Virtual Memory
DON’T PANICY

Aaron Blankstein

Scheduling Administrivia

* Design Reviews on Monday!
— Signup is live?
— Show up prepared

* Project due the following Sunday.

What’s going to happen in this Project

* Different memory layouts for different tasks
* Restriction of user processes to the user mode
* You will use usb for swap storage

— Process uses whatever location it was originally
loaded from (swap_loc)

— Multiple process instances will be broken this
means

What You’'ll Implement

Initializing Memory (kernel page stuff)
Setting up each process’ memory
Handling Page Faults

Swap in and Swap out

Extra Credit: better eviction policy

2-Level Page Table (i386)

* Link on the Project Description to Intel Manual

Linear Address

10

31 22 21 12 11 0
Directory Table Offset
12 4-KByte Page
10 Page Table » Physical Address
Page Directory
—» Page-Table Ent -
g ry 20
Directory Entry -

CR3 (PDBR)

1024 PDE = 1024 PTE = 2%° Pages

*32 bits aligned onio a 4-KByte boundary.

Directory Entries

12117 9876543210

PIP|U|R
Page-Table Base Address Avai |G|Plolalciw|/|/|P
S D|T|s|w

Available for system programmer’s use J ‘
Global page (lgnored)

Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

Table Entries

1211 9876543210

P PIP|U|R
FPage Base Address Avail |G|AD/A|CW[/|/|P
T D(T|S|w
Available for system programmer's use J ‘
Global Page
Page Table Attribute Index
Dirty
Accessed

Cache Disabled
Write-Through
User/Supervisor
Read/\Write

Present

Entry Flags

P: Whether the page or page table being
pointed is loaded.

U/S: 0-> no user access

R/W: 0-> user read-only

A : Accessed (set on swap-in)
D : Dirty

— (Only for page-table entry; you’ll use this at swap-
out)

Setting Up Kernel Memory

Allocate N KERNEL PTS (page tables)

Fill them out until you’ve reach
MAX_ PHYSICAL_MEMORY

PHYSICAL = VIRTUAL

Need to be marked correctly
— (especially SCREEN_ADDR)

Setting Up Process Memory

* Map kernel page tables starting at O

« PROCESS START (vaddr of code + data)

— Use one page table and fill it out
— |t needs pcb->swap_size memory

 PROCESS_STACK (vaddr of stack top)
— Use N_PROCESS_STACK_ PAGES for the stack

Page Fault Handling

Get a free page (from the page allocator)
Swap into the page

Set the page table entry to the page’s address
and set present flag

When do you need to flush the TLB?

Page Allocator

If free page, return it
Otherwise, you’ll need to swap a page out

Some pages are pinned and you never evict
them!

In this project, implement any simple way
(e.g., FIFO)

Extra credit opportunity!

Things you’ll write

memory.[ch]

init_memory()

setup_page table(pcb t *p)
nage fault_handler()
nage_alloc(int pinned)

nage _replacement_policy()

nage swap_in(int pagenumber)
nage swap_out(int pagenumber)

You will probably need to define structures to
handle

What Can Make Your Life Easier

* One page table is enough for a process’ code
and data memory space (starts at
PROCESS START)

* Some pages don’t need to be swapped out

— Need in this case means with respect to grading.

— kernel pages, process page directory, page table, stack
table and stack pages.

Good Luck!

* Prepare for Design Reviews
* Enjoy your break?

Questions!

