramid blending Graphcut seams Poisson cloning

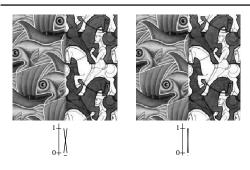
Image Composition


Laplacian pyramid blending

Graphcut seams Poisson cloning


Image Blending

Alpha Blending / Feathering



Affect of Window Size

Slide credit: A. Efros

Affect of Window Size

Slide credit: A. Efros

Good Window Size

"Optimal" Window: smooth but not ghosted

Slide credit: A. Efros

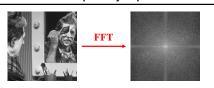
What is the Optimal Window?

To avoid seams

• window = size of largest prominent feature

To avoid ghosting

• window <= 2*size of smallest prominent feature


Natural to cast this in the Fourier domain

- largest frequency <= 2*size of smallest frequency
- image frequency content should occupy one "octave" (power of two)

Slide credit: A. Efros

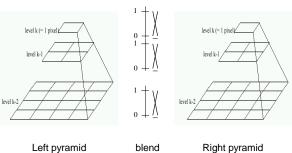
What if the Frequency Spread is Wide

Idea (Burt and Adelson)

· Different window sizes for different frequencies

Method

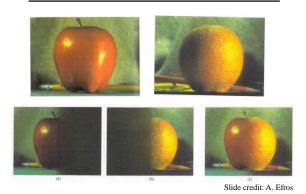
- Decompose image into octaves (frequency bands)
- Feather each octave with appropriate window size
- Sum feathered octave images to reconstruct blended image

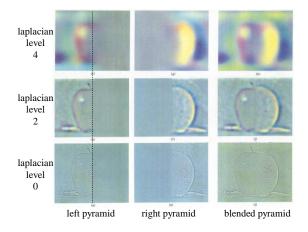

Laplacian Pyramid

Lowpass Images

Bandpass Images

Slide credit: A. Efros


Laplacian Pyramid Blending



blend Right pyramid


Slide credit: A. Efros

Laplacian Pyramid Blending

Laplacian Pyramid Blending

Slide credit: A. Efros

Laplacian Pyramid Blending

© david dmartin (Boston College)

Slide credit: A. Efros

Problems with blending

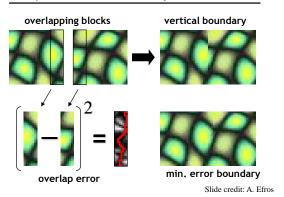
Misaligned (moving) objects become ghosts

Slide credit: A. Efros

Image Composition

Laplacian pyramid blending Graph cut seams < Poisson cloning

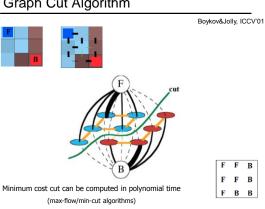
Graph Cuts


General idea

- Single source image per segment (avoids blurring)
- · Careful cut placement, plus optional blending (avoids seams)

Slide credit: A. Efros

Graph Cuts in Texture Synthesis



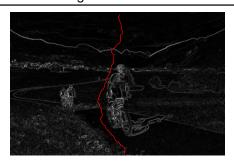
Graph Cuts in Image Segmentation

Lazy Snapping Interactive segmentation using graphcuts

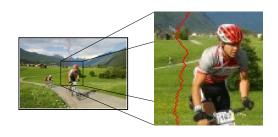
Graph Cut Algorithm

Graph cuts in Image Retargeting

Seam Carving


Shamir

Seam Carving


Shamir

Seam Carving

Shamir

Seam Carving

Seam Carving

Shamir Shamir

Problem with graph cuts

What if colors/intensities are different?

Slide credit: F. Durand

Image Composition

Laplacian pyramid blending Graphcut seams

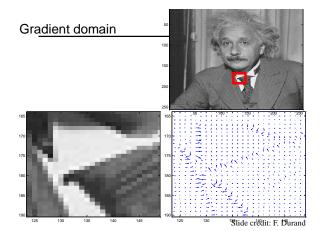
Poisson cloning

Gradient domain image editing

Motivation:


Human visual system is very sensitive to gradient Gradient encode edges and local contrast quite well

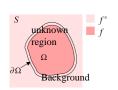
Approach:


Edit in the gradient domain Reconstruct image from gradient

Slide credit: F. Durand

Gradient domain image editing

Slide credit: F. Durand



Seamless Poisson cloning

Given vector field v (pasted gradient), find the value of f in unknown region that optimizes:

$$\min_f\iint_{\Omega}|\nabla f-\mathbf{v}|^2 \text{ with } f|_{\partial\Omega}=f^*|_{\partial\Omega}$$

Pasted gradient Mask

Slide credit: F. Durand

Discrete Poisson solver

Minimize variational problem

$$\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \text{ with } f|_{\partial \Omega} = f^*|_{\partial \Omega},$$

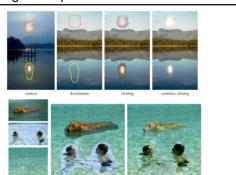
Discretized gradient

$$\min_{f \mid \Omega} \sum_{\substack{\langle p,q \rangle \cap \Omega \neq \emptyset \\ \text{(all pairs that } \\ \text{energy in that}}} (f_p - f_q - v_{pq})^2, \text{ with } f_p = f_p^*, \text{for all } p \in \partial \Omega$$

th
$$f_p = f_p^*$$
, for all $p \in \partial \Omega$

Rearrange and call N_n the neighbors of p

$$\text{for all } p \in \Omega, \quad |N_p|f_p - \sum_{q \in N_p \cap \Omega} f_q = \sum_{q \in N_p \cap \partial \Omega} f_q^* + \sum_{q \in N_p} v_{pq}$$


Big yet sparse linear system

Only for boundary pixels

Slide credit: F. Durand

Image Composition Results

seamless cloning

Perez et al. SIGGRAPH 03

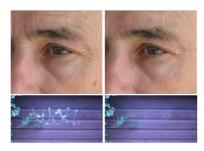
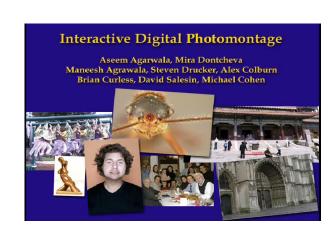


Figure 2: Concealment. By importing seamlessly a piece of the background, complete objects, parts of objects, and undesirable artifacts can easily be hidden. In both examples, multiple strokes (not shown) were used.

Perez et al. SIGGRAPH 03

Perez et al. SIGGRAPH 03


Putting it all together

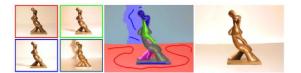
Compositing images

- · Have a clever blending function
 - Feathering
 - Laplacian pyramid
 - Poisson cloning
- · Choose the right pixels from each image
 - Graphcuts

Now, let's put it all together:

- Photomontage [Agarwala et al. 2004]
- Scene Completion [Hayes et al. 2007]

Interactive Digital Photomontage


Interactive Digital Photomontage

Agarwala et al. SIGGRAPH 04


Agarwala et al. SIGGRAPH 04

Interactive Digital Photomontage

Agarwala et al. SIGGRAPH 04

Interactive Digital Photomontage

Agarwala et al. SIGGRAPH 04

Interactive Digital Photomontage

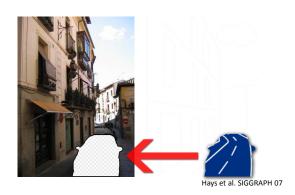
Scene Completion Using Millions of Photographs

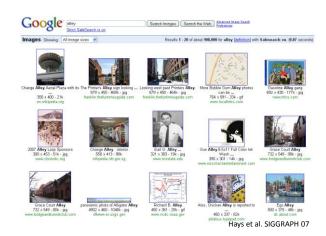
James Hays and Alexei A. Efros SIGGRAPH 2007

Slides by J. Hays and A. Efros

Hays et al. SIGGRAPH 07

Hays et al. SIGGRAPH 07


Efros and Leung result

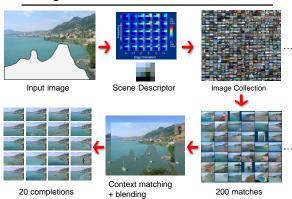

Hays et al. SIGGRAPH 07

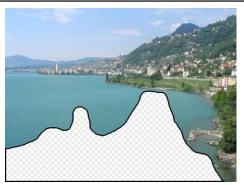
Hays et al. SIGGRAPH 07

Scene Matching for Image Completion

Data

<u>2.3 Million</u> unique images from Flickr groups and keyword searches.


Hays et al. SIGGRAPH 07


Scene Completion Result

Hays et al. SIGGRAPH 07

The Algorithm

Scene Matching

Hays et al. SIGGRAPH 07

... 200 total

Hays et al. SIGGRAPH 07

Context Matching

Hays et al. SIGGRAPH 07

Hays et al. SIGGRAPH 07

Summary

Compositing images

- Have a clever blending function
 Feathering

 - Laplacian pyramidPoisson cloning
- Choose the right pixels from each image
 Graphcuts

Applications:

- Interactive Digital PhotomontageScene completion from millions of images