
Root Finding

COS 323

Reminder

• Sign up for Piazza
• Assignment 0 is posted, due Tue 9/25

Last time..

• Floating point numbers and precision
• Machine epsilon
• Sources of error
• Sensitivity and conditioning
• Stability and accuracy
• Asymptotic analysis and convergence order

Today

• Root finding definition & motivation
• Standard techniques for root finding

– Algorithms, convergence, tradeoffs

• Example applications of Newton’s Method
• Root finding in > 1 dimension

1-D Root Finding

• Given some function, find location where
f(x)=0

Why Root Finding?

• Solve for x in any equation: f(x) = b where x = ?
 → find root of g(x) = f(x) – b = 0

– Might not be able to solve for x directly
 e.g., f(x) = e-0.2xsin(3x-0.5)
– Evaluating f(x) might itself require solving a

differential equation, running a simulation, etc.

Why Root Finding?

• Engineering applications: Predict dependent
variable (e.g., temperature, force, voltage)
given independent variables (e.g., time,
position)

• Focus on finding real roots

Bracket-Based Methods

• Given:
– Points that bracket the root
– A well-behaved function

• Can always find some root

f(x+) > 0

f(x–) < 0

What Goes Wrong?

Tangent point:
very difficult

to find

Singularity:
brackets don’t
surround root

Pathological case:
infinite number of
roots – e.g. sin(1/x)

Bisection Method

• Given points x+ and x– that bracket a root, find
 xhalf = ½ (x++ x–)
and evaluate f(xhalf)

• If positive, x+ ← xhalf else x– ← xhalf
• Stop when x+ and x– close enough
• If function is continuous, this will succeed

in finding some root

Error Convergence of Iterative
Methods

• (Absolute) error bound εn at step n:
 εn bounds |xestimated at step n – xtrue|

• Convergence: describes how εn+1 relates to εn

• Linear convergence:
 |εn+1| = c |εn| for some c ∈ (0,1)

• Superlinear convergence:
 |εn+1| = c |εn|q for some c ∈ (0,1), q > 1

Linear:

Superlinear: Sublinear:

Bisection Error Convergence

• Very robust method: guaranteed to find root!
• Convergence rate:

– Error bounded by size of [x+… x–] interval
– Interval shrinks in half at each iteration
– So, error bound cut in half at each iteration:

 |εn+1| = ½ |εn|
– Linear convergence!
– One extra bit of accuracy in x at each iteration

Faster Root-Finding

• Fancier methods get super-linear convergence
– Typical approach: model function locally by

something whose root you can find exactly
– Model didn’t match function exactly, so iterate
– In many cases, these are less safe than bisection

Secant Method

• Interpolate or extrapolate through two most
recent points

1

2
3

4

Secant Method Convergence

• Faster than bisection:
 |εn+1| = c |εn|1.6

• Faster than linear: number of correct bits
multiplied by 1.6

• Drawback: only true if sufficiently close to a
root of a sufficiently smooth function
– Does not guarantee that root remains bracketed

False Position Method

• Similar to secant, but guarantees bracketing

• Stable, but linear in bad cases
1

2
3

4

3

False Position Failure

2

1

Other Interpolation Strategies

• Ridders’ method: fit exponential to
f(x+), f(x–), and f(xhalf)

• Van Wijngaarden-Dekker-Brent method:
inverse quadratic fit to 3 most recent points
if within bracket, else bisection

• Both of these safe if function is nasty, but
fast (super-linear) if function is nice

Demo

Newton-Raphson

• Best-known algorithm for getting quadratic
convergence when derivative is easy to evaluate

• Quadratic: # correct bits doubles each iteration!
 |εn+1| = c |εn|2

• Another variant on the extrapolation theme

)(
)(

1
n

n
nn xf

xfxx
′

−=+

1
2

3
4

Slope = derivative at 1

Newton-Raphson convergence

• Begin with Taylor series

• Divide by derivative (can’t be zero!)

f (xn +δ) = f (xn) +δ ′ f (xn) +δ 2 ′ ′ f (xn)
2

+ ... =
want

0

2
1

2

2

2

~
)(2
)(

0
)(2
)(

0
)(2
)(

)(
)(

nn
n

n
Newton

n

n
Newton

n

n

n

n

xf
xf

xf
xf

xf
xf

xf
xf

εεδδδ

δδδ

δδ

+⇒
′
′′

=−

=
′
′′

++−

=
′
′′

++
′

Newton-Raphson

• Method fragile: can easily get confused

• Good starting point critical
– Newton popular for “polishing off” a root found

approximately using a more robust method
• Quadratic only for simple root

Newton-Raphson Convergence

• Can talk about “basin of convergence”:
range of x0 for which method finds a root

• Can be extremely complex:
here’s an example
in 2-D with 4 roots

Common Example of Newton: Square Root

• Let f(x) = x2 – a: zero of this is square root of a
• f’(x) = 2x, so Newton iteration is

• “Divide and average” method (~2000 B.C.)

()
nx

a
n

n

n
nn x

x
axxx +=

−
−=+ 2

1
2

1 2

)(
)(

1
n

n
nn xf

xfxx
′

−=+

Reciprocal via Newton

• Division is slowest of basic operations
• On some computers, hardware divide not

available (!): simulate in software

• Need only subtract and multiply

()nn
x

x
nn

x

x

bb
a

bxxbxx

xf
bxf

a

−=
−
−

−=

−=′
=−=

=

+ 2

)(
0)(

*

2

2

1

1

1

1

1

1

Rootfinding in >1D

• Behavior can be complex: e.g. in 2D

0),(
want

yxg =

0),(
want

yxf =

Rootfinding in >1D

• Can’t bracket and bisect

• Result: few general methods

Newton in Higher Dimensions

• Start with

• Write as vector-valued function
0),(

0),(
want

want

yxg

yxf

=

=









=

),(

),(
)(

yxg

yxf
nxf

Newton in Higher Dimensions

• Expand in terms of Taylor series

• f’ is a Jacobian

0...)()()(
want

nnn =+′+=+ δxfxfδxf

()yxn ∂
∂

∂
∂==′ ffJxf)(

Newton in Higher Dimensions

• 1-dimensional case: δ = f(xn) / f’(xn)

• N-dimensional: Solve for δ

• Requires matrix inversion (we’ll see this later)
• Often fragile – must be careful

– Keep track of whether error decreases
– If not, try a smaller step in direction δ

)()(1
nn xfxJδ −−=

Recap: Tradeoffs

• Bracketing methods (Bisection, False-position)
– Stable, slow

• Open methods (Secant, Newton)
– Possibly divergent, fast
– Newton requires derivative

• Hybrid methods (Brent)
– Combine bracketing & open methods in a

principled way

Practical notes

• Root-finding in Matlab:
– fzero: For finding root of a single function

Combines “safe” and “fast” methods
– roots: For finding polynomial roots

• Excel:
– Goal Seek: Drive an equation to 0 by adjusting 1

parameter
– Solver: Can vary multiple parameters simultaneously,

also minimize & maximize
• Tip: Plot your function first!!!

	Root Finding
	Reminder
	Last time..
	Today
	1-D Root Finding
	Why Root Finding?
	Why Root Finding?
	Bracket-Based Methods
	What Goes Wrong?
	Bisection Method
	Error Convergence of Iterative Methods
	Slide Number 12
	Bisection Error Convergence
	Faster Root-Finding
	Secant Method
	Secant Method Convergence
	False Position Method
	False Position Failure
	Other Interpolation Strategies
	Demo
	Newton-Raphson
	Newton-Raphson convergence
	Newton-Raphson
	Newton-Raphson Convergence
	Common Example of Newton: Square Root
	Reciprocal via Newton
	Rootfinding in >1D
	Rootfinding in >1D
	Newton in Higher Dimensions
	Newton in Higher Dimensions
	Newton in Higher Dimensions
	Recap: Tradeoffs
	Practical notes

