COS318 Final Exam SOLUTIONS
Princeton University
Fall, 2011
Instructors: Profs. Margaret Martonosi & Vivek Pai

(Total Time = 180 minutes)

Question Score

1-3 /15

4 /15

5 /15

6 /15

7 /10

8 /15

9 /15
Total /100

This exam is closed-book, closed-notes. 1 double-sided 8.5x11” sheet of notes is permitted.
Calculators are ok but unneeded. Laptop or palmtop computers are not allowed.

Show your work clearly in the spaces provided in order to get full or partial credit.
Excessively long and/or vague answers are subject to point deductions.

If you are unclear on the wording/assumptions of a problem, please state your assumptions
explicitly and work it through.

Honor Code (Please write out these words and then sign): | pledge my honor that | have not
violated the Honor Code during this examination.
MAX SCORE = 98.5

Mean = 76.5

Std Dev=11.8

Print name clearly and sign:

Short Answer:

1. (3 points) What is a TLB and what does it do?

A TLB is a form of hardware cache that tries to store a small number of recently-used virtual-to-
physical page translations, so that V-to-P mappings can be performed at hardware speeds,
without invoking the OS on each memory reference.

2. (6 points) One program reads a large file via malloc/read and the other uses mmap. If the OS
needs to evict dirty pages from these regions, where do they go?

The malloc/read program has its pages written to swap. Note that the read itself makes the
pages dirty from the standpoint of the OS.

The mmap’d program would have its dirty pages written back to the file in question unless you
told mmap to do otherwise. The question assumed that there were dirty pages, but if you said
that reading via mmap doesn’t cause pages to become dirty, so the OS can just discard the
pages instead of writing them back to the file, that was also accepted.

3. (6 points) A multi-threaded database program uses a single file to store all customer balance
information. Each thread performs a seek, followed by a read to obtain the old balance, and
then a write to update the balance.

a) (3 points) Using pread and pwrite can avoid the race conditions inherent in the original
design. Explain why

The original program can have a race if the two seeks occur before the reads. Both reads will
occur at the location of the second seek. Other combinations are possible too. The
pread/pwrite call specifies the location of the read/write, so there’s no implied position that
can be changed by other calls. Note that pread/pwrite don’t lock the entire file, which is the
whole point.

b) (3 points) If the system runs on a single disk, is it preferable to use pread/pwrite or just have
each thread lock the file during a transaction?

With a single disk, it’s actually better from a performance standpoint to lock the file so that the
head doesn’t move between the read and write. With pread/pwrite, you may service the next
pread before seeing the pwrite, so you’ll end up doing more seeks.

4. (15 points) Virtual Memory: Recall the x86 page table structure from project 5: given a 32-bit
linear address, the high-order 10 bits index into the page directory, the next 10 bits index into
the page table, and the low-order 12 bits index into the page.

Consider each the following changes separately (i.e., they are NOT cumulative):

a) (8 points) Given a linear address, the high-order 8 bits index into the page directory, the next
8 bits index into the page table, and the low-order 16 bits index into the page. What is the size
of a page, in bytes, in the new system? What are the pros and cons of the change? Give an
example usage pattern under which the change would be beneficial.

2 points:
2716 = 65536

4 points:

Pros

- less overhead due to paging structures and swapping to/from disk
- more of virtual memory fits into the TLB at once

Cons

- more wasted space due to internal fragmentation

- less granularity for swapping

- swapping an individual page is more expensive

2 points:
Example workload: random access of a 64 KB array.

b) (7 points) Given a linear address, the low-order 10 bits index into the page directory, the next
10 bits index into the page table, and the high-order 12 bits index into the page. Will this work?
If so, is it a good or bad idea? Justify your answer.

correct answers: 3 points

justification: 4 points

It will work, since there's still a valid mapping between virtual and
physical addresses. It's a bad idea, though, because it eliminates the
benefits of spatial locality. Neighboring addresses will translate to
different pages, leading to high overhead in paging data structures
and frequent swapping.

5. (15 points) A UNIX filesystem has 2-KB blocks and 4-byte disk addresses. Each i-node contains
10 direct entries, one singly-indirect entry and one doubly-indirect entry.

a) (5 points) What is the maximum file size?

10*2KB + (2048/4)*2KB + (2048/4) * (2048/4) *2KB = 20K + 1024K + 524288K = 525332KB (or
537939968B or 513.02MB etc.)

If you assume 1K equals to 1000 instead 1024, your answer is still considered to be correct.

Rubric: If the final result is correct, you will get all 5 points. Otherwise, size of singly- indirect
worth 1.5 points; size of doubly-indirect worth 1.5 points; the formula of adding up everything
together worth 1.5 points; final result worth 0.5 point.

b) (5 points) Suppose half of all files are exactly 1.5-KB and the other half of all files are exactly
2-KB, what fraction of disk space would be wasted? (Consider only blocks used to store data)

Both 1.5-KB and 2-KB file will use 2KB space. For each 2-KB file, OKB is wasted; for each 1.5-KB
file, 0.5KB is wasted. Therefore, the fraction wasted is (0/2)*50%+(0.5/2)*50% = 12.5%.

Rubric: If the final result is correct, you will get all 5 points. Otherwise, the correct formula
worth 4 points final result worth 1 point.

c) (5 points) Based on the same condition as in b), does it help to reduce the fraction of wasted
disk space if we change the block size to 1-KB? Justify your answer.

No. Nothing is changed. Both 1.5-KB and 2-KB file will still use 2KB space. For each 2-KB file, OKB
is wasted; for each 1.5-KB file, 0.5KB is wasted. Therefore, the fraction wasted is

(0/2)*50%+(0.5/2)*50% = 12.5%, which is unchanged.

Rubric: No (2 points). Reasonable reason (3 points).

6. (15 points) Virtual Machines. Virtualized environments seek to provide isolation between
different workloads by allowing multiple guest OS’s to run distinct workloads simultaneously on
one physical system. Intheory, someone running a program within a perfectly-virtualized
environment would find it indistinguishable from running on bare hardware. In practice,
discuss some ways that a piece of running code might be written to be able to discern the
difference.

The best strategies all revolve around timing the performance of functionality known to
highlight differences between native and virtualized execution. The three main examples of
this would be: specific instructions like (1) x86 popf, (2) I/O functionality, (3) memory
management and allocation.

A reasonable but general discussion of timing strategies got 12 points. Detailed specifics on the
categories above got 15. Attempts to get at the above sorts of information without
mentioning/using timing usually earned 10 points, since they usually wanted to look at info
unavailable to a virtualized client.

7. (10 points) Your boss decides that your first project will be to take a standard Unix filesystem,
and make one change -- to place the full inode in the directory file instead of just placing the
inode number.

a. (5 points) What benefits does this change provide? For each benefit, briefly explain why.

The biggest is that it reduces the number of seeks, since you don’t have to do a separate seek
for the inode. It also gives you more flexibility on the number of inodes, since they’re only
allocated as needed. This will either save space when you don’t need as many inodes, or will
give you greater flexibility when you need a lot more inodes. It may also save some space by
using up more of the directory file for smaller directories. It may also help lessen the impact of
damage to the disk, since scattered inodes reduce the chance of lots of inodes getting wiped
out at the same time.

b. (5 points) What drawbacks/limitations does this change introduce. Briefly explain each one.

Hard linking becomes much harder, and you need some other mechanism for it. Without some
other mechanism, hard links become impossible. Finding inodes also requires a new
mechanism. Detecting corruption and recovering from it becomes more complicated since you
have no idea where to look for inodes.

8. (15 points) Consider the following simplified implementation of the link() system call from an
early Unix system.

algorithm link:
input: existing file name A, new file name B
output: none

{
1 get inode for existing file A; /* returns a locked, reference counted inode */
2 if ((too many links on file) or (linking directories without superuser permission)) {
3 release inode A; /* removes reference count and unlocks the inode */
4 return (error);

}
5 increment link count on inode A;
6 update disk copy of inode A;
7 unlock inode A;
8 get inode for parent directory to contain new file B; /* returns a locked, ref-counted
inode */
9 if ((new file name already exists) or (existing file, new file on different file systems)) {
10 undo update done above;
11 return (error);

}

12 create new directory entry in parent directory of new file B:
13 include new file name B, inode number of existing file A
14 release parent directory inode for B; /* decrements ref-count and unlocks the inode */
15 release inode of existing file A; /* decrements ref-count */
}

Now answer the following questions, with no more than 3-4 sentences per part.

a. (3 points) You see mentions of "link counts" and "reference counts", both on
inodes. What's the difference between them?

Link counts keep track of the number of directory entries anywhere under the filesystem root
which refer to the file in question. The inode reference count is used to count the number of
threads/processes- actively modifying the inode.

Scoring: 1.5 points each for link count and reference count definition/illustration of difference.
1 or 2 points deducted if you mention any incorrect usages of these counts.

b. (4 points) Why did early Unix system implementations require superuser permission to link
directories (line 2)?

To simplify system call implementations having to deal with loops in the file system hierarchy--
e.g., if a user were to link an existing directory (file A) from a node below it (file B) in the
hierarchy. (Superusers are trusted to know what they're doing...) So, now system call
implementations can assume that anything other than "../" does not lead it *up* the file system
hierarchy.

Scoring: 2.5 points for mention of loops or circular links; 1.5 points for explaining why loops are
bad.

A common answer to this question was that this helps avoid users from getting access to
protected parts of the filesystem (e.g., /etc) or to other users’ home directories. But this is
incorrect because the file owner, group and permission information resides on the inodes,
which are checked when the file is actually being accessed.

c. (8 points) Why do lines 6-7 update the disk copy and unlock inode A *before* it is clear that
the link call can be successfully completed? (i.e., before the checks in lines 8-11)

The essence of this question is: why unlock inode A before including the new inode entry for B, and not after? The
answer is that you would end up with the classic deadlock situation of acquiring resource locks in reverse order.
These bad orderings of lock acquire()s are hard to foresee, because link()s can in principle be called from any node
on the file system.

A concrete example: Suppose thread A wants to link "/e/f/g" (new file) to "/a/b/c/d" (existing file) and thread B
wants to link "/a/b/c/d/ee" (new file) to "e/f" (existing file). Consider what happens if A finds and locks the inode
for "/a/b/c/d" at the same time that B finds and locks the inode for "/e/f". Now they are deadlocked waiting to
obtain the locks for the second half of the system call to complete.

It's important to note that the need to unlock the inode drives the need to update the disk copy, and not the other
way around.

Scoring: If you mention the possibility of a deadlock, you receive 5 points. A correct, plausible example sequence of
operations where deadlock happens gets you 3 more points.

If you don’t mention deadlocks (with or without example) but provide valid performance or fault tolerance
reasons, you get 2 points. These reasons don’t address why you need to unlock the inode (though they may
address why you update the disk copy).

9. (15 points) RAID. Consider that many RAID devices now ship with the following options:
RAID O - data striped across all disks

RAID 1 - each disk mirrored

RAID 5 - striped parity

Assume a system with 8 disks

For each level, how much usable storage does the system receive?

RAID 0 — 8 disks
RAID 1 — 4 disks
RAID 5 — 7 disks

Assume a workload consisting only of small reads, evenly distributed. Assuming that no
verification is performed on reads, what is the throughput of each level assuming one disk does
100 reads/sec?

RAID 0 — 800 reqs/sec

RAID 1 — 800 reqs/sec — reads can be satisfied from both disks in a pair

RAID 5 — 800 reqgs/sec — no need to read the parity, so no loss of read performance, only space

Assume a workload consisting only of small writes, evenly distributed. Again, calculate the
throughput assuming one disk does 100 writes/sec

RAID 0 — 800 reqs/sec

RAID 1 - 400 reqgs/sec — need to write to both disks in a pair

RAID 5 — 200 reqgs/sec if you do two reads + two writes to update the parity, or 100 reqs/sec if
you read all of the disks to recalculate the parity

For each level, what is the minimum number of disks that may fail before data may be lost?
RAID 0 — 1, but data loss is guaranteed at the first lost disk

RAID 1 -2, if you happen to lose both disks in a pair

RAID 5 — 2, but data loss is guaranteed on the second disk

For each level, what is the minimum number of disks that must fail to guarantee data loss?
RAIDO-1

RAID 1 -5, if you happen to get really lucky and lose one from each pair before losing the 5th
RAID 5 -2

