Root Finding

COS 323

Reminder

- Sign up for Piazza
- Assignment 0 is posted, due Tue 9/25

Last time..

- Floating point numbers and precision
- Machine epsilon
- Sources of error
- Sensitivity and conditioning
- Stability and accuracy
- Asymptotic analysis and convergence order

Today

- Root finding definition & motivation
- Standard techniques for root finding

 Algorithms, convergence, tradeoffs
- Example applications of Newton's Method
- Root finding in > 1 dimension

1-D Root Finding

 Given some function, find location where f(x)=0

Why Root Finding?

- Solve for x in any equation: f(x) = b where x = ?
 → find root of g(x) = f(x) b = 0
 - Might not be able to solve for x directly e.g., $f(x) = e^{-0.2x}sin(3x-0.5)$
 - Evaluating f(x) might itself require solving a differential equation, running a simulation, etc.

Why Root Finding?

 Engineering applications: Predict dependent variable (e.g., temperature, force, voltage) given independent variables (e.g., time, position)

• Focus on finding *real* roots

Bracket-Based Methods

- Given:
 - -Points that *bracket* the root
 - -A *well-behaved* function
- Can always find *some* root

What Goes Wrong?

Tangent point: very difficult to find Singularity: brackets don't surround root Pathological case: infinite number of roots – e.g. sin(1/x)

Bisection Method

- Given points x_+ and x_- that bracket a root, find $x_{half} = \frac{1}{2} (x_+ + x_-)$ and evaluate $f(x_{half})$
- If positive, $x_+ \leftarrow x_{half}$ else $x_- \leftarrow x_{half}$
- Stop when x₊ and x₋ close enough
- If function is continuous, this *will* succeed in finding *some* root

Error Convergence of Iterative Methods

- (Absolute) error bound \mathcal{E}_n at step n: \mathcal{E}_n bounds $|\mathbf{x}_{estimated at step n} - \mathbf{x}_{true}|$
- **Convergence**: describes how \mathcal{E}_{n+1} relates to \mathcal{E}_n
- Linear convergence:

 $|\varepsilon_{n+1}| = c |\varepsilon_n|$ for some $c \in (0,1)$

• Superlinear convergence:

 $|\varepsilon_{n+1}| = c |\varepsilon_n|^q$ for some $c \in (0,1), q > 1$

Bisection Error Convergence

- Very robust method: guaranteed to find root!
- Convergence rate:
 - Error bounded by size of $[x_+...x_-]$ interval
 - Interval shrinks in half at each iteration
 - So, error bound cut in half at each iteration: $|\mathcal{E}_{n+1}| = \frac{1}{2} |\mathcal{E}_n|$
 - Linear convergence!
 - One extra bit of accuracy in x at each iteration

Faster Root-Finding

- Fancier methods get super-linear convergence
 - Typical approach: model function locally by something whose root you can find exactly
 - Model didn't match function exactly, so iterate
 - In many cases, these are less safe than bisection

Secant Method

Interpolate or extrapolate through two most recent points

Secant Method Convergence

• Faster than bisection:

$$|\mathcal{E}_{n+1}| = c |\mathcal{E}_n|^{1.6}$$

- Faster than linear: number of correct bits multiplied by 1.6
- Drawback: only true if *sufficiently close* to a root of a *sufficiently smooth* function

- Does not guarantee that root remains bracketed

False Position Method

• Similar to secant, but guarantees bracketing

• Stable, but linear in bad cases

False Position Failure

Other Interpolation Strategies

- Ridders' method: fit exponential to f(x₊), f(x₋), and f(x_{half})
- Van Wijngaarden-Dekker-Brent method: inverse quadratic fit to 3 most recent points if within bracket, else bisection
- Both of these *safe* if function is nasty, but
 fast (super-linear) if function is nice

Demo

Newton-Raphson

- Best-known algorithm for getting *quadratic* convergence when derivative is easy to evaluate
- Quadratic: # correct bits doubles each iteration!

$$|\mathcal{E}_{n+1}| = C |\mathcal{E}_n|^2$$

• Another variant on the extrapolation theme

Newton-Raphson convergence

• Begin with Taylor series

$$f(x_n + \delta) = f(x_n) + \delta f'(x_n) + \delta^2 \frac{f''(x_n)}{2} + \dots = 0$$

• Divide by derivative (can't be zero!)

$$\frac{f(x_n)}{f'(x_n)} + \delta + \delta^2 \frac{f''(x_n)}{2f'(x_n)} = 0$$

$$-\delta_{Newton} + \delta + \delta^2 \frac{f''(x_n)}{2f'(x_n)} = 0$$

$$\delta_{Newton} - \delta = \frac{f''(x_n)}{2f'(x_n)} \delta^2 \qquad \Rightarrow \varepsilon_{n+1} \sim \varepsilon_n^{-2}$$

Newton-Raphson

• Method fragile: can easily get confused

- Good starting point critical
 - Newton popular for "polishing off" a root found approximately using a more robust method
- Quadratic only for simple root

Newton-Raphson Convergence

- Can talk about "basin of convergence": range of x₀ for which method finds a root
- Can be extremely complex: here's an example in 2-D with 4 roots

Common Example of Newton: Square Root

- Let $f(x) = x^2 a$: zero of this is square root of a
- f'(x) = 2x, so Newton iteration is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
$$x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

• "Divide and average" method (~2000 B.C.)

Reciprocal via Newton

- Division is slowest of basic operations
- On some computers, hardware divide not available (!): simulate in software

$$\frac{a}{b} = a * \frac{1}{b}$$

$$f(x) = \frac{1}{x} - b = 0$$

$$f'(x) = -\frac{1}{x^2}$$

$$x_{n+1} = x_n - \frac{\frac{1}{x} - b}{-\frac{1}{x^2}} = x_n (2 - bx_n)$$

• Need only subtract and multiply

Rootfinding in >1D

• Behavior can be complex: e.g. in 2D

Rootfinding in >1D

- Can't bracket and bisect
- Result: few general methods

Newton in Higher Dimensions

• Start with

$$f(x,y) \stackrel{want}{=} 0$$

$$g(x,y) \stackrel{want}{=} 0$$

• Write as vector-valued function

$$\mathbf{f}(\mathbf{x}_n) = \begin{pmatrix} f(x, y) \\ g(x, y) \end{pmatrix}$$

Newton in Higher Dimensions

• Expand in terms of Taylor series

$$\mathbf{f}(\mathbf{x}_n + \mathbf{\delta}) = \mathbf{f}(\mathbf{x}_n) + \mathbf{f}'(\mathbf{x}_n) \mathbf{\delta} + \dots \stackrel{want}{=} \mathbf{0}$$

• f' is a Jacobian

$$\mathbf{f}'(\mathbf{x}_n) = \mathbf{J} = \begin{pmatrix} \frac{\partial \mathbf{f}}{\partial x} & \frac{\partial \mathbf{f}}{\partial y} \end{pmatrix}$$

Newton in Higher Dimensions

- 1-dimensional case: $\delta = f(x_n) / f'(x_n)$
- N-dimensional: Solve for $\boldsymbol{\delta}$

$$\boldsymbol{\delta} = -\mathbf{J}^{-1}(\mathbf{x}_n) \, \mathbf{f}(\mathbf{x}_n)$$

- Requires matrix inversion (we'll see this later)
- Often fragile must be careful
 - Keep track of whether error decreases
 - If not, try a smaller step in direction δ

Recap: Tradeoffs

- Bracketing methods (Bisection, False-position)
 Stable, slow
- Open methods (Secant, Newton)
 - Possibly divergent, fast
 - Newton requires derivative
- Hybrid methods (Brent)
 - Combine bracketing & open methods in a principled way

Practical notes

- Root-finding in Matlab:
 - fzero: For finding root of a single function
 Combines "safe" and "fast" methods
 - roots: For finding polynomial roots
- Excel:
 - Goal Seek: Drive an equation to 0 by adjusting 1 parameter
 - Solver: Can vary multiple parameters simultaneously, also minimize & maximize
- Tip: Plot your function first!!!